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QUASINORMAL SUBGROUPS II 

FLETCHER GROSS 

1. Introduction. The subgroup H is quasinormal in the group G if 
HK = KH for each subgroup Kin G. H is core-free in G if H contains 
no non-identity normal subgroup of G. Suppose now that H is a core-
free quasinormal subgroup of G and that H has exponent pn where p is 
a prime. It was shown in [2] that (i) H is nilpotent of class at most Max 
{1, pn~l — 1}, and (ii) the derived length of H is at most n if p is odd 
and at most [(n + l)/2] if p = 2. Stonehewer [4] constructed exam­
ples proving that the upper bound on the derived length is best-possi­
ble for p ^ 2. One result of the present paper is that the bound in (ii) 
also is best-possible if p = 2. The main purpose of this paper, however, 
is to obtain a best-possible upper bound on the class of H. Specifically, 
it is proved that the class of H is at most Max{l, pn~2(p — 1)}. For 
each prime p and each positive integer n, there is an example of a core-
free quasinormal subgroup H of exponent pn such that H has nilpotence 
class equal to Max{l, pn~2(p — 1)}. 

2. Notation and preliminary results. If S is a subset of the group G, 
then (S) is the subgroup generated by the elements of S. If G is a p-
group and n is a non-negative integer, then £ln(G) = (x \ x G G, xp" 
= 1) and Un(G) = <x>;" | x G G ) . If G is a nilpotent group, then c(G) 
and d(G) denote the class and derived length of G, respectively. The 
subgroups Ln(G) are defined inductively by LX(G) = G and Ln + X(G) 
= [ Ln(G), G]. The core of H in G is the largest normal subgroup of G 
contained in H. The group G is said to have exponent n if n is the 
smallest positive integer such that xn = 1 for all x Œ G. 

The first three of the following lemmas are well known and are stated 
without proof. These three results will be used implicity throughout 
the remainder of the paper. 

2.1. LEMMA. IfH is a quasinormal subgroup of G and T is a homo-
morphism ofG, then HT is a quasinormal subgroup ofGT. 

2.2. LEMMA. Let H be a subgroup of G and N a normal subgroup 
of G contained in H. Then H is quasinormal in G if and only if HIN 
is quasinormal in GIN. 
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2.3. LEMMA. If H is a quasinormal subgroup of G and K is a sub­
group ofG, then H Pi K is a quasinormal subgroup ofK. 

2.4. LEMMA. Let A be an abelian group of exponent dividing 4. Let 
x be ßn automorphism of A such that x4 = 1 and [A, x2, x2] = 1. Let 
B= [A,x2] [A,x,x] Ul(A). Then [B,x2] = [B,x,x] = V\B) = 1. 

PROOF. Let V be A written additively and let T be the element in the 
endomorphism ring of V corresponding to x. Then V(T4 — 1) = 
V(T2 — l ) 2 = 4V = (0) and the lemma is equivalent to showing that 
(T - 1)2(T2-1) = 2 (T 2 -1 ) = ( T - l ) 4 = 2 ( T - 1 ) 2 = 0. Now (T-l)4 

= ( T 2 - l ) 2 - 4T(T-1) 2 = 0. 2 (T 2 -1 ) = (T4-l) - ( T 2 - l ) 2 = 0 
and 2 ( T - 1 ) 2 = 2 (T 2 -1 ) - 4 (T-1) = 0. Finally, ( T - 1 ) 2 ( T 2 - 1 ) = 
( T 2 - l ) 2 - 2 ( T 2 - 1 ) ( T - 1 ) = 0. 

The next two lemmas are used to compute the derived length and 
class of the examples constructed in §4. 

2.5. Lemma. Let G be a finite non-trivial nilpotent group with a nor­
mal abelian subgroup M. Assume that there is a basis for M that is the 
union of conjugacy classes of G. Thend(G)> d(G/CG(M)). 

PROOF. Assume that G is a counter-example in which \M\ is as small 
as possible. Since the lemma certainly is true if |G/CG(M)| = 1, we 
must have G ^ CG(M). According to the hypothesis, M contains 
elements uÌ9 u2, • • • , ur such that u{ and Uj are not conjugate in G for 
i ^ j but {x~lUiX | x G G, 1 ^ i ^ r} is a basis for M. Let M{ be the 
subgroup generated by all conjugates of u{. Then M* is normal in G 
and M = Mx X M2 X • • • X Mr. 

First suppose that r > 1. Then \Mi\ < \M\ for 1 ^ i ^ r. The 
minimality of M implies that d(G) > d(G/CG(Mi)) for 1 S= i ^ r. Since 
Hi CG(M-) = CG(M), we obtain d(G) > d(G/CG(M)). 

Hence r = 1. Since CG(ui) ^ G and G is nilpotent, we find that 
G^- G'CG(ui). This implies that {x^UiX | x E! G} is the union of 
more than one conjugacy class in G'M. Let vÌ7 • • • , vs be representa­
tives of all the distinct classes in G'M whose union is {x~luYx \ x G G}. 
Let Ni = (x~lv{x | x G G'M) for 1 ^ i ^ s. Then N* is normal in 
G'M and M= NXX N2X - - - X Ns. Furthermore, s > 1 and con­
jugation by the elements of G transitively permutes the subgroups 
N1? * • • , NÄ. Since INJ < |M|, the minimality of M implies that 
d(G'M) > d(G'M/CG,M(N,)) for 1 ^ i ^ s. Since n4CGfM(Ni) 
= MCG,(M), this yields d(G'M) > d(G'/CG,(M)) = d(G/CG(M)) - 1. 
Now let Ti = Y\ji*iNj and U= [M,G]. Since conjugation transi­
tively permutes Nl9 • * • , Ns among themselves, UTi = M for 1 ^ i ^ 5. 
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Hence G 'M = G 'Ti for 1 ^ i ^ s. G 'M is the subdirect product of the 
isomorphic groups G'M\T{. Thus d(G'M) = d(G'MITi) = d(G'TjTi) 
= d(G7G' fi Ti) for 1 g i ^ 5. Since n<(G' Pi T,) = 1, this implies 
that d(G'M) = d(G'). We then obtain d(G') > d(G/CG(M)) - 1 
which is equivalent to d(G) > d(G/CG(M)). 

2.6. Lemma. Assume p is an odd prime and V is a vector space of 
finite dimension n over afield of characteristic p. Assume that x and y 
are p-elements of GL(V) such that x~lyx = yp + l and Cv(y) has dimen­
sion one. Assume further that V contains a subspace U such that Ux = 
U and V is the direct sum of Cv(y) and U. Then the minimal poly­
nomial ofx is (x—iy where r is the smallest positive integer such that 
rp = n. 

PROOF. Let G = (x,y) and P = (x,yp). If g is any nonidentity ele­
ment of (y), then V(g—1) must contain Cv(y). Hence g cannot fix 17. 
Thus (x) H (y) = 1. Then (x) is quasinormal in G[2, Lemma 4.1(b)]. 
Let W be the largest subspace of U that is invariant under P. Let z be 
either of the elements yp or xyv. Since (x) is quasinormal, P = (x,z) = 
(z)(x). Now let WJW= Cuiw(z). Then WXP = Wx(z) (x) = 
Wx (x) C U. Due to the definition of W, this implies that Wl = W. 
Hence Cv/W(z) has dimension one. Let m be the dimension of V/W. 
By looking at the Jordan normal form of z acting on VIW, we see that 
(VlW)(z-l)m = (0) fé (VIW)(z-l)m-K Clearly (V/W)(g- l )m = 0 
for all g G P since P is a p-group. 

Since P is normal in G, this implies that V(g —l)m C Wy* for all i. 
But DiWtf = (0). Thus V ( g - l ) m = (0) for all g G P. Then the mini­
mal polynomial of z must be (z— l )m . Thus (xyp—l)r = 0 if, and only if, 
(yp-l)r = 0. But xyp = yxy~\ Hence ( x - l ) r = 0 if, and only if, 
(j/p — l) r = 0. Since Cy(y) has dimension one, the minimal polynomial 
of y is (y— l )n = 0. This implies that (yp~ l) r = 0 if, and only if, pr ^ n. 
The lemma now follows. 

3. An upper bound on the class. Our upper bound on the class is 
based upon Lemma 3.1 if p ^ 2 and upon Lemma 3.3 if p = 2. 

3.1. LEMMA. Suppose G= H(x) is a finite p-group where \{x)\ 
— pn

y n = 3, H is a core-free quasinormal subgroup, and p ^ 2. 
Let M = fln_1(G) and define M0, Ml7 • • • , inductively by M0 = M 
önd M i + 1 = [M*, M] U^Mi). Let r = pn~3(p-l). Then Mr = 1. 

PROOF. / / ^ ( ^ ( G ) by [1, Theorem 5.1]. Hence M = H(xp) 
[2, Lemma 3.1 (b)]. First, suppose n == 3. Since H is core-free in G, 
H H (x) = 1 and CG(x) = (x). Then, since Z(G) must be contained in 
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(x), any nonidentity normal subgroup of G must contain xp%. M has ex­
ponent p2[2, Lemma 3.1(b)] and so if M is abelian, we would have M2 

= 1. Since r = p - l ê 2 (this is the only place where the assumption 
p ^ 2 is required), Mr = 1 if M is abelian. Suppose M is not abelian. 
Then XP2 GM', M = <zp)H, and c(M) ^ p - 1 [2, Lemma 3.1 (c)]. 
Mlii^G) is isomorphic to O^G/fl^G)) which is abelian by [2, Lem­
ma 3.1]. Hence M ' ^ «i(G). It follows from all of this that Ul(M) 
= (x?y2)l5l(H). If K is the core of H in M, then H/K has exponent 
dividing p [ l , Theorem 5.1]. Hence K^ Ul(H). It follows that 
[131(M)9M] ^ K ^ H. Since H is core-free in G, [UX(M), M] = 1. 
Since MlêSll(G), we deduce that M2 = [M, M, M]. Then Mr 

= Mp_! = LP(M) = 1. 
Thus the lemma is proved if n = 3. We now assume that n > 3 and 

proceed by induction on n. Let K be the core of H in M. Then M/K 
satisfies the hypothesis of the lemma with n replaced by n— 1. By in­
duction, therefore, MIK satisfies the conclusion of the lemma. 

This implies that M contains normal subgroups N0, Nu • • • , Ns such 
that N0=(xt)2)H, NS=K, s=pn~*(p-l\ N^ Ni+l, NilNi+l is 
elementary abelian, and [Nh (xp2)H] ^ Ni + i. 

Let Vi be NJNi+i written additively. Since N{ and Ni+l are normal 
in M, M induces automorphisms of V{. (xiy2)H acts trivially on V{. 
Let T{ be the automorphism of V* induced by xp. Then T{

p — 1 = 0. 
Hence (T* - l )p = 0. This implies that 

[NhM, • • - ,M] S N i + 1 . 

P 
M/Ni = (<xp>Ni/Ni)(No/tfi). Hence 

L^MINJ = [N0, M, • • • , M] Nx/N! = 1. 

Therefore ciMlNJ^p. Then (MlNJIZiMINJ has class at most 
p - 1 . If N ^ $ ZiMINJ, then both (MINMMINJ and ZiMINJ 
have exponent dividing p. It follows from this that Mp ^ Ni if 
N ^ $ ZiMlNJ. If, on the other hand, N ^ G ZiMINJ, then M/Nx 

is abelian and Mp^ M2 = NY. Thus it is always true that Mp ^ Nv 

Since NlIN2 is elementary abelian and 

[N l 3M, • • - ,M] g N 2 , 
' v ' 

V 
we conclude that M2p = N2. Continuing in this way we find that 
Mr = Msp ^ Ns = K^ H. But Mr is a normal subgroup of G and H 
is core-free in G. Hence Mr = 1 and the lemma is proved. 
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The case p = 2 presents more difficulty and we require a prelimin­
ary result. 

3.2. LEMMA. Assume G = CH is a finite 2-group where C is cyclic 
and H is a non-identity core-free quasinormal subgroup of exponent 2n. 
Then the following is true: 

(a) | C | ^ 2 " + 2 . 
(b) n 2 ( C ) ^ Z ( G ) . 
(c) c(03(G))^2. 

PROOF. Let Gx = G/Hn_1(G) and let Hl and Cx be the images of H 
and C, respectively, in Gx. Then Hl is a core-free quasinormal sub­
group of G t [2, Lemma 3.1(b)]. Since (in_l(G) has exponent 2 n _ 1 

[2, Lemma 3.1 (b)], Hx ^ 1. Hence Gx is not abelian. But ü2(Gx) is 
abelian [2, Lemma 3.1 (c)] and Hx ^ O ^ ) . It follows that \CX\ è 23 

which implies (a). 
Now let K be the core of H in HQ,2(C). (a) applied to HÜ2(C)IK 

yields |H/K| = 1. Hence Ü2(C) normalizes H. Then [ft2(C), G] S H. 
Since H is core-free in G = CH and G normalizes [ fl2(C), G], this im­
plies that [H2(C), G] = 1 and so (b) is proved. 

Next let L be the core of fl3(Jff) in il3(G). Then ft3(G) is the subdi­
rect product of the isomorphic groups {fl3(G)lx~1Lx \x €E G}. Thus 
c(n3(G) ) = c(a3(G)/L). Since ß3(G) = fl3(//)n3(C) [2, Lemma 3.1 
(b)] and fì3(f/)/L is a core-free quasinormal subgroup of fl3(G)/L, it is 
sufficient to prove (c) under the assumption that G = fì3(G). 

Assume, therefore, that G = fl3(G). Then, by (a), H ^ ßi(G). Hence 
G = f l ^ C . Now |fÌ!(G)| g 22 by Lemma 3.1 (d) of [2]. This im­
plies that | G : C\ ^ 2. Then G is the product of the two normal abelian 
subgroups C and fì^C). Thus c(G) S 2 and (c) is proved. 

3.3. LEMMA. Suppose G = H{x) is a finite 2-group where \(x)\ = 
2n, n = 4, and H is a core-free quasinormal subgroup. Let M = fìn_2 

(G) and define M(), M1? • • • , inductively by M0 — M and Mi+i = 
[Mh M] [M*, x2, x2] U2(Mi). Le£ r = 2""4. Then Mr = 1. 

PROOF. By Lemma 3.2(a), H g ün_2(G). Then M = H(x4). By 
an induction argument, M; is a normal subgroup of G for i = 0 ,1 , • • 
Suppose that n = 4. Then M is abelian [2, Lemma 3.1(c)] and 
U2(M) = 1. Therefore Mx = [M,x 2 ,x 2 ] . But M(x2) ^ fì3(G), and, 
according to Lemma 3.2(c), U3(G) has class at most 2. Hence Mx = 1 
and the lemma is proved for n = 4. 

We now assume that n > 4 and proceed by induction on n. Let K be 
the core of H in H(x2). Then H(x2)IK satisfies the hypothesis of the 
lemma. By induction, therefore, H(x2)IK satisfies the conclusion. 
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Thus H(x2) contains normal subgroups N0, N1? • • • ,NS such that N0 = 
H(x8), Ns= K, s = 2n"5 , N{^ Ni+l9 NJNi+l is abelian of exponent 
dividing 4, and [NhH(x8)] [Nhx\x4] g Ni+l. 

Now [NJNi+1, M] = [NJNi+l9 x4]. Let P2i = N, and P 2 m = 
[Ni5 x

2, x2] [Ni, x4]Ni + 1. Then x2 induces an automorphism of order 
dividing 4 on NJNi+i and [NJNi+i, x4, x4] = 1. Lemma 2.4 now im­
plies that [P2 i+1 ,M] [P2i+1,x2,*2] ^ N2i. Thus [PhM] [P^x^XPiPi) 
^ P i + 1 f o r 0 ^ i ^ 2 s . 

Consider now MINl= (NolNJiN^4). Since x8 G NQ and NQ/NX 
has exponent dividing 4, U2(M) must be contained in Ul(N0)Nl. We de­
duce from this that Mx ^ [N0,x

4] [N0yx
2,x2]ül(N0)Nl. Lemma 2.4 

applied to NJNi being acted upon by x2 yields [M1? x
4] [M1?x

2, x2] 
Ü 2(Af 0 ^ ty. Thus M 2 ^ P 2 . Since [P2, M] [P2, x2, x2] Ü2(P2) â 
P3, we find that M3 = P3. Continuing, we conclude that Mi ^ Pj for 
i ^ 2. Then Mr = M2s = P2s = Ns = K ^ H. Since Mr is normal in 
G and H is core-free, this implies that Mr = 1. 

3.4. THEOREM. Suppose G = //(*) is a finite p-group where \(x)\ = 
pn and H is a core-free quasinormal subgroup. Then c(G) ê Max{l, 
pn~2(p - 1)}. 

PROOF. First suppose p ^ 2. If n ^ 2, then the theorem follows 
from [2, Lemma 3.2]. Therefore we assume n ^ 3. Let M = H(xp) 
and define M0, M1? • • • inductively by M0 = MandM i + 1 = [Mh M] O1 

(Mi). Lemma 3.1 implies that Mr = 1 where r = pn~3(p— 1). Let V* be 
MjMi+x written additively and let Ti be the automorphism of V* in­
duced by x. MJMi+i *s elementary abelian and [MJMi+1,x

p] = 1. 
Hence V i(T<- l ) p = V ^ i y - l ) = 0. This implies that 

V 

[ M Ì 5 G ~ ^ 7 G ] gM i + 1 , 

Since MIMi is a normal abelian subgroup of GIMi = (MIMi)(Mix), 
we must have L^^GIM^ = [M/Af^ G/M1? • • • , G7MJ . Thus 
Lp+l(G)^Ml. Then 

P 

L2p+1(G) ^ [Mx, ( T ^ ^ ^ G ] g M2. 

Continuing, we obtain Lip+i(G) ^ Mi for i ^ 1. Since Mr = 1, c(G) = 
rp = pn~2(p— 1). 

Now suppose p = 2. If n = 3, the result follows from either Lemma 
3.2(c) or [2, Lemma 3.2]. Therefore we assume n ^ 4. Let M = 
H(x4) and define M0, Ml7 • • • inductively by M0 = M and M i + 1 = 
[MhM] [Mux

2,x2]U2(Mi). Then Lemma 3.3 implies that Ms = 1 
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where s = 2n~4. Lemma 2.4 implies that [MjMi+i, x, x, x, x] = 1. 
Since [MJMi+l, H] = 1, we obtain [Mh G, G, G, G] g M i+1. M/Mx 
is a normal abelian subgroup in GIMY = (MlMi)(Mix). Thus 
L5(G7Af x) = [M/Mi, G/A^, G/M1? G/Ml7 G/A^] = 1. Hence L5(G) 
S Mi and L9(G) g [M l5 G, G, G, G] ^ M2. In general, LAM(G) 
^ Mi for i ^ 1. Since Ms = 1, c(G) ^ 4s = 2n~2. 

3.5. THEOREM. Let H be a core-free quasinormal subgroup of the 
group G. Suppose K is a subgroup of H such that K has exponent pn 

where p is a prime. Then K is nilpotent of class at most 
Max{l ,p n ~ 2 (p-1)} . 

PROOF. If x G G, let Nx be the core of H in H(x). Then K is the sub-
direct product of the groups KI(NX Pi K). Thus it suffices to prove the 
theorem under the assumption that G = H(x). If \G : H\ is infinite, 
then x normalizes H [1, Theorem 4.1]. Since H is core-free, this im­
plies that H — 1. Thus we may assume that \G:H\ is finite. This im­
plies that \G\ is finite. 

Then H is nilpotent and a Sylow p-subgroup of H is a core-free quasi-
normal subgroup of a Sylow p-subgroup of G [3]. Thus it suffices to 
prove the theorem under the assumption that G is a finite p-group and 
G = H(x). 

Now let M be the core of £ln(H) in fln(G). 1\(G) is the subdirect pro­
duct of the isomorphic groups {ftn(G)ly~1My | y G G}. Hence c(K) ^ 
^(n^G) ) = c(Cln(G)IM). The theorem now follows from Theorem 3.4. 

4. Examples. 

4.1. THEOREM. Let n be a positive integer. Then there is a finite 2-
group G containing a core-free quasinormal subgroup H such that 

(a) H has exponent 2n. 
(b) c(H)= Max{l,2"-2}. 
(c) d ( H ) = [ ( n + l ) / 2 ] . 

PROOF. Let Rn be the residue classes modulo 2n + 2 . Let Gn be the 
permutation group on Z^ generated by {an, bnk | 0 ^ k ^ n— 1} 
where ian = i + 1 (mod 2n+2) and 

. _ r 5 i , if(2n+2 , i) = 2fe, 
lbn,k= i . M 

I i , otherwise. 
The only difference between this and the definition of the groups 

constructed by Stonehewer in [4] is that, for an odd prime p, 
Stonehewer defines ibnk to be either (p+ l ) i or i rather than 5i or i. 
As would be expected, many of Stonehewer's arguments carry over to 
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the present case. Therefore, in the proof of the Theorem, some of 
the details (especially computations) are omitted. 

Now let Hn be the stabilzer of 2n +2 in Gn. From now on, if there is 
no danger of confusion, we will write R, G, H, a, and bk instead of 2^, 
Gn, Hn, an, and bnk, respectively. Gn is transitive and so Hn is core-free 
inGn . 

First suppose n = 1. Then G = {(12345678), (15)(37)>. It is easily 
verified that \G\ = 24, that H = <(15)(37)>, and, by [2, Lemma 4.1], 
that H is quasinormal in G. 

We now suppose n > 1. Since (a) is regular on R, it follows that 
G = H (a) and CH((a)) = 1. An easy computation shows that a has 
order 2 n + 2 and that a2" G Z(G). Hence G transitively permutes the or­
bits of (a2n+l ). These orbits are {t, i + 2 n + 1} for 1 ^ i ^ 2n + 1. This 
gives rise to a representation of Gn as a permutation group on ^ . ^ As 
in [4], we obtain a homomorphism T of Gn onto Gn_x such that anT = 
an_i, fon>fcT = fon_ljfc for 0 ^ k ^ n - 2, fe^^T = 1, and HnT = Hn_!. 

Let K be the kernel of T. If x G K, then x fixes the set {i, i + 2n + 1} 
for all i, 1 = i = 2n + 1. Hence x2 = 1. Thus K is an elementary abelian 
2-group. By induction on n, we now conclude that Gn is a 2-group of 
exponent 2 n + 2 and that Hn has exponent 2n. 

Now if x G K, then either x or a2"+1 x fixes 2n + 2 . This implies that 
K = (a2'l+l )(H PI K). I assert that K = fl^G). Suppose this is not the 
the case. Then there exists x G G such that x2 = 1 but x (£ K Since 
G is transitive on the orbits of (a2" ), we may assume without loss of 
generality that x does not fix the set {1, 2n + 1 + 1 } . By induction on n, 
xT must fix all the orbits of <ön-i). This implies that x fixes the set 
{1, 2n + 1, 2n + 1 + 1, 2n + 1 + 2n H- 1}. It follows from this that x inter­
changes the two sets {1, 2n + 1 + 1} and {2n 4- 1, 2n + 1 + 2n + 1}. Since 
x2 = 1, there are exactly 2 ways that x could operate on {1, 2n + 1, 
2n + 1 + 1, 2n + 1 + 2n + 1}. Both possibilities conflict with the fact that 
xtf2" = a2"x. Thus K = (^(G). Then n^ t f ) = H (1 K. 

Since Gn/fì1(Gn) is isomorphic to Gn_! and fl1(Gn) = ß1(<an))01(Hn), 
it follows that nfc(G) = tlk((a))nk(H) for all fc. 

Since n2((a)) ^ Z(G), ri2(G) ; must be contained in H. Since H is 
core-free, this implies that fl2(G) is abelian. 

Now let M be a maximal subgroup of G containing H. Since |G : M\ 
= 2, we must have M = H (a2). The orbit of 2 n + 2 under M is {2i 11 ^ 
i S 2 n + 1 } . Thus there is a natural representation of M as a permutation 
group on Rn-i- This gives rise to a homomorphism S of M onto Gn_x 

where an
2S = an_li bnkS = fcn_lfc_1 if l ë f c ë n—1, fon,oS = 1, and 

HnS=Hn_l. Let N be the kernel of S. Clearly N ^ H. M= (a2)H = 

nn + 1«a»nn + 1(H) = nn+1(G). 
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I assert that JJn + l(G) = (a2 ). By induction, we may assume that 
Un(Gn-i) = (an-i")> Hence U»(G) ^ <a 2 ")K^ U2(G) which is abeli­
an. Thus Un + l(G) ^ V\(a2")) 131(K) = (a*n + 1) g ün + l(G). There­
fore ün + l(G) = (a2"+ì ) as claimed. 

Now we proceed to prove that H is quasinormal in G. By induction, 
we may assume that Hn_l is quasinormal in Gn_i. Hence HIN is quasi-
normal in MIN and HK/K is quasinormal in G/K. Therefore H is 
quasinormal in M and HK is quasinormal in G. Let L be any subgroup 
of G. If L g M, then LH = HL. Suppose then that L ^ M = f ln + 1 

(G). This implies that Un + 1(^) 4 1- It follows that a2n+l G L. Then 
HL = tf(tf PI K)(a2"+1 )L = HKL. But HKL is a subgroup of G since 
HK is quasinormal in G. Hence H L = LH and H is quasinormal in G. 
It only remains to calculate c(H) and d(H). Since HK = H X (a2n+l), 
c(HK) = c(H) and d(HK) = d(H). 

Let Ci = fl-^'^Vifl2""1^ f o r l g i S 2 n . T h e n j ^ / j if, and 
only if, j = /(mod 2n). Thus the points in R not fixed by c{ are 
{i, i+2 n , i + 2n + l, i + 2n + 1 + 2n} which is an orbit of (a2"). Since G 
transitively permutes the orbits of (a2 ' ) and since each orbit of {a2") 
contains exactly one element of the set {1, 2, 3, • • • , 2n}, we see that 
Ci, • • *, c2" are distinct and that {c^ • • -, c2

n} is a conjugacy class in G. 
Now Cj G K and K is elementary abelian. It is immediate that 
{c1? • • • ,<V'} is a n independent set of elements of K. Hence | ( Q | 1 
g i ^ 2">| = 22". It follows from Lemma 3.1(d) of [2] that |fli(G)| 
g 22". Hence {c{ 11 g i ^ 2n} is a basis for K. 

I claim that CG(K) = ft2(G). Clearly O^G) g CG(K) since K g 
U2(G) and fl2(G) is abelian. Suppose x G CG(K). Then XQ = QX. It 
follows that x fixes the set {j \jCi / j}. Hence x fixes each orbit of 
(a2n). Then xT fixes each orbit of {a2lY). This implies that xT G 
fli(Gn-i)- Thus x2T = 1. This shows that x2 G K. Hence x4 = 1 and 
so x G n2(G). 

Now c(H) g Max{l,2"-2} by Theorem 3.5 and d(H) ^ [(n+l)/2] 
by [2, Theorem 3.4(c)]. It only remains to show that c(H) ^ Max{l, 
2n~2} and d(H) ^ [ ( n + l)/2]. If n ^ 2, this is trivial. We now assume 
n > 2. Lemma 2.5 implies that d(H) = d(HK) > d(HKICHK(K) ) = 
d(Hin2(H)). Now Hinx(H) is isomorphic to Hn_! and fì2(H)/fì1(H) = 
n^H/n^f f ) ) . Thus HIÜ2(H) is isomorphic to H ^ / f t ^ H ^ ) which is 
isomorphic to Hn_2. Thus d(Hn) > d(Hn_2). By induction on n, 
d(Hn_2) = [ ( n - l ) / 2 ] . Then d(Hn)^l + [ (n- l ) /2] = [ (n+l) /2] . 

Since H/112(H) has exponent 2n~2, there is an element x G H and dis­
tinct basis elements di9 * • • , d2"~2 i n K such that x~ld{x = d i+1 if 1 ^ 
i = 2n~22iiidx~ld2n-2x= dx. Then 
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[di, x, x, • • - , x] = did2 ' ' ' d2n~2 / 1. 

2 " " 2 - l 

Thus c(H) = c(HK) §= 2n~2. This finishes the proof of the theorem. 

4.2. THEOREM. Let p be a prime and n a positive integer. Then 
there is a finite p-group G containing a core-free quasinormal subgroup 
H such that H has exponent pn and c(H) = Max{l, pn~2(p— 1)}. 

PROOF. If p = 2, this follows from the previous theorem, and if n = 1, 
this follows from [2, Lemma 4.1]. Accordingly, we assume that p is 
odd and n > 1. The method of constructing our examples is the same 
as the method used in [2, page 549]. Let m = pn~l(p— 1) and let W 
be a vector space of dimension m with basis {vi,v2, ' ' ' , vm} over the 
field of p elements. Let Wx be the subspace spanned by {u2, u3, • • • , 
vm}. Let Y be the linear transformation of W determined by v{Y = vx 

and v{Y = v{+Vi_i for 2 ^ i ^ m. Then the minimal polynomial of 
Y is (Y — l)m . Hence Y has order pn. According to [2, Lemma 5.1], 
there is a p-element X in GL(W) such that vYX = vly WXX = W1? and 
X_1YX = Yp + 1. As is shown in [2], X must have order pn~l. By Lem­
ma 2.6, the minimal polynomial of X is (X — l) r where r = pn~2(p — 1). 

Now let A be the group generated by two elements a and b subject 
only to the relations b?n+l = ap" = 1 and a~lba = fop + 1. Then a—> X, 
fo~> Y determines a homomorphism of A into GL(W). Let B be the 
semi-direct product AV relative to the above homomorphism. 

Using the same argument as in [2, page 549], it can be shown that 
(b^Vi-1, afP'~1Lt>2) is a normal elementary abelian subgroup in B. 

Let G be the factor group of B modulo this subgroup. Let V, U, x, 
and y denote the images in G of W, W1? a, and b, respectively. Since 
WXX = Wl9x normalizes U. Let H = U(x). Since (Y?"""1 - l )*" 1 = 
(Y - l ) m = 0, we conclude that 

[ V ^ - V - 1 , - • -lyP-1] = 1 . 
v — y ' 

Thus c(n2(<t/)) V) ^ p - 1 . Then Theorem 4.2 of [2] implies that H 
is quasinormal in G. x has order pn and fl1((x)) = (7. Since C7 is a nor­
mal elementary abelian subgroup of H and H = U(x), H must have ex­
ponent pn. Since the minimal polynomial of X is (X — l) r where r = 
pn~2(p — 1), the class of H must be pn~2(p — 1). 

It only remains to show that H is core-free. If H is not core-free, then 
H contains an element z of order p such that z G Z(G). Since |CW;{Y)| 
= 1, z cannot belong to U. Since H/C7 is cyclic, it follows that U(z) = 
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U(xt>n~*). This implies that [y,xPn~2] G V. But [ t / , x ^ 2 ] = yf~l 

where t— 1 = (p-fl)>}"~2 — 1 = p n _ 1(modp n)[2, Lemma 2.4]. Since 
{y) H V = (yv"), this is a contradiction. Hence H is core-free and the 
theorem is proved. 
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