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A SURVEY OF PERFECT CODES 
J. H. VAN LINT 

1. Introduction. In recent years there has been a lot of interest in 
so-called "perfect codes". Originally a topic in the theory of error-
correcting codes, there are now connections to group theory, com
binatorial configurations, covering problems and even diophantine 
number theory. As the results are spread over many fields and journals 
and since many of them are quite recent there has been a lot of duplica
tion and more is to be expected. For this reason it seems worthwhile 
to write a survey of what is known (to this author) at the moment. 

To introduce the subject and for further use in this survey we need a 
number of concepts from the theory of error-correcting codes which we 
now introduce briefly. 

Consider a set F of q distinct symbols. We shall call this set the 
alphabet. By J?(n) : = F n we denote the set of all n-tuples from F, 
i.e. 

(1.1) ,#<»> : = {(au 02, ' ' *, an) \ a, G F, i = 1,2, • • -, n}. 

In many cases we shall impose some algebraic structure, e.g., F will 
be a ring and tR{n) an F-module. If F is the field GF(q) we can con
sider <s/?(n) as an n-dimensional vector-space over F. We write 
a : = (ah a2, * * *, an) and use the words vector or word to denote the 
n-tuples from Ji{n) (n is called the block length or word length). We 
also introduce a metric d in cR{n). In coding theory the most familiar 
metric is Hamming-distance defined by 

(1.2) d(x, y) : = the number of indices ifor which x{ ^ t/j. 

In many cases one of the symbols of F is denoted by 0 (zero). We then 
define the weight w(a) of a word a by 

(1.3) w(a) : = the number of indices ifor which a^ j£ 0. 

Note that if 0 : = (0,0, • • -, 0) then w(a) = d(a, 0). 
If x G J?in) and e è 0 is an integer we define the sphere S(x, e) with 

center x and radius e by 

(1.4) S(x, e ) : = { y £ ^ » ) | d{x, y) ^ e}. 
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Clearly 

(1.5) |S(x,e)|= tOiq-iy. 
i=0 

Any subset C of *#<"> is called a code. If F = GF(q) and <̂ <n> is the 
n-dimensional vector-space over F then C is called a linear code (or 
(n, fc)-code) if C is a fc-dimensional linear subspace of cR{n\ A slightly 
weaker concept is a group code. This name is used if <s/?(n) is an addi
tive group and C a subgroup. A code C is an e-error-correcting code 
if 

(1.6) VxEC VyGC [ (* ^ y) => d(x, y) ̂  2e + 1 ] , 

i.e., 

(1.7) VxGC VyGC [(x ^ y) =* S(x, e) fi % , e) = 0 ] . 

If for such an ^-error-correcting code C the union of these spheres is 
*/?<">, i.e., 

(1.8) <*<»>= U S(%,e) 
xGC 

then the code is called perfect. In this case there is, for every y G <^?(n), 
a unique x E C with d(x, y) = e. 

In the following we shall make use of some terminology from the 
theory of linear codes which we now introduce. If C is a linear code 
of dimension fc and xl7 x2,* * •, x& form a basis of C then the matrix G 
with row-vectors x1? x2, * ' ',xk is called a generator matrix of C. A 
generator matrix H of the orthogonal complement C of C in ^?(ri) is 
called a parity-check matrix of C. The orthogonal complement itself 
is called the dual code of C. Clearly we have 

(1.9) C = {a G </?<»> | a = (bl9 b2i • • -, bk) G %b{ G F, i = 1,2, • • -, fc} 

and 

(1.10) C = { a G ^ | a t f T = 0 } . 

The error-correcting properties of a code do not change if we apply 
a permutation n of the places to ^?(n), e.g., ir(ai, a2, • * *, an) = 
(an, an_i, * * ",fli). The resulting codes are called equivalent codes. 
Sometimes the definition of equivalence is extended by also allowing 
a permutation of the symbols of F; (this will in general destroy 
linearity). 

The main purpose of this survey is to discuss the connection of per
fect codes to several other problems and to show how the problem of 
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the existence of such perfect codes was completely solved in the case 
where F is a finite field. First, however, we wish to show how the 
concept of perfect code, as introduced above, can be generalized in 
several directions and how some analogous problems can be formu
lated. 

Let (^?, d) be a metric space (d the distance function) and e > 0. 
A subset C C ^ i s called a perfect e-code if Jt is the disjoint union of 
the spheres of radius e (as in (1.8)) around the points of C. In this 
formulation we have a sphere-packing problem of a special nature. 
A rather natural generalization of the Hamming metric is the Lee-
metric defined as follows when F is the ring of integers mod q: 

n 

(1.11) WL(x) : = J ) niin{Xb q ~ *i}> 
i = l 

where the sum is taken in Z, and 

(1.12) dL{x,y): = WL(x-y). 

Very little is known about perfect codes with this metric. (See § 8.) 
A more complicated way to generalize perfect codes is the following. 

Start with n alphabets Fh F2, • • -, Fn and let *R : = Fl X F2 X • • • X 
Fn. Define Hamming metric as in (1.2). Again, we can study perfect 
codes in Ji. (See § 8.) 

If J?in) is n-dimensional vector-space over GF(q) and C C */?(n) is 
a perfect e-error-correcting code, then by (1.8) we have <^?(n) = 
S(0, e) © C, a direct sum. We can now generalize the problem by 
varying the set S. If, e.g., we take S to include all vectors of weight 
= e and also some of the vectors of weight e + 1 then any solution 
C is called a quasi-perfect code. This class of codes contains codes 
which are called nearly perfect. These will be treated in § 8. 

The geometrical problems of packing spheres in cRin\ resp. covering 
<s/?(n) with spheres meet in the case of perfect packings (coverings). 
Therefore it is to be expected that some results concerning perfect 
codes originate from the study of covering problems. Typical examples 
are perfect single-error-correcting codes which turned up several 
times in connection with the following group theory problem (Taussky 
and Todd [65] ). Let G be an abelian group with base elements 
gi» g2> ' ' ' gn> all of order q. Let S be the set of all powers of the base 
elements, i.e., S = {g? \ i = 1,2, • • -, n; 0 S a < q}. Let if be a subset 
of G such that every element g of G can be written as g = hs with 
h Çz H, s G S. This is called a group covering. Taussky and Todd 
asked for the minimal number of elements in such a set H and whether 
H could be a subgroup. (See § 2.) 
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This survey is organized as follows. In § 2 we discuss perfect 
single-error-correcting codes. In section 3 we discuss the two known 
nontrivial perfect ^-error-correcting codes with e ^ 2. These are 
known as the Golay codes. We shall illustrate their connection with 
combinatorial theory and group theory. More connections between 
perfect codes and combinatorial theory will be discussed in § 4. The 
interesting properties of the known perfect codes have stimulated the 
search for more such codes. The obvious thing to do is to consider 
the necessary condition for the existence of such codes which follows 
from (1.8) by counting the number of elements on both sides. This 
leads to a number theoretic problem. The condition, known as the 
sphere-packing condition, is treated in § 5. A deeper theorem yield
ing a necessary condition for the existence of perfect codes is known 
as Lloyd's theorem. This is discussed in § 6. In the past few years an 
extensive study of the combined necessary conditions has led to a 
proof that all perfect codes over alphabets which are finite fields are 
known. We summarize the methods in § 7. Finally, in § 8, we shall 
discuss the generalizations mentioned earlier in this introduction. 

2. Perfect single-error-correcting codes. Perfect single-error-cor
recting codes (s.e.c. codes) have been constructed for every field 
alphabet GF(qf). They are known as Hamming codes (sometimes H-G 
codes, the G for Golay who contributed to the development of the 
idea first used by Hamming [28] ). The codes have been rediscovered 
a number of times, e.g., as a solution of the problem of Taussky and 
Todd mentioned in the introduction (see later in this section). We 
mention the references Cocke [15], Golay [24], Losey [45], Mac Wil
liams [47], Mauldon [49], Zaremba [72], [73]. 

Hamming codes are defined as follows. Let the ?n-dimensional 
vector-space J?{m) over GF(q) be interpreted as a model of the affine 
geometry AG(m, q). There are n : = (qm — l)/(g — 1) lines through 
the origin 0. On each of these we choose one non-zero vector. We 
take these vectors as columns of a matrix H (m rows, n columns). Con
sider H as the parity-check matrix of a linear code C in */?(n) (cf. (1.1), 
(1.10)). Since a linear combination of less than three columns of H 
is zero only if the coefficients are zero, the non-zero words of C all 
have weight ^ 3. Hence C is an s.e.c. code ((1.6) holds with e = 1). C 
is a subspace of J?{n) with dimension n — m. By (1.5) we have S(x, 1) = 
qm for xGC. Therefore we find from (1.6) that |U x G CS(x, l ) | = 
qn-mqm _ ^n - |^(n)|? [e^ ( U ) holds and hence C is perfect! (For 
a generalization of this idea see § 8.) 

The special case q = 2 is particularly elegant. We can choose the 
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columns of H to be the binary representations of the integers 1, 2, * • -, n. 
If c is a vector in the Hamming code, i.e., cHT = 0, and c' is ob
tained from c by changing the j- th coordinate of c (a single error) 
then c'HT is the binary representation ofj (the place where the error 
occurs). 

DEFINITION (2.1). If Ai denotes the number of code words of weight 
i in a code C then A(z) : — ^f^o A ^ is called the weight enumerator 
ofC. 

If C is a perfect s.e.c. code of length n over an alphabet of q symbols 
(q not necessarily a prime power) then 

(2.2) ^ 
+ n(q — 1)[1 + (qr — l)z] <»-i>/*(l - z)(»«i-i)+iy<i}. 

This result is obtained by a straightforward counting argument (Peter
son [53] p. 68; van Lint [41] p. 89). 

Before looking at the problem of the existence of perfect s.e.c. codes 
in the case that | F | is not a power of a prime we give an alternate 
description of Hamming codes, valid if q is a power of a prime, n = 
(qm — l)l(q — 1) and (n, q — 1) = (m, q — 1) = 1. To do this we 
introduce the concept of a cyclic code which will turn up again later. 
A linear code C is called cyclic if 

(2.3) (ao9ai9 ' • *,an-i) e C <=^>(an.l,a0,ai, • • *,an_2) €E C. 

If R denotes the ring of polynomials with coefficients in GF(q), i.e., 
R: = (GF(q)[x], + , ) and S is the ideal generated by xn — 1, i.e., 
S : = (({xn — 1}), + , ), then the residue class ring Rmod S is repre
sented by the polynomials OQ + axx + • • • + a ^ i * " - 1 of degree 
< n. As an additive group R mod S is isomorphic to J?(n) and a cyclic 
code C corresponds to an ideal in Rmod S (cf. Peterson [53] p. 137; 
Berlekamp [12] p. 129; van Lint [41] p. 42). Now let a be a primi
tive element in GF(gm). Then ß = aq~l is a primitive n-th root of 
unity in GF(qm). The minimal polynomial (over GF(q)) ofß, which we 
call g(x), has degree â m. In R mod S the polynomial g(x) generates 
an ideal which corresponds to a cyclic code C of dimension è n — m. 
If we represent l,/3,/32, • • * , /3 n _ 1 as vectors (with m coordinates) over 
GF(q) and take these vectors as columns of a matrix H then aHT = 0, 
where a: = (a0, fli, * * ",ön-i), means the same thing as Oo + fl^ 
+ • • • + an^xa

n~l = 0, i.e., g(x) divides a0 + Ö^X + • • • + an_Yxn~l 

and hence a G C. It is easily seen that the code C is equivalent to a 
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Hamming code as described earlier in this section. We remark that if 
(n, q — 1) ^ 1, Hamming codes can be described in a similar way by 
replacing xn — 1 by xn — c; c suitably chosen in GF(q). 

There are no examples known of perfect s.e.c. codes in the case 
where | F | is not a power of a prime (except of course the trivial 
example n= 1 and C any one-element subset of F). From (1.1), 
(1.5), (1.8) it is obvious that 

(2.4) 1 + n(q - 1) | qn 

is a necessary condition for the existence of a perfect s.e.c. code of 
word length n over an alphabet of q symbols. (We remark that if 
q = pa, p prime then (2.4) implies that 1 + n(q — 1) is a power of 
q (cf. van Lint [41] p. 87). If n = q + 1 then (2.4) is satisfied. The 
first case to be studied then is q = 6, n = 7. Strangely enough, this is 
the only case for which it has been shown that there is no perfect s.e.c. 
code (cf. Golomb and Posner [25] ). The curious exception is a conse
quence of the nonexistence of two orthogonal Latin squares of order 6. 
We return to this fact later in this section. If (2.4) holds and n = 1 
(mod q) then all the coefficients in (2.2) are integers which means that 
no nonexistence theorem is to be expected from that direction. 

If any such perfect codes exist they will be hard to construct. This 
is a consequence of a theorem of B. Lindström [37] which states that 
if n = q + 1, q is not a power of a prime, and C is a perfect s.e.c. code 
over an alphabet of q symbols, then C is not a group code! This was 
generalized by H. W. Lenstra Jr. [35] to: 

THEOREM (2.5). Let G{ (1 ^ i ^ n) be a group with underlying set 
F. Suppose there exists a subgroup C C H"=i G{ such that the under
lying set of C is a perfect e-error correcting code of block length n 
over F, with e < n. Then q is a power of a prime p and each G{ is 
abelian of type (p, p, • • *, p). 

In 1962 Ju. L. Vasil'ev produced nonlinear perfect s.e.c. codes. 
Later his construction was generalized. References are Lindström 
[37], Schönheim [58], Vasil'ev [69]. The results are combined in: 

THEOREM (2.6). If q is a power of a prime, n = (qm + 1 — l)/(q — 1), 
where m e 3 if q = 2 and m § 2 if q ^ 3, then there exists a perfect 
single-error-correcting code of length n over GF(q) which is not 
equivalent to a linear code. 

In (2.6) equivalence includes permutation of the symbols of the 
alphabet. This concludes the discussion on construction and existence 
of perfect s.e.c. codes. We are left with 
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PROBLEM (2.7). Are there any perfect single-error-correcting codes 
over an alphabet F for which \F\is not a power of a prime? 

It is worthwhile tc give a brief look at some interesting results con
nected with perfect s.e.c. codes discussed in a paper by Golomb and 
Posner [25]. Let us consider once again a Hamming code C of 
length n = q + 1 over GF(qr). The dual C of this code has dimen
sion 2, i.e., C 1 consists of q2 words of length q + 1. If, for a : = 
(<*!, 02, ' ' -, an) and b : = (bl9 b2, ' ' -, b„), (a f 6), a, = b, and 
aj = foj (i / j) then a and fo are both orthogonal to a word of weight 
2. Since there are no words of weight 2 in C it follows that any 2 
words a and b in C have distance = n — 1 = g. If we make a 
list of the q2 words of C 1 (q2 rows, q + 1 columns) then in any 2 
columns of this list every pair (i,j) occurs once. Such a combina
torial object is called an orthogonal array OA(q, q + 1) (cf. Hall [27] ). 
It is well known that the existence of such an array is equivalent to 
the existence of a projective plane of order q. Now in this discussion 
we have assumed linearity of C but there is some reason to conjecture 
that the existence of a perfect s.e.c. code of length n = q + 1 is as 
hard to show as the existence of a projective plane of order q. For 
many other interesting connections between combinatorial theory and 
perfect codes we refer to the original paper (Golomb and Posner 
[25] ). 

In a football pool one wishes to forecast the outcome (win, lose or 
draw) of n football matches. To win second prize one must have 
n — 1 correct results. The question is what is the most efficient way 
of making a number of forecasts such that, no matter what the outcome 
of the matches, at least one of the forecasts will have ^ n — 1 correct 
results. If n = (3m — l)/2 there is a solution with 3 n ~ m forecasts and 
this solution is provided by the Hamming code of length n over GF(3). 
It was this problem which led Taussky and Todd to their group theory 
problem mentioned in § 1. Further references: Stanton [62], John
son [84]. 

Another amusing (old) problem connected to the Hamming code 
over GF(3) is the penny-weighing problem: Given a balance which 
can be used to determine whether two weights are equal, or which is 
heavier, and given a certain quantity of pennies, of which at most one 
may be heavier or lighter than the standard weight, it is asked to 
determine what paired assemblies of pennies should have their weight 
compared with each other, in order to find, with a minimum number 
of operations, which penny, if any, is too heavy or too light. It is also 
required that the weighing program be completely predetermined, 
and thus not affected by the results of the successive weighings. By 
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now the connection to perfect codes should be obvious to the reader. 
For details we refer to Assmus and Mattson [10], Golay [24], van 
Lint [38]. 

3. The Golay codes. Obvious and trivial examples of perfect ^-error-
correcting codes with e > 1 are 

(3.1) n arbitrary, q arbitrary, e = n,C consists of one word; 

(3.2) n odd, q = 2, i.e., F : = {0,1}, C consists of the zero 
word and the all-one word. In this case e = (n — l)/2. 
The code is known as the repetition code. 

The codes (3.1) and (3.2) are called trivial perfect codes. We exclude 
them from further discussion. There are two known non-trivial per
fect e-error-correcting codes with e > 1. In this section we discuss 
representations and properties of these codes which have been shown 
to be unique (cf. (3.5)). The codes were first discussed by Golay [22]. 
Here we introduce them as quadratic-residue codes (cf. Berlekamp 
[12] p. 352; van Lint [41] p. 79). We refer to the introduction of 
cyclic codes in § 2 of this survey. 

DEFINITION (3.3). Over GF(2) we have 

x23 - 1 = (x - l)(xil + x 9 + x 7 + x6 + x H x + l ) 

• (x11 + x10 + x6 + r 5 + x H x 2 + l ) 

= (x - l)gò(*)gi(z). 

The polynomial go(*) generates a (23,12) cyclic code called the binary 
Golay code. 

DEFINITION (3.4). Over GF(3) we have 

x l l - l = (x- l)(x5 + x4 - x3 + x2 - l)(x5 - x3 + x2 - x - 1) 

= (* - l)go(*)gi(*). 

The polynomial go(s) generates an (11,6) cyclic code called the ternary 
Golay code. 

There are several ways of showing that the minimum distance of the 
binary Golay code is 7 and that the minimum distance of the ternary 
Golay code is 5 (cf., e.g., van Lint [41] ). For both codes (1.8) then 
follows by counting (cf. (1.5)). Hence the binary Golay code is a per
fect 3-error-correcting code over GF(2) and the ternary Golay code is 
a perfect 2-error-correcting code over GF(3). 

In the following theorem we call two codes equivalent if one is 
obtained from the other by a monomial transformation on the vector 
space cR{n\ i.e., a linear mapping defined by a matrix DP where D is 
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a diagonal matrix and F a permutation matrix. The following theorem 
is due to V. Pless [54] (see Comment (9.1)!): 

THEOREM (3.5). 
(i) Every perfect 2-error-correcting code of word length 11 over 

GF(3) is equivalent to the ternary Golay code, (assuming linearity), 
(ii) every perfect terror-correcting code of word length 23 over 

GF(2) is equivalent to the binary Golay code, (assuming linearity). 

In fact more is proved in the paper. For codes with the parameters 
of the Golay codes a number of properties are shown to be equivalent. 
One of these is the property of being perfect, another is equivalence 
with a Golay code. The proof depends on the following property that 
both of the Golay codes have. If C is an (n, k) code we call C + the 
extended code if C + C <s/?(n+1> is obtained by adding an extra coor
dinate to the words of C, which coordinate is a fixed linear combina
tion of the remaining coordinates. Then C + is an (n + 1, k) code. 
The most common extension is obtained by requiring that in the ex
tended code every word is orthogonal to (1,1, • • •, 1). Then it can be 
shown that the following is true. 

THEOREM (3.6). The extended Golay codes are self-dual if the 
original codes are suitably represented, (cf. van Lint [41], Pless 
[54]). 

This property was used by Goethals [20] to construct a simple 
decoding algorithm for the binary Golay code. For other decoding 
methods see Assmus and Mattson [10], Chien [14]. 

The following representations of the two Golay codes are often 
useful. For details we refer to Karlin [33], van Lint [41]. Let 
Cn be the circulant matrix of size 11 with first row (11011100010) and 
let C5 be the circulant matrix of size 5 with first row ( 0 1 — 1 — 1 1 ) . 

11 •• 1 
Il2 Cll , G 2 : = 

are generator matrices of the two Golay codes. 
A particularly simple description of the binary Golay code was 

given by R. Turyn, cf. réf. [7]. Let H be the (8,4) code obtained 
by extending the (7,4) Hamming code. Numbering the positions from 
1 to 8 we obtain the code W by applying the permutation (1,7) (2,6) 
(3, 5) to the positions. Then 

V:= {(a+ c,b + c,a+b+ c)\aGH,bGH,cGH'} 
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is a (24,12) linear code over GF(2). By showing that this code has 
minimum distance 8 it follows from (3.5) that V is the extended binary 
Golay code. For details we refer to van Lint [41] p. 100. 

For the sake of completeness we give the weight enumerators of the 
Golay codes. Obviously the fact that the codes are perfect is enough 
information to calculate these weight enumerators. Several other 
methods are faster. The weight enumerator of the binary Golay code 
is: 

(3.6) 
1 + 253 z7 + 506 z8 + 1288 zn + 1288 z12 + 506 z15 + 253 zlG + z23; 

the weight enumerator of the ternary Golay code is 

(3.7) 1 + 132 z5 + 132 z6 + 330 z8 + 110 z9 + 24 zli. 

Recently Goethals [20] obtained a. new non-linear code, having 
256 code words of length 16 at mutual distance at least 6 by consider
ing a subset of the binary Golay code and dropping 8 coordinates. 
He showed that dropping one more coordinate gives a code equivalent 
to the Nordstrom-Robinson code (Nordstrom and Robinson [51] ). 
Preparata [56] gave a method of extending a class of nonlinear 2-
error-correcting codes which, when applied to the Nordstrom-
Robinson code, produces the binary Golay code. This is Goethals' 
result obtained from the other direction. Other results obtained by 
considering a subset of the positions in the Golay codes will be men
tioned in the next section. 

Many interesting groups can be described by considering auto
morphism groups of certain combinatorial configurations, i.e., per
mutation groups on the elements of such a configuration which leave 
the configuration invariant. As an example one can consider a code 
and permute the coordinate places as we did in the definition 
of equivalence in § 1. Those permutations which leave the code 
invariant (as a subset of J?in)) form the automorphism group of the 
code. It was shown by Assmus and Mattson [4] that the auto
morphism groups of the extended Golay codes are the Mathieu groups 
M24 and M12, (cf. also Berlekamp [12] p. 395; Paige [52]). The 
groups Mn, Â22> M23 appear as the automorphism groups of special 
tactical configurations called Steiner systems (see § 4) obtained from 
the Golay codes. Recent discoveries of new simple groups on the one 
hand and the connection between the Mathieu groups and the Golay 
codes on the other explain the interest of group theorists in the search 
for new perfect codes. The results to be discussed in § 7 were a dis
appointment for them. (Additional reference: Todd [93] ). 
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4. Perfect codes and combinatorial theory. There are several con
nections between perfect codes and combinatorial theory. Most of 
these are applications in which error-correcting properties of the codes 
are not important but where the structure of the codes leads to interest
ing results. We mentioned a few of these results in § 2 (Golomb and 
Posner [25] ). 

DEFINITION (4.1). A tactical configuration of type k; t — d — n 
(also called a t-design) is a collection !£> of d-subsets of an n-set S 
such that every f-subset of S is contained in exactly À distinct mem
bers of 2 \ To avoid trivial configurations one usually demands 
0 < t < d < n. 

For the special case t = 2 the tactical configuration is called a 
balanced incomplete block design. In the case A. = 1 the tactical con
figuration is called a Steiner system of type (t, d,n). The following 
theorem illustrates the connection with perfect codes. We state the 
result only for binary codes. By adding the assumption of linearity 
it can be generalized to other alphabets (Assmus and Mattson [5] ). 

THEOREM (4.2). Let V be a binary perfect e-error-correcting code of 
block length n and assume 0 €E V. Then the collection *h of (2e + 1) 
subsets D of {1, 2, • • •, n}for which there is a codeword in V with its 
nonzero coordinates in the positions of D is a Steiner system of type 
(e + 1, 2e + 1, n). 

For a proof see van Lint [41] p. 95. A simple counting argument 
then leads to the following theorem. 

THEOREM (4.3). If a binary perfect e-error-correcting code of block 
length n exists then the numbers 

(.;T-\)/(^+I--*)-*-<»•••••• 
are all integers. 

This theorem has been used to show the non-existence of certain 
perfect codes. Now that the results of § 7 are known the theorem has 
lost its importance. Another theorem of the type of (4.2) is 

THEOREM (4.4). The codewords of weight 8 {interpreted as subsets of 
{1,2, • • *,24}) in the extended binary Golay code form a Steiner 
system of type (5, 8,24). 

Goethals [20] derived several block designs from this Steiner 
system. For extensive treatment of this type of application of perfect 
codes cf. Assmus and Mattson [5], [6], [8], [9]; Paige [52]. The 
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results of Assmus and Mattson were generalized to semilinear codes 
by J. Schönheim [59]. For a connection between tactical configura
tions and nearly perfect codes see § 8. 

An interesting application of the ternary Golay code to graph theory 
is given in Berlekamp, van Lint and Seidel [ 13]. The paper is con
cerned with strongly regular graphs in which every adjacent pair of 
vertices is in exactly one triangle and every non-adjacent pair of 
vertices is in exactly one quadrangle. If n is the number of vertices of 
such a graph then one can show that n must be one of the integers 9, 
99, 243, 6273 or 494019. The example for n = 9 is easily found. For 
n = 243 the ternary Golay code provided an example in the following 
way. The columns of the 5 by 11 parity check matrix H of the ternary 
Golay code are considered as points x{ (i = 1, 2, • • -, 11) in 5-dimen-
sional vector space over GF(3). The vertices of the graph are 0, 
±xh ( i = 1,2, ••• ,11), and ±xi±xj,i^j, (i,j = 1, 2, • • -, 11). 
If the difference of two vertices is ± xfe they are called adjacent. It 
is easy to check that this graph has the required properties. For the 
other 3 values of n the problem is still open. 

5. The sphere-packing condition. An obvious necessary condition 
for the existence of a perfect ^-error-correcting code of word length 
n over an alphabet of q symbols (if q is a power of a prime p we write 
q = pa) is obtained from (1.5) and (1.8) in the same way as (2.4). The 
condition is 

(5.1) S (ï)(q-iy\q» 
t = 0 

and it is known as the sphere-packing-condition. If q = pa it follows 
from (5.1) that 

(5.2) E (ï)(q-iy=qk-
i=0 

By expanding the power of (q — 1) we find 

(5.3) ± i-iy^oct'j1) =(-i)y. 

A counting argument of the same type as was used to derive (5.1) 
is the following. Consider a perfect e-error-correcting code and 
assume without loss of generality that 0 is in the code. All the other 
words of the code have weight at least 2e + 1. Hence each word of 
weight e + 1 is at distance e from exactly one codeword of weight 
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le + 1. Hence the number A2e+l (cf. (2.1)) is [(A)/(%+ 1)] (9 - l)e + l 

Hence 

THEOREM (5.4). A necessary condition for the existence of a perfect 
e-error-correcting code of block length n over an alphabet of q 
symbols is that 

[(A)/(2ee+1)](9 - l ) ê + 1 

is an integer. 

Note that q = 2 yields the case h = 0 in (4.3). 
Extensive computer searches have been made to find solutions of 

(5.2) with e > 1. The ranges that were covered were: 
(a) e = 2, q odd, 3 g q â 125, 3 g fc ^ 40000 (Cohen [16] ), 
(b) e ^ 20, 9 = 2, n ^ 270 (McAndrew [50] ), 
(c) & g 1000, 9 ^ 100, n ^ 1000 (van Lint [38] ). 

Excluding the parameters of trivial codes the computer searches 
yielded only the parameters of the Golay codes and 9 = 2, e = 2, 
n = 90. The last set is excluded by (4.3). 

The first papers on nonexistence of perfect codes all started with the 
equation (5.2). The theorems are of two different types which we now 
discuss briefly. The first method is due to Shapiro and Slotnick [61]. 
They observed that if q = 2 and e is odd, then the left-hand side of 
(5.2) can be written as (n + l)Re(n)le\, where Re(n) is a polynomial 
of degree e — 1 with integer coefficients. Therefore (5.2) implies that 
n + 1 = 2lb, where b \e\, and substitution in Re(n) yields an equa
tion for £ and b. It follows that the possible values of n are in a finite 
set. This had also been observed by Golay [23]. The method of 
Shapiro and Slotnick was also applied by Leont'ev [36]. By a modifi
cation of this same method and using only hand computation Johnson 
[31] showed there are no nontrivial binary perfect ^-error-correct
ing codes for 5 = e =i 29, e odd. This was extended to e ^ 39, e odd 
by James, Stanton and Cowan [30]. 

The other early nonexistence theorems all concern e = 2. For that 
case (5.2) can be interpreted as a quadratic equation in n. For this 
equation to have a solution in integers it is necessary that the diophan
tine equation x2 — (q2 — 6q + 1) = 8qk has a solution in integers. 
This diophantine equation can be treated by considering a suitable 
algebraic extension of Q or using continued fraction methods. The 
following cases were settled: 

(a) g = 5, Engelman [19] 
(b) q =? 5 (and 9 = 6, assuming linearity), Cohen [16] 
(c) 7 ^ 9 g 9,Alter [1], [2]. 
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In each case no unknown solutions to (5.2) were found. Although as 
far as perfect codes are concerned the problem has been settled, the 
purely number-theoretic problem of finding all solutions of (5.2) 
remains open. (cf. also Alter [3] ). 

6. Lloyd's theorem. A necessary condition for the existence of a 
perfect binary code, deeper than (5.2), was found by Lloyd [44]. 
This theorem was generalized by F. J. MacWilliams [46] and recast 
by A. M. Gleason (cf. Assmus and Mattson [5] ). Below we shall sketch 
a proof for the case q = pa (p prime) as given in van Lint [41]. 
Recently it was shown by Delsarte [17] and Lenstra [35] that the 
theorem holds for all q. A polynomial which plays a role in the 
theorem has been shown by Delsarte to be connected with a sequence 
of orthogonal polynomials defined by Kravcuk in 1929 (cf. Szegö 
[64] ). 

Before formulating Lloyd's theorem we introduce the Kravcuk 
polynomials. We assume n is fixed. 

DEFINITION (6.1). The Kravcuk polynomial Pk(x) of degree k is 
defined by 

Pk(x) : = 2 (-W9 - I M P ( H ) > ° = * = n> 
j=0 

where 

x = x(x - 1) • • • (x - j + 1) 
{jh fi 

The Kravcuk polynomials are connected to the MacWilliams trans
form for the weight enumerator of a code and its dual (cf. Berlekamp 
[ 12] 16.2) in the following way: 

If A(x,y) : = S i l o A ^ - ' t h e n 

B(x, y): = A(y-x,y+(q- l)x) = f BkxY~h 

where Bk = 5^=0 AiPk(i). The polynomials Pk(x) satisfy the ortho
gonality conditions 

(6.2) Ë ( ! ) (9 - W < ) P . ( 0 = ( " )9n(9 - D r 8 - O ^ i ^ n , 

i=0 

where 8rs is the Kronecker symbol. (For further relations see Delsarte 

[17])-
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DEFINITION (6.3). Lloyd's polynomial Qe(x) is defined by 

k=0 

The polynomial Qe(x) has degree e and can be written as 

(6.5) Qe{x) = i ( - i ) r ; 1 ) cziiiq - !)*-'> 
or 

(6.6) <?,(*) =(-1)« ± (-lyqKY) Ctj1). 

Then we have 

THEOREM (6.7). If a perfect e-error-correcting code of block length 
n over an alphabet ofq symbols exists, then Qe(x) has e distinct integral 
zeros among 1, 2, • • -, n. 

Essentially the theorem depends on a counting argument. No struc
ture of the alphabet is necessary and the perfect code need not be 
linear. The proof we sketch is for the case q = pa in which case we 
can take GF(q) for our alphabet. This allows us to make certain 
simplifications but these are not essential (cf. Lenstra [35] ). 

Let (2C> ©> *) be the group ring of <^?(n) over Q where we use 0 
and S to distingusih formal addition from vector addition in J?(n)-
The set 2f is 

In the following we identify any subset C C ^ ? ( n ) with the element 
S cEc c of 5f • If C is a perfect ^-error-correcting code and Se : = 
S(0,e)(cf.(1.4))then 

(6.8) Se* C = <#<»>. 

If Vi : = (1,1, • • -, 1,0,0, • • ',0)G J?in) is the vector for which the 
first i coordinates are 1 and the other coordinates are 0, then Q : = 
{c + Vi | c GE C} is also a perfect code and Ci has minimum weight 
i (0 ^ i ^ e). The elements C0, Q , • *, Ce are linearly independent 
over Ç). Let G be the group of all monomial transformations of ^?(n.} 

Then the mapping T defined by 
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(6.9) TCg «**):= - £ r l a , 5 > ( * ) 

is a homomorphism of % into the (n + 1)-dimensional subspace 

* : = { ! * ( S x)|oftGÇ } . 

A straightforward calculation shows that Se(A) : = Se * A defines a 
linear transformation of 3C and that the e linearly independent ele
ments Q — C0 (i = 1, 2, • • -, e) satisfy Se(Q — C0) = 0. Hence the 
kernel K of Se has dimension at least e. For the next step of the proof 
let X be any non-trivial character on (GF(qf), + ) . Then it is not hard 
to show that if we define X„ : <R(n) -» C x by X„(x) : = X((x, u)) and 
extend this in the obvious way to a linear functional on 2f, then the 
functionals X{ : = XVi span the space of all linear functionals on 2f. 
A direct calculation shows that Xw(Se) = Qe(w) for ti; = 0,1, • • •, n. 
Since Xw(Se)Xw(A) = 0 for all A in K and the Xw are linearly inde
pendent there must be at least (and therefore exactly) e integral 
values of w for which Qe(w) vanishes. Since Qe(0) ^ 0 this proves 
the theorem. 

We mention that these zeros of Qe are exactly the weights of the 
words in the dual of the perfect code in case this code is linear. For 
this and details of the proof we refer to van Lint [41]. Lenstra's 
proof for arbitrary q follows the same pattern, replacing characters by 
suitable homomorphisms, etc. (also see Delsarte [78], [79] ). 

The original proof in Lloyd [44] reduced the counting argument 
to a differential equation. The necessary condition for the existence 
of a binary perfect e-error-correcting code then amounted to the van
ishing of e of the coefficients of (1 + x)e(l — x)n~1~e, expanded as a 
polynomial. Roos [57] proved the same formulation of Lloyd's 
theorem for q = p in a purely algebraic way. The proof also depends 
on the idea of averaging over all translations of the code which is the 
basis of the proof we have sketched. 

7. Nonexistence theorems. Although Lloyd [44] treated a few 
examples in his paper he did not use his theorem to prove the non
existence of classes of perfect codes and the theorem remained un
used for several years. Johnson [31] used Lloyd's theorem to give 
an alternate proof for the cases q = 2, e = 2 or 3 which had been 
settled by number theory methods (see § 5). In retrospect it is remark
able to see how simple the general treatment of e = 2 and e = 3, 
with no restriction on q, turned out to be. The proof for e = 2 (van 
Lint [39] ) uses the sphere-packing condition and Lloyd's theorem 
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and the simple observation that Qe(0) is the left-hand side of (5.2), 
(cf. (6.5)). With this information on the product of the zeros of the 
quadratic polynomial Ç>2{x) it took only one page to show that there 
are no perfect 2-error-correcting codes with q = pa > 3, n > 2. The 
proof that the Golay code is the only nontrivial perfect 3-error-
correcting code was even simpler. Two consecutive integers were 
found for which Q3(x) had different signs! 

The method used for e = 2 depended on solving the quadratic 
equation Q2(x) = 0. Of course this method did not look promising 
for e > 3. In fact only e = 4 looked feasible. The first nonexistence 
proof for the case q = 2, e = 4 was (unnecessarily) extremely compli
cated. In this proof (van Lint [42] ) the equation Q4(x) = 0 was 
solved explicitly. Lloyd's theorem then led to the condition that 
(n — 1) ± (3n — 7 ± V6n2 - 30n + 4 0 ) m is an even integer for all 
four choices of signs. The resulting set of diophantine equations was 
treated by using a method which had just been developed by Baker 
and Davenport [11]. This involved two hours computing time on 
ATLAS I. Although this was interesting as a second application of 
this method of Baker and Davenport this author soon realized that 
instead of using only Lloyd's theorem as he had done, the proof for 
e = 4 should also have exploited the connection between (5.2) and 
(6.5) as was done for e = 2 and e = 3. For e = 4 this connection 
implies that Ç^O) is a power of 2 and since the product of the zeros 
of Q4{x) is 3Q4(0)/2 three of the zeros of Q4(x) are powers of 2. This 
observation led to a proof in a few lines (van Lint [38] ) that there 
are no non trivial binary perfect 4-error-correcting codes. 

At this point the idea which would lead to the proof that all perfect 
codes over finite fields are known had been born. The idea, men
tioned above in the case q = 2, e = 4 was generalized by this author 
(van Lint [43] ) to all q and p > e. Simultaneously Tietäväinen [66] 
observed that the method used by van Lint [39] for e = 2 and 
e = 3 could be generalized to e = 4, i.e., the restriction q = 2 which 
we used above is unnecessary. 

Actually the whole idea of the nonexistence proofs is extremely 
simple. We have already remarked that Qe(0) is equal to the left-
hand side of (5.2) and hence a power of q. By calculating the first 
two coefficients of Qe(x), we then know the sum and the product of 
the zeros of this polynomial: 

( 7 , , , | + % + . . . + ;f,= '("-^-'> + i fe±i), 
q * 

(7.2) xxx2 • ' * xe = e\qk~e. 
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Using the alternating character of the expression (6.5) a lower bound 
for the zeros of Qe(x) can be obtained. Combined with a relatively 
simple divisibility argument this was sufficient to prove the following 
theorem. 

THEOREM (7.3). If e ^ 3, q = pa
y p > e then there is no nontrivial 

perfect e-error-correcting code over GF(q). 

For details we refer to van Lint [41], [43]. This method also 
works for p < e if p^e. For fixed e the theorem leaves only a finite 
number of values of p to be considered. These can all be treated by 
exactly the same method (and a little more care) as was shown in van 
Lint [40] f o r e = 5,6 and 7. 

To complete the nonexistence theorems a refinement was neces
sary. This was provided by Tietäväinen [67], [68]. The first new 
trick is an elegant application of a refined arithmetic-geometric mean 
inequality to (7.1) and (7.2). The second is the observation that (7.2) 
implies that for p â ey there is at least one pair of zeros xi9 Xj with 
XilXj = pv, which is not difficult to prove. Finally small values of 
n are excluded by the Elias bound (cf. Berlekamp [12] ch. 13). 
These ideas combined with a skillful treatment of several inequalities 
led to the following theorem: 

THEOREM (7.4). If e ^ 4, q = pa, p ^ e then there is no nontrivial 
perfect e-error-correcting code over GF(q). 

For details we refer to Tietäväinen [68]. Clearly (7.3) and (7.4) 
completely settle the problem of the existence of perfect codes over 
finite fields. In §6 we mentioned that Lenstra [35] had shown 
Lloyd's theorem to be true for all q. The reason this has not led to 
new nonexistence theorems yet is the fact that if q is not a power of 
a prime then (5.2) must be replaced by (5.1) and (7.2) is no longer as 
useful. (See Comments (9.2) and (9.3)!) 

8. Generalizations. In § 1 we introduced the Lee-metric (1.11, 1.12) 
(cf. Lee [34] ). For this metric one can again study perfect codes and 
ask the same questions which have been treated for the Hamming 
metric. Very little is known about perfect codes for this metric. We 
mention: 

THEOREM (8.1). For any given t, there exists a perfect t-Lee-error-
correcting code of block length n = 2 over the alphabet of integers 
mod q = 2t2 + 2t + 1 (cf. Berlekamp [12], ch. 13). 

Golomb and Welch [26] conjectured that for t > 1, n > 2 and 
q > 3 there are no perfect Lee-error-correcting codes. They treated 
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a number of special cases (namely n = 3, t = 2, and n > 2, t > tn) but 
essentially the problem is still completely open. 

Clearly the sphere-packing condition for the Lee metric is obtained 
in the same way as (5.1) namely by calculating |S(0, e)\ for the Lee 
metric. The result is 

(8.2) S 2 ' ( î ) ( | ) | 9 » (t^(q-l)l2) 
t=0 

where t is the number of errors. In § 5 we saw that the sphere-
packing bound alone has led to only a few nonexistence theorems. In 
fact it was only the combination with Lloyd's theorem which led to 
success. So we have 

PROBLEM (8.3). Is there an analog of Lloyd's theorem for perfect 
codes in the Lee metric? (See Comment (9.4)!) 

The problem of sphere-packing with no gaps using a metric which 
is a combination of the Hamming and Lee metrics also occurs in a 
paper by S. K. Stein [63]. His results are similar to those of Golomb 
and Welch. (Also see Stein [90], [91] ). 

Herzog and Schonheim [29] have generalized the idea on which 
Hamming codes are based to construct perfect codes for J? : = Fx X 
F2 X • • • X Fn where each Ft is a field and Hamming metric is de
fined as in (1.2). Let the abelian group G be the union of n subgroups 
Gi, G2, • • •, Gn which pairwise have only the zero element of G in 
common. Then (xi9 x2, ' * •, xn)—> *i + *2 + * * * + xn *s a homo
morphism of <R : = Gl X G2 X • • • X Gn into G. The kernel of this 
homomorphism is a group code in <R. It is easily seen that this code is 
single-error-correcting. This is the idea used in § 2 where AG(ra, q) 
was written as the union of all lines through the origin. Herzog and 
Schonheim give an example of a perfect code in GF(4) X GF(2) X 
GF(2) X GF(2) X GF(2), namely 

(0,0,0,0,0) (1,0,1,1,0) 

08,1,1,0,0) («,0,1,0,1) 

( a , l , 0 , l , 0 ) (A 0,0,1,1) 

(1,1,0,0,1) (0,1,1,1,1), 

where {0,1, o,ß} = GF(4). We remark that in this example each 
element of GF(4) is followed by a complementary pair of words of a 
Hadamard code (cf. Peterson [53], § 5.7 and also [83], [86] ). 
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Let S*(0, e) be a subset of Ji(n) with 

(8.5) S(0, e) C S*(0, e) C S*(0, e + 1) 

(where inclusions are strict). If an e-error-correcting code C has the 
property 

(8.6) *#<»>= U ( x + S * ( 0 , 4 a disjoint union, 

then the code C is called quasiperfect. This generalizes (1.8). Such 
codes can be obtained, e.g., by dropping certain coordinates from all 
words of a Hamming code. There are very many quasiperfect codes. 
Apparently (8.6) is so much less restrictive than (1.8) that the result
ing codes do not have such interesting properties. For a number of 
results we refer to Peterson [53], Wagner [70], [71], [94]. 

Recently Goethals and Snover [21] introduced the concept of 
nearly perfect code. Johnson [32] proved that for a binary code 
C of length n and minimum distance 2e + 1 the following bound for 
the number of codewords holds 

(8.7)|C|{Ì(ì)+ r-^(e)(—-[—])}^*n-

Note that for a binary perfect code we have (e + 1) \(n — e) by (4.3) 
and that equality holds in (8.7) (cf. (5.1), (5.2)). Now any code for 
which equality holds in (8.7) is called nearly perfect. This includes 
the perfect codes and the shortened Hamming codes and also the 
Preparata 2-error-correcting codes (Preparata [55] ). Many of the 
properties of perfect codes discussed in this survey were generalized 
to nearly perfect codes by Goethals and Snover, e.g., theorem (4.2), 
(5.2) and Lloyd's theorem. We mention one example of such a gen
eralization of (4.2). 

THEOREM (8.8). In any nearly perfect e-error-correcting code of 
length n, the codevectors at distance d = 2e + 1 from a given co-
devector determine an e-design with parameters [(n — e)l(e + 1)] ; 
(e9d,n). (cf. (4.1)). 

The generalization of Lloyd's theorem is 

THEOREM (8.9). If a nearly perfect binary e-error-correcting code 
of block length n, with n + 1 ^p 0 (mod e + 1), exists, then 

e - w + [(„-ny(g+i)]^^>-g-'W> 
has e + 1 distinct integral zeros among 1,2, • • -, n. 
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Of course this raises: 

PROBLEM (8.10). Generalize (7.3) and (7.4) to nearly perfect codes. 

The combinatorial theorems of which (8.8) is an example combined 
with the conjecture that there is no nontrivial 6-design justify the con
jecture that all the nearly perfect codes are known. Similar results to 
those of Goethals and Snover were found independently by Semakov, 
Zinovjev and Zaitzev [60] in a paper on uniformly packed codes, 
a special type of quasiperfect codes. (See Comment (9.5)!) 

In § 6 we mentioned that the e distinct integral zeros of Qe(x) in the 
case of a linear perfect code are exactly the distinct nonzero weights 
occurring in the dual code. This led Delsarte [18] to a generaliza
tion of the duals of perfect codes by considering codes with e distinct 
nonzero weights satisfying equality in a certain bound on the number 
of codewords. Besides the duals of perfect codes he found other 
examples. The most interesting fact from our point of view is that a 
generalization of Lloyd's theorem again holds. (See Comment (9.6)!) 

It seems that in this area of combinatorics many more interesting 
results are to be expected. It is the hope of this author that the 
present survey will prevent unnecessary duplication of research and 
enable the interested readers to work on those problems which are 
open at this moment. 

9. Comments (added in proof). In accordance with the last sen
tence of § 8 we add some comments on papers which appeared since 
the manuscript of this survey was submitted. We have added 23 
references to the original list. Some of these are older papers of which 
this author was not aware. For drawing his attention to these papers 
and for several helpful suggestions concerning small changes in the 
survey the author wishes to thank many of the persons mentioned in 
the references. 

COMMENT (9.1). In Theorem (3.5) linearity of the codes is assumed. 
In the meantime it has been shown by Snover [89] and by Delsarte 
and Goethals [80] that Theorem (3.5) holds even if linearity is not 
assumed. 

COMMENT (9.2). Shortly after Tietäväinen, a proof very similar to 
his proof was found independently by V. A. Zinov'ev and V. K. Leont'ev 
[85], [95], [96]. 

COMMENT (9.3). Recently Tietäväinen [92] produced a non
existence proof for perfect codes which is much shorter than his 
original proof. He excludes q = 2. In van Lint [87] it is shown that 
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a slight modification makes the proof valid for q = 2. This paper also 
includes some information on the nonexistence of perfect codes when 
q is not a prime power. 

COMMENT (9.4). The answer to Problem (8.3) is yes. A proof was 
recently provided by L. A. Bassalygo [74]. 

COMMENT (9.5). The original idea of uniformly packed codes has 
been generalized even further; cf. Bassalygo, Zaitzev and Zinov'ev 
[75]. Recently Goethals and van Tilborg have found a number of 
interesting sequences of uniformly packed codes. Their paper is in 
preparation. Also see van Lint [ 87]. 

COMMENT (9.6). A very interesting generalization of perfect codes 
in R(n) is the concept of a perfect code in a graph as defined by 
Biggs [76], [77]. Also see Heden [82], Hammond and Smith 
[88]. A general theory containing nearly all the concepts treated 
in this survey is the theory of association schemes in coding theory. 
This was developed by Delsarte [78], [79]. Both of these papers 
are highly recommended to those readers who wish to gain more in
sight into the theory of perfect codes. 
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