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TAMELY RAMIFIED EXTENSIONS OF HENSELIAN FIELDS
RON BROWN !

Let F be a Henselian field; that is, a valued field whose valuation
extends uniquely to any algebraic extension of F [8, p. 175]. Denote
the residue class field, value group, and maximal ideal of the valuation
ring of F by kg, I'r and Mg, respectively (and similarly for other valued
fields). Recall that a finite algebraic extension K/F is tamely ramified
[1, pp. 67-68] if kx/kr is separable, (I'x : [y) is not divisible by the
characteristic of kg, and

(1) [K: F] = [kg: kp] (T : Tg).

Now let k be a finite separable extension of k¢ and I" be an ordered
group containing I'y with (I" : T') finite and not divisible by the char-
acteristic of kp. A field extension K/F is a (k, I')-extension when Iy
=T, kg is kp-isomorphic to k, and (1) holds. We construct a bijection
from the set of F-isomorphism classes of (k, I')-extensions to the set of
orbits of k* ® I'/T'y (tensor product as abelian groups; k* denotes the
multiplicative group of nonzero elements of k) under the action of the
group g of kp-automorphisms of k (§ 1). We next show (§ 2) how the
orbit of a (k, I')-extension determines the automorphism group of the
extension, considered as a group extension of Hom(I'/T's, k*) by the
stabilizer in g of an element of the orbit. A four term exact sequence
describes which such group extensions are the Galois groups of
(k, T')-extensions, and which Galois groups of (k, I')-extensions split as
group extensions. This section has a considerable overlap with [10,
pp- 70-73]. Under some restrictions on F (which hold for certain
“ultracomplete fields” [3, 5]) we characterize the abelian tame ex-
tensions and count, for example, the number of normal (k, I')-extensions
(§3). Under additional restrictions on F (which hold for nonArchi-
medean local fields), we show how the orbit of a normal (k, I')-exten-
sion determines the structure of its norm factor group, as a group exten-
sion of kp*/kp*¢ by I'p/fT'r (e and f denote the ramification index
and residue class degree, respectively) (§ 4). For abelian extensions,
this allows us to show that the norm factor group and Galois group
are isomorphic as group extensions; the isomorphisms we construct in
an elementary way can also be obtained for local fields from the prop-
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erties of the norm residue symbol of local class field theory. Finally
(§5), we compute the structure of the “multiplicative congruence
group” K*/1 + Mg of a (k, I')-extension K/F (again, as a certain group
extension). This leads to a new proof of the basic bijection of § 1 using
the A-functor of [4]. The close connection of orbits with the “sig-
natures” of [2] is also observed.

The cardinality of a set A is denoted by |A|. Z denotes the set of
rational integers.

1. Orbits. Let v denote the valuation on F; we also denote by v its
unique extension to the algebraic closure of F. Let g denote the auto-
morphism group of the extension k/k, i.e., the group of automorphisms
of k which leave ky fixed. g acts on k* ® I'/T'y in the obvious way; the
orbit of an element of k* ® I'[T'y is the set of its images under the ele-

ments of g.
Let us fix once and for all a set A C F which v maps bijectively to
I'r (i.e., a system of representatives for I'z). Fix a subset y;, ' - -y,

of I' mapping bijectively to a basis for [/T'r. Let e; denote the order
of v+ Tp (i=t). Let a; denote the element of A with v(a;) =
—ery; (I=t).

Now let K/F be a (k,T')-extension. Pick b; € K with v(b;) =
vi (i=t). Set

ox =Y (ab + M) ®y; + I'r (€ ky* @ I'/Tp).
ist
1.1 NotE. ay is independent of the choice of b;.
Proor. Ifv(b;’) = y;, then because ej(y; + I'r) = 0,
(@b + Mg @ y; + Ip)(ab; " + Mg Q@ y; + ['p)~!
= (bifb;' + Mg) @ y; + I'p
=1®0.

Any kg-isomorphism of kg into k carries ax into an element of
k*® I'/Ty. Any two such isomorphisms differ by an automorphism in
g, so the orbit of this element is uniquely determined. We call it the
orbit of the extension K/F.

1.2 TueOREM. Assigning to each (k,T')-extension its orbit induces
a bijection from the set of F-isomorphism classes of (k, I')-extensions to
the set of orbits of elements of k* @ I'[T'y.

We will prove 1.2 in this section using standard techniques on Hen-
selian fields. A different insight is provided by the proof of 1.2 that we
sketch in Remark 5.2 A. For some related results and special cases of
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1.2, see [12, pp. 240-241] and [13].

Isomorphic (k, I')-extensions of F clearly have the same orbit. That
each orbit (of an element) of k* ® I'/Tk is the orbit of one and only one
F-isomorphism class of (k, I')-extensions follows from Lemmas 1.4 and
1.5 below (respectively). The notation of Lemma 1.4 will be used in
later sections.

1.3 Note. Since the y; map to a basis of ['/T's, every element of
k* ® I'/T¢ can be written in the form Y o @y, + I'r (& € k*). We
have a g-module isomorphism

Y a®y+ e — [] akx

ist ist

from k* ® /T onto Hiét k*/kxci, The reader who wishes to generalize
the results of this section to tamely ramified algebraic (k, I')-extensions
of infinite degree (but with I'/Tr admitting an infinite basis {y; +
Ty : i € I}) should replace k* ® T/T'x by [ [ e /k*/k=<.

14 LemMa. Let a= Y a®y; + Iy (o E k). Let E be an un-
ramified extension of F admitting a kg-isomorphism p from kg onto k.
Let c; be a unit of E with u(c; + Mg) = o (i=t). Let b; be an e;th
root of cjla; (in an algebraic closure of E). Then K= E[by, - -, b]
is a (k,I')-extension of F with p(ax) = a. (Indeed, kg = kg and
(@b + Mg) = o foralli = t.)

The proof of 1.4 is immediate.

1.5 Lemma. Let K and K’ be (k, I')-extensions of F. Suppose there
is a kgp-isomorphism o : ky — kx» with o(ax) = ax. Then o is in-
duced by an F-isomorphism from K to K'.

Proor. We may suppose K is the field of Lemma 1.4. o is in-
duced by an F-isomorphism o, of E into K'. (A standard argument.
E = F[ B] where B is a unit whose residue class generates the exten-
sion kg/kp. By Hensel's lemma [8, Theorem 4, p. 185], the irreduc-
ible polynomial of B over F has a zero in K’, call it B’, whose resi-
due class is o(B + Mg). It now suffices to map B to B’.) Note that
for all i = ¢, ax¢ — c; is irreducible over E[b,, by, - - -, b;_;] (an ex-
tension by a zero would have ramification index at least ¢;). It suffices
to show that oy(cilg;) has an e;th root in K’ for all i = ¢ (for then o
extends to an isomorphism K — K'). Sofixi = t. Letv(b;’) = y; where
b;' € K'. Sinceo(ag) = axr,

O'(CI‘ + MK)/(aib,-'”‘ + MKI) E k;(‘,"i
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(cf. Note 1.3). By Hensel's lemma [8, p. 185], 1 + My, C (K')*“.
Hence

O’O(Ci/ai) Sy UI?, 1+ MK,) C (K/)xc.-_
(Here, Uk denotes the set of units of K'.)

2. Automorphisms of (k, I')-extensions. Leta € k* ® [Ty, Let S(a)
= {0 €Eg: 0o(a) = a}; S(a) is the stabilizer of a in g. S(a) acts on
Hom(I'T'g, k*) in a canonical way (namely, composition of functions).
Let K/F be a (k,I')-extension with orbit generated by a. We now
compute the automorphism group G = Gg of the extension K/F as a
group extension of Hom(I'/T, k¥) by S(a) (with the above canonical
action of S(a) on Hom(I'/T'g, k*)). (For factor sets and group exten-
sions see [1, pp. 108-117] or [7, pp. 108-112].)

We adopt the notation of Lemma 1.4; we can do this without loss
of generality by Theorem 1.2. The isomorphism u of Lemma 1.4 will
be treated as an identification of k and kg.

Let €; denote the number of e;th roots of unity in k (i = ¢t). Thus k
(and hence K) has a primitive €;th root of unity.

2.1 ProposiTioN. We have an exact sequence

(2) 1 — Hom(I'/T, k¥) 5 G 5 S(a) — 1.

Here, 8' assigns to each element of Gg the induced automorphism
of k. & assigns to each f € Hom(I'/T's, k*) the unique o € ker §’
with f(v(a) + T'g) = o(a)la + Mg (a € K*). Moreover, the action of
S(a) on Hom(I'lT'y, k*) induced by the group extension (2) is the
natural one.

Proor. By Note 1.1, §' maps into S(a); Lemma 1.5 says that §’
is surjective. When K/F is normal then k/kp is normal and the se-
quence

(3) 1 » Hom(I'Tg, k*) > Gg—>g—1

is well known to be exact (cf. [11, pp. 67-78] or argue as in [1,
p. 76]). Set L= E[b,%, by, * - -, b#] (notation as in Lemma 1.4).
K is the splitting field of Il;<, X< — b;% over L, so K/L is normal. Hence
LDKEG, so I =Tp+ izt Zety; D Txe DT But for each fE
Hom(I'/T'y, k*), f maps vy; + I'r into an eith root of unity (i = t).
Hence f kills I'xc/Tr. Consequently we can identify Hom(I'/T's, k)
with Hom(['/T'xc, k*). We then deduce the exactness of (2) from the
exactness of (3) in the case F = K&.
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For each o0 € S(a) pick a “coset representative” u, €8’ '(a).
For any 7 E ker ', let f, = = !(r). Foranyy = v(a) + I'r E'l'F we
have

f u.,'ru,—l.(y) = uoTua_l(a>/a + MK

= o(r(u,” Y(a))lu,~(a) + My)
= a(f.(y))

so S(a) acts on Hom(I'T'g, k*) by composition. The proposition is
proved.

We can now prove a known condition for normality [10, p. 71,
Theorem 7] by an easy counting argument.

Let e denote the characteristic exponent of I'/T's; so e is the least
common multiple of the ¢;. Note that e is not necessarily the ramifica-
tion index.

2.2 CoroLLAaRY. K/F is normal if and only if klkp is normal,
a is invariant under g, and k has a primitive eth root of unity.

Proor. Clearly, |S(a)|= |g|= [k:kr] and |Hom(I'/T'p, k*)|=
(' :Tg). Equality holds everywhere above if and only if |Gx|=
[K: F] (Proposition 2.1 and display (1)), i.e., K/F is normal.

2.3 REmark. We can read off from (2) the degree, residue class
degree, and ramification index of K/KC. Also it is easy to see that

FK(: = FF + Eiﬁl ZE{y,-.

We now show how a determines a factor set for the group exten-
sion (2). Writta= Dz, ®y; + s (o € k¥). For each 0 € S(a)
and i = ¢, o(e;)a;~ ! has an e;th root in k* (since o(o5),~ ! ® ; + I'p
= 1 ® 0); pick one and denote it by c,;. Define

c= ¢, :S(a) X S(a) = Hom(I'T'g, k)
by
Cox (vi + Tr) = 6,30 (C3)Cr; ™! (IS 0).
2.4 PRroPOSITION. ¢ is a factor set for the group extension (2).

Proor. For each o € S(a) pick a representative u, € §'~Y(0);
let g, . be the associated factor set for the group extension (2). Since
v(b;) = v; (i = t) (notation of 1.4), we have

Z.(yi + Tg) = by 'wuul(b;) + Mg
= o7(b;"u}(b;) + My/b;~Y(uu,)~'(b;) + Mg)
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= (bifu,(b;) + Mg)/(bilusu,(b;~") + M)
= (U, (b:)/b;)u,(u,(bi)lb;)(bilu, . (b:)) + My
= d,40(d,,)d,;
where, for each 0 € S(a) and i = t, we set d,; = u,(b;)/b; + M. Since

“ = u(ab; abi + My = o(a)loy = ¢,

there exist e;th rootsof unity {, ; € k*with¢,; = {,;d,; (i =t,0ES(a)).
Now define { & Hom(I'Tg, k*) (0 € S(a)) by setting {(y; + I'r)
=, for all i=t Then ¢,,= g,,Lo ). Thus c is a factor set
cohomologous to g, .. Proposition 2.4 is proved.

The differences between the above calculation of Gg and the cal-
culations of [10, pp. 71-72] (at least in the normal case) arise from
our desire to compute G entirely in terms of &, k, kg, I' and I'p.

We now suppose k/kg is normal and k has a primitive eth root of
unity. By Corollary 2.2, the normal (k, I')-extensions are those whose
orbit consists of a single element of (kx ® I'/T'z)¢ (the set of elements
invariant under g). In the next proposition we calculate when the
sequence (2) splits and identify those group extensions of Hom(I'/T'z, k)
by g which are the Galois groups of normal (k, I')-extensions (compare
with [10, Theorem 8, p. 73] ).

2.5 Proposition. With the above hypotheses we have an exact
sequence

ke* @ TITyp £> (k* ® TTp)E £ H(g, Hom([/T, k*))
% HYg, D;sk*).

Here, g acts on Hom(I'/T'g, k*) and @;k* in the obvious way. ¢ is
induced by the inclusionkp — k. ¢’ assignsto each elementofk* ® I'Ty
the Galois group (considered as a group extension) of the correspond-
ing (k,T')-extension (cf. 2.1). ¢" is induced by the map taking each
f € Hom(I'T'g, k*) to ®;<,fly: + Tr) € Bisik™.

Proor. One checks directly that ¢’ is a group homomorphism;
suppose a is in its kernel. Let K/F be the (k, I')-extension with orbit
{a}. Then Gk has a subgroup H mapping bijectively to g. K/KH is
unramified of degree [k : k], so KH/F is totally ramified with value
group I'. Hence there exist b; € K with v(b;) = y; (i = t). But then
ab;" + Mg E kg (i=t) so a is in the image of kp* ® I'l's (cf. Note
1.1). Conversely, suppose a=Y & ®y; + ' Ek*® [Ty where
each o; € kz. We use the notation of Lemma 1.4; we may suppose
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¢; € Ffor all i = ¢. Thus Kis an unramified extension of F[by, - - -, b]

with residue class field extension k/kp. The Galois group of
KIF[b, ‘-, b] maps bijectively to g, so the exact sequence (2)
splits. This proves exactness at (k* @ [/T'p).

One easily checks that ¢"¢’ = 0. (In the notation of 2.4, ¢ maps to
the coboundary of the 1-cochain taking each o € g to @<, ¢,;.) Now
suppose h,, : g X g = Hom(['/T', k) is a factor set whose cohomology
class is killed by ¢”. Then there exist d,; € k* with

hir,r(?i + FF) = dr,i o(df,i)da'—fl,i

(0 €Eg,i=t). (Take &, d,; to be any 1-cochain in ®;<,k* whose co-
boundary is ¢"(h,,).) Since h,,(y; + Tp)%=1foreachi=t, {d,;: o
€ g} is a solution to Noether’s equations. Hence there exist [1, p. 118,

Lemma)] o; € k* with d,,, =0o(o)a;~! for all o Eg, i=t. But then
Y & ® y; + T is in (k* ® I/Tx)¢ and maps to the cohomology class of

ST*

3. Applications to ultracomplete fields. We assume in this section
that F is a Henselian field whose residue class field kp is either
locally finite, real closed, or algebraically closed. Among such valued
fields are those fields ultracomplete at a Harrison prime [5] or an
extended prime spot [3].

The next proposition generalizes [12, p. 242].

3.1 ProposiTiON. A finite dimensional tamely ramified extension
KIF is abelian if and only if kr has a primitive eth root of unity, where
e is the characteristic exponent of I'g/T'.

The reader will find it easy to generalize 3.1 to extensions of infinite
dimension.

Proor. We may suppose that K/F is a (k,I')-extension. First
suppose K/F is abelian. Then k has a primitive eth root of unity
(Corollary 2.2) which must indeed lie in kg since g acts trivially on
Hom(I'/T'g, k*) (cf. Proposition 2.4). Now suppose kr has a primitive
eth root of unity. Then g acts trivially on Hom(I'T's, k*). Also g is
cyclic, and hence the extension (2) admits a symmetric factor set.
Thus Gk is abelian. To show KJ/F is normal, it suffices to show that
g acts trivially on k* ® I'/T'z (Corollary 2.2). This is obvious if k is of
characteristic zero (for then k* & I'/Ty or g is trivial). So suppose k is
locally finite. LetB € k*,y E/T';,ando € g. Let P = |ky[{] | where
ko is the prime subfield of k and { is a primitive eth root of unity. For
some integer i, o(B8) = B”' (every conjugate of B over kp is a con-
jugate of B over ko [{], and hence has the above form). Bute |p' — 1.
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Hence o(B R y)(B®y) ! =pr"1Q@y =18 0. Thus every B Q y is
invariant under g. The proposition is proved.

For the remainder of this section we assume k has a primitive eth
root of unity, e the characteristic exponent of I''Tr. We now count the
number of normal (k,T')-extensions. Since k/kp is normal, this
amounts to computing [(k*® I'/T'r)¢| (Theorem 1.2 and Corollary 2.2).

3.2 ProposiTION. Suppose k is locally finite. Then (k* @ I'/T'r)¢ and
kp* ® /Ty are isomorphic as groups.

The above proposition can be extended (trivially) to include the
case that kg is real or algebraically closed by replacing kp* ® '’z
above by Nk* ® TI'/T';.

LemMa. Let a,b € k* (hypotheses as in 3.2). There exists a finite
subfield k, of k and a generator o of g such that (i) k, contains a, b,
and all eth roots of unity, (ii) o(c) = c¢**! for dall ¢ € k,, where p =
[ky* M kg, and (iii) N,(c) = c?? for all ¢ € k,, where P = |k, *|.

Proor. Write k = kp[d]. Let k; be any finite subfield of k contain-
ing a, b, d and the eth roots of unity. Each element of g is determined
by its action on d; hence the restriction of any generator of g to k; has
fixed fields k; M kr and order |g|. Hence the restriction map from g
to the Galois group of ky/k; M kg is bijective. The lemma can now be
checked.

Proor or 3.2. Let s be the number of eth roots of unity in kg; thus
kp>¢ = kg>s (this follows from the special case when kg* is finite and
hence cyclic). We first show (k*/k*¢)¢ and kp*/kp*¢ are both isomor-
phic to k*/k*s. The norm map N, : k — kj is surjective, so Ny(k**) =
kg = kp*¢. On the other hand, if N,(a) € kp*¢ (a € k*), then N,(a)
= N,(b°) for some b € k*. Hence (notation as in the Lemma) ab—¢ =
c? for some ¢ € k. But then a = bec?» € k> (for, s = (e, p)). Thus N,
induces an isomorphism k*/k** — kg*/kg*¢. Now consider the map
¢ : K*— kx[kx¢ with ¢(a) = a**k*¢(a € k*). Clearly, ¢(k*s) = 1. On
the other hand if as = b¢ for some a, b € k*, then (with notation as
in the Lemma) afs = b? = 1, so a € k. (After all, k,* is cyclic of
order P.) Hence k> is the kemel of ¢. We compute the image. For
any a € k* and o as in the Lemma,

0((/9((1)) = (aeIS)p+lkxe = gelskxe = ¢p(a)

(since s|p). Hence ¢ maps into (k*/k*¢)¢. Now suppose ak*c €
(k*lk=e)2. Then a(a)a=' = a? = c¢ for some ¢ € k*. N,(c) = cf/P is
an eth root of unity in kg, and hence an sth root of unity. But then
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aflels) = gpPsie) = (cFIP)s = 1 (note that pe |Ps). Hence a € ks,
Thus ak*e is in the image of ¢. We conclude that (k*/k*¢)¢ is isomor-
phic to kp*/kp*¢. The proposition now follows from the isomorphic of
Note 1.3, noting that the above argument works when e is replaced by
any ¢, i = t.

3.3 CoroLLARY. Suppose kg is finite and has a primitive eth root
of unity. Then there are exactly (I':T'p) isomorphism classes of
(k, T')-extensions of F.

3.4 CoroLLARY. Suppose k is finite and has a primitive eth root of
unity. Then there are exactly Il;<, s; normal (k, I')-extensions of F (up
to F-isomorphism), where s; is the number of e;th roots of unity in kg.

We give an alternate proof of the second corollary. If k is finite, the
map k*@®I'Ty - Hom([/T, k) taking > B;®y; +Ir to fE
Hom(T'/Tg, k*) where fl(y; + I'p)=g" (i=t,P= |k*|) is a g-
module isomorphism. Hence it maps (k* ® I'/T'z)¢ to Hom(I'/T', kg>),
which clearly has I;s; elements.

3.5 REMaRks. Assume k is finite. For simplicity we will also assume
that I'/Ty is cylcic of order e (so we take t = 1). Let P = |k*| and
p = |kg*|. We list the orders of the groups in the exact sequence of
Proposition 2.5. First note that H%(g, @;<,k>) is trivial (it will always
be trivial when N, : k — kg is surjective and g is cyclic). The number
of normal (k, I')-extensions is |(k* ® I'Tf)8| = (e, p). The number of
these with split Galois groups is |p(kp* ® I'Tg)| = e(e, Plp)~1. The
number of “Galois groups” of (k, I')-extensions is

|H%(g, Hom(I'/T's, k*))| = (e, p)(e, Plp)le.

We thank Joel Schneider for pointing out to us that Burnside’s
lemma [6, p. 136] implies that the number of F-isomorphism classes
of (k, I')-extensions is

f) Y (eP(p+1)y-1)

0si<f

where f = [k : kg].

4. Local fields. We now assume that F is a Henselian field with
kg finite and I'r infinite cyclic (e.g. a nonArchimedian local field) and
that K/F is a normal (k,I')-extension. Let e= ([':I'z) and f=
[k : kg]. Let mx and 7 be prime elements of K and F, respectively;
we can (and do) assume that 7€ lies in the maximal unramified sub-
extension E of K/F (cf. Lemma 1.4). We will identify the orbit of
K/F with ak* where a = mgmp~! + Mg. (Recall that the orbit is a
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singleton (Corollary 2.2) and that k* ® I'Tx may be identified with
k*/k* (Note 1.3).)

Let N= Ngp:K—F and N,:k — kp be the norm maps. We
may also regard N, as a map k — ky.

4.1 LemMma. We have an exact sequence

(4) 1 = kefkpxe 5 FXINK* 5 TplfTp — 0

where 0 is induced by the inclusion Up — F* andn' by the valuation.
(Ug denotes the group of units of F.)

Proor. We first show 1 + My C NK*. Let a € My. By Hensels
lemma there exists b € My with 1+ a= (1 + b)e. There exists
B € Ug with kx = kp[B + Mg]. The irreducible polynomial h of
B over F has degree f, so Ngj(B)= (—1)Y h(0). The polynomial
h* = h + b h(0) is congruent to h modulo My and hence by Hensel’s
lemma has a zero 8* in E. Then

1+ a= Ngg(l + b) = NgeNgr(B*B) € NK*.
The lemma now follows from the exactness of

Up » FXINK*> T/[K: F]T'y -0
and the fact that Nk* = kgx¢ (since N, is surjective and |Gg| = e[g]).

4.2 Notke. If no restriction is put on kr and I'p (but K is still a normal
(k, T')-extension of a Henselian field F), then the above argument
gives an exact sequence

1 — kp*/(Ngk")e— FXNK<— [(/[K : F]T —> 0.

We now show how a determines a factor set for the group extension
(4). Set p=v(mp) + fTr. Let h(ip, jo) be 1 if i'+j<f, and
N,(a)~'kg>¢ otherwise. Here i,j€ {0,1, -, f— 1}, so h maps
TelfTe X Tp/fTg into kg */kpe.

4.3. ProposiTioN. h is the factor set for the group extension (4) asso-
ciated with the system of representatives (—mpNK*) (0=i< f) in
FX/NKXfOT Fp/frp.

Proor. Let h' be the factor set associated with the above system
of representatives. h'(ip, jp) is 1 if i + j<f and 5~ !((—wg)/NK>)
otherwise. Since mg® € E, Ngg(mg) = (—1)**!ng®. For each 1€ ¢
pick a representative u, € Gx. Then
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Ny(a)~' = e, (mpmk =€) + Mk
= L e u,(—mpNge(—mx ")) + Mg
= (—mp)Ngp(—ng~") €0~ ((—75)/NK).
Henceh = h'.

For the remainder of this section we suppose that K/F is abelian.
We will construct (e, f) isomorphisms of the group extensions (2)
and (4); when F is a local field one of these is (induced by) the recip-
rocity map of local class field theory (cf. Remark 4.6).

Let p = |kg| (this is not the use of “p” in §3). Let ¢ € g be the
Frobenius automorphism. Thus |k| = p/, e |p — 1 (Proposition 3.1),
and for B € k*, o(B) = B” and N,(B) = gP-vie-1),

4.4 Note. There are exactly (e,f) elements u in Gx with u map-
ping to o €g and wfmg)lmgx + Mg = a® Ve Note 4.4 will be
proved along with,

4.5 THEOREM. Let u € G be as in Note 4.4. We have an isomor-
phism of group extensions (cf. (2) and (4) above)

’

1 > kexlkpe 5 FYNK* 5 TfTy —0
®) lo oo L e
1— Hom(I'/T', k*) = Gk —>g -1

where
(i) ®(Bkg¢)(v(mk) + Tp) = -l (B € kpX),
(ii) @"(v(mfp) + fT) =0,
(iii) @u(—7zNK*) = wu.

Note that ® and ®" are independent of u and are uniquely deter-
mined by (i) and (ii) above since v(7x) + I'r and v(7p) + fT'r generate
[x/Mlr and Tp/fT'y, respectively). @, is uniquely determined by the
conditions (i) and (iii) (every element of F* is the product of a unit in
F with a power of 7).

We now prove 4.4 and 4.5.

First note that we have (unique) isomorphisms ® and ®” satisfying
(i) and (ii). For @", it suffices to note that both I'z/fTy and g are
cyclic of order f. That (i) defines an isomorphism is immediate from
the fact that the map Bkp*¢ — B®-Vl is a bijection from kp*/kp*¢
to the eth roots of unity. (After all, kg* is cyclic of order p — 1 and

elp—1)
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Now let ¢ be the factor set of Proposition 2.4 for the group extension
(2), where we take t = 1 and ¢,i; = a? Ve for 0 =i < f. We claim
that® and@®"” carry h into c (cf. Proposition 4.3); that is,

(6) 8(h@"~'(d"),08"~Y(¢"))) = c(d', o9)

fori,j € {0,1, - - -, f— 1}. Ifi + j < £, one checks that c is trivial and
hence equal to h. Suppose i + j= f. Then at v(mg) + I'r the value of
c(dt, o) is
alP " Vk(q (pJ‘-D/e)‘p*‘ (a (piti=f—1)e )1
= ((a=Vie) (/= Dip=1) )p'*I

= Ng(a@—l)/e) = h(@"‘l(gi),@"‘I(Uj))(l—p)/e

which is the value of the left hand side of (6) at v(7g) + I'z. The claim
is proved. Consequently, there must exist an isomorphism @': F*/NK*
— Gy inducing ® and ®”. Such a map @' is determined by its value u
on —7zNK* Such an element 4 must map to o and have §~!(u/)
(v(mg) +TF) = N(a)?~ 1l (since its powers give a set of coset repre-
sentatives in Gk for g giving rise to the factor set ¢), whence w/(my)rg !
+ Mg = o ~Vle. Conversely, any such 4 € Gx determines an iso-
morphism @, making (5) commute. We leave to the interested reader
the task of checking that there are exactly (e, f) such u € Gg.

4.6 REmark. The isomorphisms @, of the above proposition are pre-
cisely those isomorphisms from F*/NK* to Gg which, with ® and @”,
give an isomorphism of the group extensions (2) and (4). We now
assume F is a local field and show that the reciprocity map (, K/F) is
such an isomorphism [1, 9]. First, (, K/F) does induce an isomor-
phism of the group extensions (2) and (4) and also induces ®” [9, p.
205]. Now let d be a unit of F. There exists a unit d’ of E with Ngz(d')
= d. (As usual, E is the inertia field of K/F.) Then [9, p. 205]

(d, KIF)(mg)mg ' + My = (d', KIE)(mg)mg ="' + Mg
which by [9; Proposition 6, p. 215, and Corollary, p. 217] equals
d'=plle + My = (d + Mg)(1-Ple,
Hence ( , K/F) also induces®.
It would be interesting to have an elementary description of the

automorphism u € G that has @, = (, K/F). Of course if (¢,f) = 1
then u is uniquely determined and ®, = (, K/F).
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5. Multiplicative congruence. We return in this section to the nota-
tion and situation of § 1; we assume nothing beyond Note 1.1. Note
that the map Yp : I'r X T'r — k> given by Ye(y,y') = a,a,, a;ﬁ,y + My
is a factor set for the group extension

(7) 1> k> F1+ Mg—>Tr—>0

(here, a, denotes the unique element of A of value y). We now show
how the orbit of a (k,T')-extension K/F determines the structure of
K*/1 + My as an extension of k* by T".

Let a, ", €kx We define a map Y:I'XT —k*
depending on the a. For each 1=i=t¢, let I,=Tf + Y,=Zy;
Thus Ty =Ty and I', =T. For y,y’' €T, set Y(y,y') = Ye(y,y').
Suppose inductively thatY has been defined on I';_; X T';_,. Then for
anyy,y' €I,_jandr,r' € {0,1, -, ¢, — 1}, wesetY(y + ry,y' +
r'y;) equal to Y(y,y') if r + r' < e; and equal to

aY(y,y' W(—eyi,y +v' + ey:)

ifr+r' Z e,
In the next proposition K/F is a (k, I')-extension with orbit gener-
ated by Y &; ® y; + ['r. Thus there is a kg-isomorphism 7: kg — k

and elements b; € K with (v(b;) = v; and) 7(absi + Mg) = o, 1 =i
=t

5.1 ProposrTiON. Y is the factor set for
15>k S KL+ Mg 5T — 0
associated with the system of representatives
(8)  abyiibyiz- - bt (1+Mg) @ EA0=i<e,1Sj=1)
in K¥/1 + My for T.

Proor. LetY ' be the factor set associated with (8). Y andY’ agree
on I'p X T'p; suppose they agree on I';,_; X I';_; where i=¢ For
y €T, let a, be the corresponding element of the form (8). Then if
Yy €ElN_jandr,r' €{0,1, - -+, ¢, — 1} and r + r’' = ¢,, we have

Yty + ryiy’ + 1'vi)
= a,b/ay b (@y 1y 1y, 774 ) (L + M)
= (488, 0o, bty 1y ey 0y pa_,, )1 + M)
=Yy +ry, v +r'v)

The case when r + r’ < ¢, is similar, but easier.
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5.2 REmarks. A. We sketch a new proof of Theorem 1.2 using [4].
Recall that AF = Bg/by where By is the ring of formal series i,erF
c,tr € S(F,Tp, 1) (cf. [4] or [10, pp. 22-24]) with v(c,) = y for all
Y = ['r, and where by is the ideal of all Y ¢,t" € B with v(c,) >y
for all y €T AF is a valued field with valuatlon Nt + bF
inf{y : v(c,) =y}. A is a functor inducing a bijection between the
1somorphlsm classes of (k,I')-extensions of F and AF [4, proof of
Theorem 1].

The set A induces an isomorphism of valued fields oA from AF
to S(kp, Up, Yr); 3,er, P + by is carried to Y, e (a7 'e, + M)t
[4, Proposition]. A also 1nduces a system of representatlves in AF
for T'p, namely A’ = {at*@ + bp:a € A}. One easily verifies that
the orbit of a (k,I')-extension K/F is also the orbit of AK/AF, pro-
vided that orbits of (k, I')-extensions of AF are defined with respect
to A'.

Now suppose a;, * * -, & € k*; we do not assume 2 4y + I'p
is the orbit of a (k, I')-extension of F. One can check directly that the
map Y (defined before Proposition 5.1) is a factor set. Y restricts on
I'r X T to Yp, so we may regard S = S(k,I',Y) as a (k, I')-extension of
AF (use the embedding o,). Hence there exists a (k, I')-extension
K'IF with AK'/AF isomorphic to S/AF. But the orbit of S/AF
is checked to be generated by > & ® y; + Tx. Hence Y, o ® y; + I'x
generates the orbit of K'/F. This proves surjectivity in Theorem 1.2.
Now suppose K/F is any (k,T')-extension with orbit generated by
Y o ® y; + ['z. Then by Proposition 5.1 (and [4, Proposmon] ap-
plied to K), AK/AF is isomorphic to S/AF, so K/F is isomorphic
to K'/F. This proves the injectivity in Theorem 1.2.

B. We can choose the sety,, - - -, 7, so that for any o; € k*, the se-
quence ((o4,7:))is, generates a signature in the sense of [2, Definition
(7.3)]. The factor set Y constructed above is precisely the factor set
associated with this signature [2, pp. 480-481]. The (k, I')-extension
of F with orbit generated by Y, o ® y; + T’ is generated as an exten-
sion of F by a zero of the generator of this signature [2, Lemma (3.5)
and §7]. Notice that we have, trivially, a condition for the birational
equivalence of the generators of signatures of the above form: namely,
the corresponding elements of k* @ I'/T'r must have the same orbit
[2, pp. 469-470, 478] .
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