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A TRANSFORMATION FORMULA FOR PRODUCTS 
ARISING IN PARTITION THEORY1 

M . V. SUBBARAO AND V. V. SUBRAHMANYASASTRI2 

ABSTRACT. We obtain a transformation formula involving 
Euler products. The formula can be utilized to obtain a large 
variety of partition-theoretic identities. 

1. A transformation formula. Let f(a, x) be the product given by 

(1.1) f(a,x) = [ I (* - aa(n)xn)g(n)/n, 
n = l 

where a(n), g(n) are totally multiplicative functions of n (that is, 
o(mn) = a(m)a(n), g(mn) = g(m)g(n) for all positive integers m and n). 
Then we shall prove in this note that 

(1.2) Y\ f(a,a)rx)= J] II /(fl (WW6U^)8(ds , /%({), 
r = 0 d\k 8\(kld) 

&> being a primitive k-th root of unity. 
This result is a generalization of the identity proved earlier in [3]: 

fc-i 
(1.3) [ ] 0(o/x) = [ ] {4>(x!«i)y>to*K*\ 

r=0 d\k 

where 

d-4) 0(x)= n ( i - x » ) , 
n = l 

and a(n) denotes the sum of the positive divisors of n. This is an 
^portant tool in deriving partition-theoretic identities such as the 
celebrated Ramanujan identity 
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i p ( 5 n + 4)x-=5{</>(^)}-5/{0(x)f, 

p(n) denoting as usual the number of unrestricted partitions of n. 
The result (1.3) is easy when k is a prime and was noted by Kolberg 

[1], while the proof of (1.3) for general values or k was given by 
Subrahmanyasastri [3] by using multiplicative induction of k. 

Many partition functions have generating functions of the form (1.1). 
For example, 

(1) When g(n) = n2, a = 1, f(a, x)~l generates the plane partitions, 
for which an asymptotic formula was obtained by Wright [5]. 

(2) When g(n) = nmin (k, n), a = 1, f(a,x)~l generates p{k)(n), 
the number of fc-rowed partitions of n. In this case g(n) is not a totally 
multiplicative function. However, the f(a, x) in this case can be 
related to the function for which g(n) = n, and n is a totally multiplica­
tive function. Whenever the generating function is related to an 
f(a,x) with a totally multiplicative g(n), the formula (1.2) will be 
useful. 

(3) When 

, _ jn2, ifn = 2°, a i ^ 0 

\ 0, otherwise, 

and a = 1, we have a simple and interesting case. Here g(n) is totally 
multiplicative and f(a,x)~l generates P(n), the number of partitions 
of n into powers of 2 (including 1), with each summand occurring at 
most in as many different colors as the magnitude of the summand, 
with repetitions allowed. That is, n has representations of the form 

a=0 7 = 1 

aaj denoting the multiplicity of the summand 2Q in the color j . The 
notion of partitions with summands occurring in different colors goes 
back to MacMahon [2]. We can also interpret P(n) as the number oi 
weighted partitions into summands 2a (a= 0), where the weight of the 
summand 2a (of mulitplicity aa) in a partition of 

n = S aa2° 

is to be taken as (the binomial coefficient) 
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In other words, 

the summation being over all those non-negative integers ir and a,-r for 
which n = di 2*> + a. 2»'* + • • • + ait2^ + • • \ 

M *2 ' 

To illustrate the applications of (1.2) we shall derive the following 
simple partition-theoretic identities for p(n), p{3)(n) and P(n). 

(A) In the case g(n) = n, a = 1, k = 4, we derive 

(1.5) 

(1.6) 

S p(4n)x>« = l i ^ - 0 ( x 2 4 ) A l ( x ) 

o z 9 W 

(1.7) 

and 

(1.8) 

2 *«(x2) 

i » W ( * W 4 ) , , , 
*»(** 

iP(4„ + 3),-=li^|pA,, 
o 2 rW 

1 ^ ( ^ 3 ( ^ 4 ^ 2 4 ) 

W) 
A4(*), 

wh. ere 

^iW = n (x + *24m_i3xi + x2im-n) 
m = l 
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m = l 

A2M = I I (1 - x24ro-13)(l - x24"1"11) 
m = { 

+ xf[ (l-x24™-19)(l-x24™-5), 
m = l 

A3(x) = J ! (1 + x 2 4 — 1 7 ) ( l + x24™-7) 

- x 2 n ( i+x 2 4 m - 2 ; 3 x i + x24m-1) 
m = l 

and 

A4(x) = I I (1 - x 2 4 m~ 1 7 ) ( l - x 2 4 m - 7 ) 

- x 2 n ( i - x 2 4 m - 2 3 K i - x 2 4 " 1 - 1 ) . 
m = l 

(B) In the case g(n) = n min (3, n), a = 1, we derive 

( , 9 ) ^ « ^ . 

9x2<ft9(x9' 

* , 2 ( x 3 ) + — J T T V " ^ " ** + 2x'3 " * 
3 - r4 Y 

-x*3(x9W>6(x) 

n = 0 <J>12(l^ 

<f>ll(xs) 
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( L I D - * ( x } 

Incidentally, we note from (1.11) that 

(1.12) p(3)(3n + 2) = 0(mod3). 

(C) In the case 

n2, i f n = 2 « , a ^ 0 

. 0, otherwise 

we derive 

, . rn2, ifn = 2a, a ^ 0 
W = i ~ i . a = 1, 

L 0, otherwise 

(1.13) ( J P(4n)x4" ) x = ( J P(*n + l)x4" + 1 ) 
^ o ' ^ o ' 

x(l + 3x4) 
/(x)(l + X2)3(l + X) 

and 

( £ P(4n + 2)x4"+2)x = ( £ P(4n + 3)x4"+3) 

(1.14) ° 
x3(3 + x4) 

/(x)(l + x2)3(l + x) ' 

2. Proof of the formula (1.2). We require the following 

LEMMA 2.1. Let A be any set of positive integers and F(k,n) any 
(Arithmetic function with values in the complex number field. Then 
for every positive integer k 

(2-i) n %»)= n n {FfcmdWK 
nEA d\k m 

(n,k) = l mdEA 

where fi(d) is the Mobius function. 

This is easily proved using the Mobius inversion formula by setting 
L(K n) = log F(k, n) (the principal value), £ n G A and ik>n)=d L(fc, n ) = 
°(*/d), Y,nde\Uh,nd)=H(kld) and noting that ^dlkG(kld) = 
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PROOF OF (1.2). Left side of (1.2) = 

(2.2) 
n 
d\k 

' 

ri 
n = l 

(n,k) = 

n 
d\k 

r = 0 
d 

ri 
n , = l 

(n1,fc1) = l 

- aa 

F(*i 

( n ) 0 ) r n X n ) g ( r i ) ' n 

» » i ) 

with Jc = fl^d, n = nxd and 

^(fcli n\) = I I (* " a a (n 1 d ) 0 ) r n 1 d : c n ] d )g (n 1 d ) /n 1 d 

r=0 

= T~T n — fl«("id)(y1'»i»'xnid)ginJd,'nid 

r=0 

where ajj = a>d, a primitive fcrth root of unity. <o2 = o^"1 is also a 
primitive fcrth root of unity, and as r runs through a complete residue 
system mod k once, it runs through a complete residue system (mod fci) 
d times. Hence 

i t , - i 

F(fci, "i) = t l (1 "" aa{nid)Q)2
rxnid)dg{n4)lnid 

= H — a
f c iQ (n ,d) x fc ln 1d\g(n 1£i) /n , 

so that by Lemma 2.1 

OC X 

TT F(fei,ni)= ]"[ ]"[ (1 — ak^mfd)xk^m6d)g{md8)tx{8)lm6. 
nx = l «l*i m = l 

(n t Ai)= l 

Substituting this in (2.2) and using the fact that a(n) and g(n) are totally 
multiplicative, (1.2) follows. 

COROLLARY. In the case a= 1, (1.2) takes the form 

fc-i 

(2.3) n f(<»rx)= n {f(xk8)}hiki^5)^'\ 
r = 0 8\k 

where 

(2.4) /(x) = ft (1 - x")^'ln 

n = l 

andh(m) = ^d\mg(d). 
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We shall give a simple alternate proof in this case. It is well known 
([4], theorem 5, special case) that, if h(n) = ̂ d\n g(d), then 

(2.5) h(kM) = X h(kld)h(Mld)g(d)ix(d). 
d\k,d\M 

We also recall that 

(2.6, * - ) - | « ^ - { j j { : 
and that 

-v , _ 1 -1- *• 0 — 1 m = l 

From (2.5) and (2.6), we have 

X /i(m>)(fc, m)xm = k X h(kM)xk" 

= S 2 kh(kld)n(d)g(d)h(n)^ 
M = l d\k 

nd=M 

= J kh(kld)n(d)g(d) J fc(n)xw-, 
d|Jc n = l 

which on using (2.6) and (2.7) can be written as 

2Sf^-£W,(W)2f^. 
r = 0 m = l X X W d\k n = l X X 

We now restrict x to be such that 0 < x < 1 (we can at the end extend 
*he result to |x| < 1 by analytic continuation). Dividing both sides by 
* and integrating with respect to x, we obtain 

2 ^s^ioga-o,™*'") 
r = 0 m = l m 

= s hikidMd)^- i ^ i o g ( i - ***•), 
d|fc " n = l n 

*he constant of integration being zero as can be seen by setting x = 0. 
Thus we have 
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*2 log/(«*)= S h(kld)n(d)^-hgf(x>«>), 
r=0 d\k a 

which is the same as relation (2.3). 

3. Proof of the identities (1.5) to (1.8). Choosing g(n) = n, a = 1, 
k = 4, (1.2) yields 

(3.i) fl*wtxw-*M-ix) = ^inv, 
i being an imaginary square root of — 1. Also 

(3.2) 4 ^ p(4n + £)**> + * = T7T +T7^v 

j-2i, ; - 3 * 
+ I T ^ " * : ^ - " T (A = 0,1,2,3). 4>(-x) </>(-ix) 

We shall also need the well-known identity of Jacobi: 

(3.3) £ ykzk* = 4>(z2) J ] (1 + J/*2™-1)!! + t / - 1 ^ " 1 ) . 
* = - « > m = l 

Using Euler's identity 

(3.4) </>(x) = £ (-l)Bx»(3" + 1"2, 
— 00 

we can write 

(3.5) <f>(x) = g0(*) + gl(x) + g2(x) + g3(x), 

where 

gt(*) = 2 (-l)nxn(3re + 1,/2, * = 0,1,2,3, 
— X 

(3.6) 
n(3n + l)/2 = £(mod 4). 

Then 

*(-*) = go(-*) + gi(-x) + g2(-x) + g3(-x) 

= goM - gi(*) + g2(*) - gaM, 

in view of (3.6), so that on using (3.6) and (3.4), 
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(3.7) 

4>{x)+ <!>(-x)=2{g0(x) + g2(x)} 

X 00 

= 2 V x2fcil2fc + l) _ 2 V j.(4fc + l)(6*+2) 

= 20(x48) { I ] (1 + x-t8m-26)(l + x 4 8 m - 2 2 \ 

- X2 f l (1 + X48^-38)(l + X48m~1()) j 
1 * 

= 24>(x«)A,(x2). 

Hence 

#tr) + tf-ix) = 2^(x«)A,(tte)2) 

(3.8) = ^ ^ ( - x 2 ) 

= 2^(x«)A2(x
2) 

in terms of Aj(x) and A2(x) given in (A) of §1. 

With g(n) = n, it = 2, o = 1 (1.2) yields 

(3.9) #*)*(-*) * 3 ( * 2 ) 

and so, from (3.1), 

(3.10) 4>(ixM-»x)= V k ; 

Hence, from (3.2) and (3.7) to (3.10), we obtain 

f P(4n)x- = 1 J ^ ) + ^ - « ) + * W + « - * ) 1 
f P^ ' 4 \ tfx)*(-x) *(ix)*(-ix) J 

2 03(x2) ^v ' iV 7 2 </>8(x-4; 

^hich is the same as (1.5). (1.6) to (1.8) follow on similar lines. 

4. Proof of the identities (1.9) to (1.11). The generating function 
*(x)-1ofp (3)(n)isgivenby 

00 

(4.1) ^(x) = [ ] U ~ x")min(3'n) 

n = l 
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(1 - x)*(l - X2) • 

If a) is a primitive cube root of unity, then 

* 1 a)2i o)1 

3 £ p^(3n + * ) r ^ = — + — — + — — 

(4.2) 
= ^(a)x)^(a)2x) + w2^(x)^(wh) + co^(^ (cox) = Q l 

i/f(x)t/f(wx)i//(a>2x) 

Also, 

(4.3) 4>*(x) = fioW + fciW + h(x) 

with 

M * ) = S ( " l ) n ( 2 n + l)x™ + 1)'2. 
n=0 

n(n + l)/2 = £(mod 3), 

so that 

(4.4) 0;3(oi4x) = fc0(*) + w'fci(z) + o>2£/i2(x). 

In fact, 

V * ) = *3(x) + 3x*3(x»), 

/i1(x)=-3x*3(x»), 

M * ) = 0 (SeeKolberg[l] p. 82). 

From (4.1) and (1.3), we obtain 

(4.5) ^ ( x ^ ( ^ ( ^ ) % : j ( x 9 ) ( 1 f g ( 1 _ ; c 6 ) . 

Further, from (4.1) and (4.4) we obtain 

(V(x) + V ( x ) - Mx)fcL(x))(l - 2x + 2x> - x') 
* (« )+<««> " (1 - .3)2(1 - x«) 

and similar expressions for I/I(O>2X)I//(X) and t//(x)i//(o>x). 
Taking I = 0 in (4.2) and using (4.5) and the above expressions for 

i//(o>x)i//(arx) etc., we obtain 

3 ^ p<3'(3n)x:* = 3{V(x)(l + 2x:J) - Jii2(x)(2x + r4; 
o 

»}(x!)) 

<p(xr 
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which yields (1.9) on substituting the above Kolberg's expressions for 
h0(x) and hx(x). (1.10) and (1.11) follow on the same lines. 

5. Proof of (1.13) and (1.14). Choosing 

, . cn\ i f n = 2 « ( a ^ 0 ) , 1 , . 
£(n) - K* I . >ancl a = 1, & = 4, 
6 W 10, otherwise 

We have from (1.2) 

(5.1) / ( x ) / ( t e ) / ( _ x ) / ( _ t e ) = ^ l . 

We can also verify that in this case f(x) satisfies 

(5.2) (1 - x)F(x*) = f(x) 

or 

/ V ) = /(x)(l + x + x2 + •••), 

so that if we put f(x) = ^Z=oanx
n, (a0 =1), it is easily seen that 

the coefficients an are given by the recursion formulae 

(5.3) 

and 

(5.4) 

n - l 

r=0 

n/2 

"n = X ajainl2)-p 

if n is odd, 

if n is even. 

These equations (5.3) and (5.4) determine f(x). However, these 
are not required for the proof of (1.13) and (1.14). 

We shall indicate the proof of the first half of (1.13). First we note 
that 

* 1 i~l i~'11 j ~ u 

(5.5) (A = 0,1,2,3). 

Prom (5.2) we have/(-x) = (1 + x)f-(x2), so that 

(5.6) f(x) + fi-x) = 2 f (x*), 

(5.7) /(*)/(-*-) = / V ) ( l - * 2 ) , 

and 

(5.8) fiz^=il±^1 

' fix2) (1 - I2)-
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Taking I = 0 in (5.5), and using (5.6), (5.7), (5.1) and similarly (5.8) 
we obtain 

^ 4 1 f(x)f(-x) f(ix)f(-ix) J 

_ 1 (j[x)+f(-x))f(ix)f(-ix) + (f(ix)+f(-ix))f(x)f(-xl 

4 f(x)f(ix)f(- i ) / ( - ix) 

fw(xs) 

= f^tfV)/W)(i-*2*2) 
(5.9) + f((ixrf<(x*)(l - x2)} 

f10(x8) (1 + x2)2 

= W f ( a c 2 ) a ^ { ( 1 + x2)3+(1-l2)3}-
But by repeated use of (5.2) raised to the suitable exponents, we 
obtain 

fl0(x8)f(x2) =fl0(xH)P(x2) 1 

f>(*4) /V)/]V)f(x2) 
1 (1 - x) (1 - x2)3(l - x) 

= n - r2^8 (1 ~ X2)* 
( 1 - x ^ f(x) (l + x2)Y(x) 

The first half of the identity (1.13) follows on substituting this in 
(5.9). The other half of (1.13) and (1.14) follow on using similar argu­
ments. 
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