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A NEW FUNCTIONAL EQUATION WITH SOME SOLUTIONSf 
L. R. SHENTON AND P . C. CONSUL* 

1. Introduction. Functional equations arising naturally in applied 
mathematics are not too common (see for example Aczel's treatise [1] 
on the general topic), and here we introduce a system springing from 
elementary concepts in queueing theory. In a previous paper [2] the 
authors have developed a system of generalized discrete probability 
distributions by considering equations of the form x = y g(x), where 
g(x) is the generating function of a random variable defined on the non-
negative integers, and x, as a function of j / , in general generates a 
Lagrangian probability generating function. 

It now turns out that there is a tie up with the behavior of the ran­
dom variable which describes the length of a busy period in a single 
server queueing system where the 'arrivals' follow some defined 
probability distribution. From general considerations of this situa­
tion, we were led to the functional equation 

(1) H(x, y)=l + xy(l - xy)-'{l - *(k - Ax«/)} H(*(\ - Xxy), y), 

where x and y are defined over the real domain, X is a real number, and 
H, if are real, continuous and infinitely differentiable functions. The 
coefficients of the successive powers of x and y represent the probabili­
ties of different lengths of busy periods for queues initiated by 1, 2, 3, 
• • • customers when \fß(k — Axt/) is a Laplace transform associated with 
the inter-arrival and inter-service density functions. The queues 
initiated by one customer have been considered in several studies; 
however it is a matter of common experience at medical clinics, auto­
mobile service stations and factory supply offices etc., that the First 
Busy Period is usually initiated by a larger number of customers than 
one. Thus the problem becomes a little more complex. 

Our equation (1) is a specal case of a general functional equation 

(2) H(x,y) = l + 4>(xy)HW(xy),y), 

where +(xy) and +(xy) are real and continuous functions of xy having 
power series expansions and smh that ^>(0) = 0. The observation that 
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the functional equation (2) represents an expansion can be verified in 
the following manner. 

If the iterates ty(yx), *l*(y*fi(yx)), ^(y^f(y^(yx))\ * • • are denoted by 
^i> 2̂> 3̂> ' ' ' respectively then equation (2) can be written in the 
form given below: 

H(x, y) = 1 + 4>{xy) [1 + « K ^ ) H(*2> «/)] 

(3) = i + <Kxy) + <K*y>Ky*i) + <K*y) <K#i) <f>(y<l>2) + ••• 

= 1 + 2 (lì *WJ, 
where I/J0 = x, and some restrictions may have to be imposed on x and 
y for its convergence. Thus each term of the infinite series consists of 
a product of a number of functions. 

In this paper we provide a number of simple solutions of equations 
(1) and (2) in §§ 2 and 3, respectively, and derive two alternative 
forms for the general solution of equation (2) in §§ 4 and 5. It is pre­
sumed for the existence of the solutions that $(xy) and <f>(xy) are given 
in the form of absolutely convergent power series of xy. 

2. Some Simple Solutions of Equation (1). We may observe that the 
equation does not possess a solution when (i) xy = 1 or (ii) \jß(k — kxy) 
= (xy)'1, and that it satisfies two initial conditions: 

(4) H(0,y)=H(x,0)=l. 

The equation possesses two trivial solutions given below: 

,-v f H(x, y) = 1, for ifß(\ - kxy) = 1 
^ ; lH(x,y) = (1 - xy)-\ for ty(k - kxy) = 0. 

The following three cases will reasonably convince anyone that the 
solutions of the equation are quite intricate even for simple values of 
ijj(k — kxy) and that the general solution is non-trivial. 

Case I. When ty(k — kxy) = xy, 

H(x, y)=l + xy H(xy, y), 

which , recursively, gives the series 

H(x, y)= 1 + xy + xy(xy2) + xy(xy2)(xy*) + • • • 
(6) 

= f {*y<'+1*2}', 
r=0 



A NEW FUNCTIONAL EQUATION 3 2 3 

where the series is convergent for all values of x in the real domain if 

\y\ < i-

Case II. When </>(\ - \xy) = x2y\ 

H(x,y)-l + xy(l + xy)H(xy,y), 

whose solution can be written down recursively in the form 

(7) H(x, t / ) = l + 2 r*-2*-^.2'"'1—2 li(l + i i M nl • 

The series can be shown to be convergent for all x in the real 
domain if |y | < 1. 

Case III When i/>(A - kxy) = (xt/)"2, 

H(x, y) = 1 - (1 + xy) (xy)^H((xy)-% y\ 

whose solution, according to (3), will be an alternating series. How­
ever, each negative term can be easily cancelled with the first part of 
the next positive term. Thus 

H(x, y) = 1 + x(l + xy) + x3t/(l + xy)(l + x2j/)(l + x4t/3) 

-I- xlly6(l + xy)(l + x2y)(l + x4y3)(l + x8t/5)-

(8) (l + x 1 6 ! / 1 ! )^ — 

= 1 + x(l ± xy) [ l + 2 x ^ ' - D ^ ^ ^ ^ - ^ - ^ / o 

{ I l (1 + x ^ - y ^ - w (1 + x22i y ' ^ - ' + DO) } ] • 

The above series is absolutely convergent if \x\ < 1, \y\ < 1. 
Evidently, the soltuions of (1) will become much more involved if 

I/J(X "" AXj/) is a sum of two or more power terms. In fact, the number 
of terms begins to explode very fast as soon as i/f(X — Xxy) is taken as a 
sum of 4 simple terms. 

Though the above remarks clearly indicate that the solutions of 
equation (1) are generally in the form of a power series in x and y, 
the next case will show that some of these intricate solutions can be 
reduced to closed forms as well. 

Case IV. When \fß(\ — kxy) = kl(k2 — Xxi/)-1, let us Suppose, if 
possible, that the function H(x,y) = [1 — xg(y)] _ 1 for some specific 
values of ki9 k2 and g(y). It may be noted that [1 — %g(y)] ~l represents 
an infinite series in x and y which satisfies (4) and has to satisfy the 
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above conditions as well as (1). The values of H(x, y) and I/J(X — \xy), 
on substitution in (1), should give us the conditions for the validity of 
the supposed solution. Thus 

= 1 ! *y(h - *i - À*;/) 1_ 
1 - *g(y) (1 - xy)(k2 - Xxy) 1 - *ig(y)/(fc2 ~ Axy) 

or 

*g(y) = xy(fe2 - ^ - X*y) 

l - « g ( y ) ( l - * y ) [ * 2 - A * y - f c l g ( y ) ] ' 

which gives the quadratic equation 

(9) Mg(y))* - M^-^ + W + y ^ - / 1 ^ - °-
1 — jcy x xy 

If &2 = fci + X, the coefficients of y and g(t/) become X and 
— (fei + X), respectively, and equation (9) becomes independent of x. 
The value of g(y) will then be given by (9) in the form 

(10) g(y) - fc| + A - V { ( f c 1 + A)»-4My} 
2fcx 

which exists for all values of/cx. Hence the functional equation (1) has 
a closed form solution H(x, y) = [1 — xg(y)] ~l for all ki9 and g(y) is 
given by (10). 

3. Second Functional Equation. Since +(0) = 0, the function 
<f)(xy) must be of the form <f>(xy) = xyf(xy), and H(0, y) = H(x, 0) = 1. 

If x = x0, ^(xy) = ö-l- feet/ = xx, a + bxxy = x2,
 a + fr*2Î/ = *3> 

* • -, then the solution of the functional equation (2) is given by (3) as 

(ii) H(*,t/) = i+ S i l l «y*.)\, 
fc=0 V s = 0 J 

where 

(12) x, = a{l - (%)*} (1 - by)~l + *(ty)». 

We shall now adopt a procedure similar to Case IV of the last sec­
tion to determine some closed form solutions of (2). 

Case I. Let us suppose (if possible) that 

(13) H(x,y)= [l-xmg(y)]-i 

for some values of <f>(xy), ifi(xy), g(y) and m. The above value must 
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satisfy equation (2). Therefore 

i = 1 + <*>(*</) 
1 - xmg(y) 1 - W(xy)}mg(y) 

which, on simplification, gives the quadratic equation in g(y) as 

{g(y)}2 _ *w) +1 ( ) + m *to) = o. 
XëKyn W(xy)}m &y> y {xytl>(xy)}m 

The above equation may give realistic values of g(y) if the co­
efficients of y and g(y) are independent of xy. If we suppose 

[xy^xy))'" u {*(*«/) }m 

then 

(14) *(*</)= [fca - M*y)m]-"*". 

(15) *(*y) = M*</)m[*2 - fci(x«/)m] -1 , 

and 

(16) g(t/) = | [fc2 - V(fe22 - 4 * ^ ) ] . 

Thus for any set of compatible values of ki9 k2 and m, one can deter­
mine ty{xy) and $(xy)y by (14) and (15), for which (13) is a solution of 
the functional (2) provided (16) gives real values of g(t/). Evidently, 
the functional equation will have an unlimited number of such solu­
tions. 

Case II. When ty(xy) = a(l + fen/)-1, the successive values of i/*i? 

i = 1, 2, 3, • • • in solution (3) can be written down from the theory of 
continued fractions and are given by 

(17) ,,, *A' + A'-y , 
A i + 1 + bibxy 

where 
At = Ai* - A2S and 

(18) 
Ax = {1 + V( l + 4öbt/)}/2, A2 = {1 - V( l + 4aby)}l2. 

The values of t/̂  can be alternatively written in the form of succes­
sive convergents I/J, = o^-i/ty, where 
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9o = 1> 9i = 1 + bxy, 92 = (1 + bxy) + afot/ 

*-"^»[l('-;-')w]^",:y^ 
for i ^ 3 and fc = (1/2) i or (1/2) (i — 1) according as i is even or odd, 
respectively. 

Now, if <f>(xy) = (xy)m, the solution (3) of the functional equation (2) 
becomes 

w-[1 + (iM)"+(Mi)"+(Mi)-+ . . .] . 

Thus, it is clear that the functional equation has many different 
forms of solution, but they are not obvious and need further study. 

4. General Solution of Second Functional Equation as a Power 
Series in xy. Let the power series expansions in xy, in some common 
domain of |JC| < 1, and \y\ < 1, of the known functions *\t(xy) and 
<f>(xy) be given by 

(21) *(*y) = 2 ar{xy)1r\ 
r=0 

(22) tfxy) = f b,(xyY, b0 = 0, 
S = l 

so that a0 = i^(0), ar = ^(r)(0), where ^r(0) denotes the value at xy = 0 
of the r-th derivative of \jj(xy) with respect to xy. 

The form of the functional equation (2) is such that one can reason­
ably assume that H(x, y) has a power series expansion in terms of xy 
and that the coefficient of every term is a function oft/. Therefore, let 

(23) H(* ,y )= 2 ij%rF(k,y), 
k=o Kt 

where F (0, y) = 1. 
The substitution of the values of 4>(xy) and H(ip(xy), y) by (22) and 

(23), respectively, in the functional equation (2) gives the right hand 
side as 
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(24) H{ÊW}{2**W»}. 

Since the product of the two series in (24) must be identical with 
the series in (23), the coefficients of the successive powers of x can be 
equated with each other. Equating the coefficients of (xy)m on both 
sides, 

m - l » jjk 

F(m, y) = m! £ £ fom-, t r F ( f c ' ^ X c o e f o f z°in W2>1 * 
(25) s = ° fc=° 

m - l « r , . f c 

= m! 2 2 I F(*,y)fcm_£ 

where the third summation is over all the partitions of k such that 

( 2 6 ) fP0 + Pi + P2 + * * ' + P. = fc, 
Ipi + 2p2 + • • • + sps = 5. 

The equations (25), subjected to the conditions in (26), provide us 
with an infinite set of relations as m = 1, 2, 3, • • • for the determina­
tion of the specific expressions for F(ra, y). The values of F(ra, t/), for 
each integral value of m, are dependent upon all F(m, y). For 
example: 

F(hy)= fciS(floy)*F(fc,y)/fc! 
k=0 

F(2,j/) = 2! 2 [&2 + b.kiajao)] ^F(k,y) 

fc=0 

^ } ] TF<^> 

We observe that [ F(m, t/)] y==0 = m! fom, and the successive deriva­
tives of F(m, y) at t/ = 0 can also be written down systematically, for 



328 L. R. SHENTON AND P . C . CONSUL 

each m, from our result (25). Thus the functions F(m, t/), for each 
integral value of m, can be obtained as a power series in y by writing 
the coefficient of yn in F(m,y) equal to (n!)_1 X n-th derivative of 
F(ra, y) at y = 0. Denoting the coefficient of yn in F(m, y) by some 
symbol or else the coefficient of xmym+n in H(x,y) by Fm+n(m), we 
may use the result (25) to obtain its value in the form 

(27) 

F-("> - £ [ ( l tè { ^ '<*• »> L*!>- • 
{?^r^r^(l)v"(î)'-}]-

The above expression for the coefficient of #mj/m + n in H(x,y) is 
rather complex, but it is not surprising. Though die expression (27) 
contains derivatives of F(k, y) at y = 0 on the right hand side, it can 
still be evaluated for specific values of m and n by using the infinite set 
of relations, mentioned earlier, and their successive derivatives at 
y = 0. We quote below some expressions and their values for m = 1 
and m = 2 as an illustration: 

For m = 1 

and 

Fi(l) = fo1; F2(l) = feiV 

F3(l) = biao
2(b2 + bf), 

F4(l) = fe1o0
2(b3.+ 2b2bla0 + b^ax + &i3a0)> 

F5(l) = fc^^Mo + 2&3&JÖ0 + 3b2b1
2a0 

+ 3^2^101 + b2
2a0 + 2b1

3al 

+ bfa2 + Vao)> 

(29) 

For m = 2 

F„+2(2)= 2 [ » r (b2a0 + kbla1)a0
k _ 1 

(30) * - 1 

{£V»»>} »J 
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and 

F2(2) = b2, F3(2) = fo1(Mo + M i ) , 

F4(2) = (b2a0 + b&Jb^ao + (b2a0 + 2bla1)b2a0, 

F5(2) = (b2a0 + biai)(b2 + fo^Mo2 

+ (fo2a0 + 2fc1a1)(b2a0 + b^b^o 

+ (b2a0 + S ^ a ^ o o 2 , 
(31) 

F6(2) = bxao2{b2aQ + biai)(fe3flo + ^b2bxa0 + &!%! 4- fci3a0) 

+ a0
2(b2a0 + 2b1a1)(b2

2a0 + b^b^a^ + b2bxai + foi3^) 

+ a0
2bl(b2a0 + 3b1a1)(b3a0 + fo2fli + foiö2) 

+ a0
3b4(b2a0 + ^ a ^ . 

Thus the coefficients of the successive terms can all be determined 
in a systematic manner. Possibly, the development of a computer pro­
gram will substantially reduce the labour involved. 

One may be naturally concerned about the convergence of such 
solutions expressed in bivariate infinite series. However, this concern 
is easily put to rest by the Fixed Point Theorem, stated by Dieudonné 
[3, p. 260], wherein such solutions are said to be convergent in the 
open circle x < 1, y < 1. 

5. General solution of functional equation-alternative form. Let 
the functions ift(xy) and <\>(xy) in (2) be expressed in the form of abso­
lutely convergent series of xy and be given by (21) and (22), respec­
tively. 

Also, let H(x, y) be absolutely convergent and be given by 

(32) H ( * , y ) = l + S yj( ± «ft).. 

The above form of the solution looks arbitrary and somewhat re­
stricted but a careful consideration of (2) will show that x occurs in the 
form of powers of xy while y occurs independently as well. This 
implies that the powers of x in any coefficient of yj must be equal to 
or less than j . Hence the supposed form of H(x, y) is quite general. 

By substituting the values of *lt(xy), <f>(xy) and H(x, y) in (2), the right 
hand side of the equation becomes 

1 + { S bs(xyY ) f 1 + S £ a^i { i ar(xyY V I , 
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which should be identical with the right side of (32). On equating the 
coefficeints of yn in (32) and in the above expression, one obtains 

(33) 

£ ainx' s bnx" + " £ [ x»-* S aik " 2 bn_ 

i!(a0)p»(a1)',> 

I f VoW • • • (Ps-k)\ \(s-k)\) i \ ' 

where ^ p is taken over all partitions of i such that 

\p1 + 2p2 4- 3p3 + • • • + ( « - fc)pÄ_fc = « - fc. 

Now by equating the coefficients of different powers of x on both 
sides of (33), for all integral values of n, we get n different relations 
which can, in general, be represented by the following formula, 

*n,n = K 

n - 1 r f i\ 
(35) j t i ' L /Tm l p Fo'Pi! • • • (p,-m)l 

where ^ p is the same as defined in (34) with k = m. 
The result (35) gives the values of all the coefficients an_mn in (32) 

by giving successive integral values to m and n; however, it may be 
desirable to point out the presence of three summations in the expres­
sion (35) will provide a large number of terms in each coefficient as 
soon as m = 4. 
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