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BOUNDEDNESS FOR SPACES 
OF CONTINUOUS FUNCTIONS 

FRANCES AND DENNY GULICK 

1. Introduction. Let T be an arbitrary completely regular and 
Hausdorff space, let CC(T) denote the space of all real-valued con
tinuous functions on T, endowed with the compact-open topology. 
One of the two so-called Nachbin-Shirota Theorems tells us that T is 
replete if and only if CC(T) is bornological. Deep and beautiful, its 
proof utilizes the profound work of Hewitt, and has influenced greatly 
later study of locally convex spaces. Recently the Nachbin-Shirota 
Theorem was markedly strengthened by De Wilde and Schmets' 
Theorem, which shows that T is replete if and only if CC(T) is ultra-
bornological. Their theorem has ushered in a new era which has in
volved a broadening of the ideas surrounding the Nachbin-Shirota 
Theorem. In this respect, we cite especially the articles by Buchwalter 
and by Buchwalter and Schmets ( [4] and [5] respectively). 

In the various theorems mentioned above, two structures on CC(T) 
come into play. There is the structure of CC(T) as a locally convex 
topological vector space, and there is the natural structure of CC(T) as 
an ordered vector space of real-valued functions. In the present paper 
we analyze CC(T) with respect to both the locally convex related and 
the order related concepts, and then utilize such an analysis in order to 
shed further light on the Nachbin-Shirota Theorem and its relatives. 

In Section 2 we define the notion of hyper-null sequences in Cc(T), 
and then discuss the relationships which exist between the following 
kinds of bounded subsets of CC(T): null and hyper-null sequences, 
equicontinuous, order-bounded, relatively compact, and general 
bounded subsets. Section 3 is devoted to the boundedness — on the 
just-mentioned kinds of subsets —of linear forms on CC(T), with 
Theorem 19 the main result. Rather unexpectedly, we find that, al
though a linear form which is bounded on all bounded subsets of CC(T) 
is obviously bounded on all order-bounded subsets, the converse is not 
true in general. We end the paper with a historical perspective. 

Before we begin on the paper proper, we describe our notational 
conventions. Throughout the paper T stands for a completely regular 
Hausdorff space. If S Q T, then S° is is the interior of S in T, and Xs 
is the characteristic function of S. Next, iff is defined on T and S Ç T, 
t h e n / | s denotes the restriction off to S. If n Ez N (with N the set of 
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positive integers), then the nth truncating function 6n is defined on the 
reals by 

9 « ( r ) = inrllrl \r\ > n. 

The collection RT of all real-valued functions on T carries the 
product topology. Let ^(T) consist of all real-valued continuous func
tions on T — without topology — and let d °°(T) be the collection of all 
bounded functions in C(T). When C °°(T) has the uniform norm || • || «, 
we denote it by C°°(T). The simple topology on C(T) is the topology 
of pointwise convergence, and the locally convex space which results 
when we endow C(T) with the compact-open topology is written 
CC(T). The space M(T) is the collection of all real-valued bounded 
Radon measures on T, the support of /i, G M(T) is written supp /m, and 
the point mass at t G T is 8*. As in [8], ßT is the Stone-Cech com-
pactification of T, while vT is the repletion (or the Hewitt real-
compactification) of T. 

Finally, we would like to thank H. Buchwalter, G. Choquet, and 
J. Schmets for their many helpful suggestions. 

2. Canonical subsets of CC(T). In the analysis of a given locally 
convex space, the bounded subsets, relatively compact subsets, and 
null sequences each play a privileged role. If that space is CC(T), then 
these sets are given in terms solely of the topology on CC(T) as a 
locally convex space. On the other hand, CC(T) is an ordered vector 
space, and as such it contains sets bounded in the sense of the order 
imposed on CC(T). We recall the definition here. 

DEFINITION 1. For an arbitrary g G CC(T), let Bg= {/G CC(T) : 
l/l ^ |g|}. A subset B of CC(T) is order-bounded iff there exists a 
g G CC(T) such that B C Bg. 

In addition to the sets mentioned above, there are equicontinuous 
subsets of CC(T), which derive from the space T itself and from the 
continuity of the functions, and which have flourished under the pen 
of Buchwalter (see for instance [2] and [4] ). We add now another 
type of subset which depends on the space T, and which will play a 
role in the sequel analogous to that of null sequences. 

DEFINITION 2. A sequence ( / n )£ = 1 C CC(T) is hyper-null iff there 
exists an increasing sequence (Uk) %=l of open subsets of T such that 
U fc=i Uk = T and such t h a t ^ -^ 0 uniformly on Uk, for each k G N. 
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Hyper-null sequences lie, as is immediate from the definition, some
where between uniformly null sequences and pointwise null sequences. 

The aim of this section is to discuss the relationships between the 
six kinds of subsets of CC(T) heretofore mentioned, and we begin with 
a theorem. 

THEOREM 3. Let A Q CC(T), and regard the following statements: 
a. A is a hyper-null sequence. 
b. A is equicontinuous and pointwise bounded. 
c. A is order-bounded. 
d. A is a null sequence. 
e. A is relatively compact, 

f. Ais bounded. 
Then the following relations hold: 

a ==> b => c 

II U H 
d=>e=>f 

PROOF. The implications (d)=>(e)=>(f) are obvious. To start off 
proving (a)=>(b), let (fn)n=i be a hyper-null sequence, with 
(l/fc)* = i t r ie required associated sequence of open subsets of T. Let 
t0Œ T and e > 0. Then there is a k0 such that t0 G C7*o. If n^ is large 
enough, then 

\f»(t) - U*o)\ < e> for all n ̂  n*o>e and t G I / v 

On the other hand, there is a neighborhood U of t0 such that U Q Uk 

and such that t G U implies that 

\fn(t) - fn(to)\ < €, for n = 1, 2, • • -, n*0f€. 

From the above two inequalities it is evident that (/n)n=i is equi
continuous at t0, and since it is automatically pointwise bounded, we 
obtain (a)=>(b). Since the sequence (I4)*=i associated with a given 
hyper-null sequence covers any given compact subset of T, it follows 
that a hyper-null sequence converges uniformly on each compact sub
set of T, so that (ii)=>(d). To show that (b)=>(c), let A be equi
continuous, and let g be defined by g(i) = sup^A |/(f)|, t G T. Then g 
is continuous, and moreover, A C Bg, so A is order-bounded. Next, 
the fact that (b)=>(e) is well-known. A simple proof of it goes like 
this. The pointwise closure A ' in RT of A is equicontinuous and point-
wise bounded, by Theorem 7.14 of [14]. Then Theorem 7.15 of [14] 
says that the compact-open topology coincides with the pointwise 
topology on A' , which means that A' is compact in CC(T) iff A' is 



250 F . GULICK AND D. GULICK 

compact in RT. But RT is a Montel space, so that A ' is in fact compact 
in RT, concluding the proof that (b)=>(e). Finally, since every con
tinuous function on T is bounded on each compact subset of T, the 
order-bounded subsets are always bounded in CC(T), proving that 
(c) =>(/). I 

J. Schmets has observed that Theorem 3 remains true if instead of 
the compact-open topology we utilize any locally convex topology 
lying between the simple topology and the topology of uniform con
vergence on all bounded subsets of T (see [3] for the notion of 
boundedness in T). 

What interests us now is the fact that none of the reverse implica
tions in Theorem 3 holds true in general. The extent to which they do 
or do not hold occupies us for the remainder of this section. 

In order to discuss the relationship between null and hyper-null 
sequences we introduce an intermediary type of sequence. We say 
that a sequence (fn)n=i Q CC(T) is bornologically null iff there exists 
an unbounded increasing positive sequence (fon)* = 1 of numbers such 
that (bnfn)n=i is null in CC(T). This definition is equivalent to the 
definitions in, for instance, [ 12] and [ 17], for what is also called 
"convergence in the sense of Mackey". The following proposition 
follows nearly immediately from the definitions. 

PROPOSITION 4 a. Bornologically null sequences are always null, 
b. hyper-null sequences are always bornologically null. 

PROOF. Part (a) is obvious, and in fact, a bornologically null se
quence is in a sense majorized by a null sequence. To prove part (b), 
let (fn)n = lQ CC(T) be hyper-null, with associated sequence (Uk)% = l 

in T. Without loss of generality let ||^|(y || «> = 1, for all n, and let 
(mk)% = l be a strictly increasing sequence in N such that mx = 1 and 
such that 

l l /Jy, | | . ^ 1/fc2, all n ^ mk, alii = 1, 2, • • -, fc, and all k. 

Finally, let bn= k for all n E. [mk, mfc+1), for each k G N. Then 
bn -^ oo , and if t E T, then t G Uk for some k. Thus {b^t) \ ^ fc/fc2 = 
Ilk whenever n ^ mfc, so that (/n) *=x is bornologically null. | 

Theorems 13, 15, and 18 of [ 17] give sufficient conditions (though 
not necessary conditions) that the null sequences and bornologically 
null sequences of CC(T) coincide. In particular, when T is hemicom-
pact, they coincide. Thus the converse to 4a holds when T is hemi-
compact. 
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In order to find a condition under which the converse to 4b holds, 
we recall from Proposition 2.3.7 in [2] that T is a fcR-space iff when
ever 7\ is any completely regular Hausdorff space a n d / : T-+ Tx is 
any function, then / is continuous provided its restriction to each com
pact subset of T is continuous. The fcR-spaces include locally 
compact spaces, as well as metrizable spaces and fc-spaces (see [2] 
and [14]). 

PROPOSITION 5. Let T be a kR-space. Then each bornologically null 
sequence in CC(T) is hyper-null 

PROOF. Let (/n)£ = 1 be bornologically null, so that for some increas
ing positive unbounded sequence (bn)„ = l of numbers, the sequence 
(bnfn)n = i *s n u l ' - If S Ç T is compact, then (bnfn)n=1 is null and thus 
equicontinuous in C°°(S). I f / = supneN|fori^l|, t h e n / | s is continuous, so 
that by hypothesis / is continuous on T. Therefore (fn)Z=i is hyper-
null, since \fn\ =//fcn , for all n. I 

From our previous remarks, combined with Proposition 5, we know 
that if T is a hemicompact fcR-space, then the null sequences in CC(T) 
are hyper-null. Actually, we can say more, or so it might seem. 

PROPOSITION 6. If T is hemicompact and CC(T) is semi-complete, 
then each null sequence in CC(T) is hyper-null. 

PROOF. From our comments above, all we need to show is that T is 
a fcR-space. To that end, l e t / G RT such t h a t / | s is continuous for each 
compact S C T. Let (Sn)£ = 1 be an increasing sequence of compact 
subsets of T such that if S is any compact subset of T, then S C Sn for 
some n. For each n, let fn G C(T) such that fn—f on Sn. Then 
fm~ fn~ 0 on Sk whenever m,n^ k, so that (}n)n=i is Cauchy in 
CC(T). Since CC(T) is semi-complete, there exists a g G CC(T) such 
that/n-^> g. But/n = / o n Sk for all n è k and all k G IV, which means 
t h a t / = g and t h u s / G d( T). | 

If T is a /cR-space, then CC(T) is necessarily semi-complete. From 
the proof of Proposition 6 we infer that if T is hemicompact, then T is 
a fcR-space iff CC(T) is semi-complete. 

Next we expose a type of hemicompact spaces for which the null 
sequences of CC(T) are not always hyper-null. 

EXAMPLE 7. Let T be hemicompact, and assume that (Sn)£=0 is a 
sequence of non-empty compact subsets of T such that 

(i) U S „ = T while U Sn= T, 
n = 0 n = l 
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(ii) S n C S°+l,forallnEN, 

(iii) Sn fi So=0,forallnE. N. 

Then there exists a sequence ( / n )* = 3 Ç CC(T) which is null but not 
hyper-null. 

To see this, for n § 3 let/n G C{T) be such that 

r (f\ = f n-> t ^ S n \ S n _ 1 
ut) itues^uso. 

Such an fn exists because of condition (ii). Furthermore, since each 
fn = 0 on Sn_2 U S0 we know by (i) and (ii) that (fn)Z=3 *s n uU i*1 

CC(T). To show that (fn)Z=3 is not hyper-null, let U be a neighbor
hood of £0 G S0, and pick n ^ 3 . Because Sn D S0 = 0 and because 
both Sn and S0 are compact, there exists a neighborhood Un of t0 such 
that UnQ U and Un D Sn = 0 . By hypothesis (i) we can find a 
£ ' G Un H Sm for some minimal mn â 1. Evidently ran ^ n and 
fmn(t')

 = n ' w h i l e t' E.V. Thus ( ^ ) * = 3 does not converge uniformly 
to 0 on U. Because U was arbitrary, (fn)Z=3 is n o t hyper-null, nor is it 
order-bounded. | 

A prototype of spaces described in Example 7 is T= NU {to}, 
where t0 G j3N\JV and where T inherits its topology from ßN. Then 
T satisfies the conditions of Example 7, so that CC(T) admits a null 
sequence which is not hyper-null. Of course the reals R work instead 
of N, and also one could add any finite (or countable if he is judicious!) 
number of elements from ßtf\N or from ßF\R with the same result. In 
any case, Example 7 and the succeeding special examples show that 
the converse to Proposition 4b is in general false. 

We now show that the converse to Proposition 4a is generally false. 

PROPOSITION 8. Let T be discrete, and assume the continuum hy
pothesis. Then the following conditions are equivalent: 

a. The cardinality ofT is no larger than No-
b. Null sequences in RT are hyper-null. 
c. Null sequences in RT are bornologically null. 

PROOF. Proposition 6 shows that (a)=>(b), while the implication 
(fo)=>(c) is obvious, and Theorem 18 of [17] yields (c)=$(a). | 

If one does not use the continuum hypothesis, he can in any case 
prove that if the cardinality of T is no larger than N0, then the null 
sequences in RT are hyper-null, while if the cardinality of T is at least 
2K°, then there exist null sequences in RT which are not bornologically 
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null. Any further refinement of Proposition 8 to which the continuum 
hypothesis is not appealed apparently must depend on some new 
axiom, like, for instance, Martin's axiom. 

In any case, if the cardinality of T is at least 2 K°, we can easily 
describe a null sequence in flT which is not bornologically null (and 
hence not hyper-null). To that end, we identify T (or a suitable sub
set of T) with the collection of elements in c0 whose coefficients are 
rational in [0,1] . Then we define^ G RT by 

fn(t)=t(n),t(=T,nGN. 

Since each t G c0> evidently (/„)n=i *s nuU- However, if (&n)„=1 is a 
positive, unbounded sequence of reals, and if t0(n) = 1/ VS^ for all n, 
then bruito) = VZS£, for all n, rendering (foj/JïUi unbounded. Thus 
(fn) n=i *s n ° t bornologically null. 

There is another broad class of spaces T for which the null se
quences in CC(T) are hyper-null. This is the pseudocompact War-
nerian spaces, which by Théorème 3.19 of [4] is precisely the collec
tion of T for which there is a denumerable base of bounded sets in 
CC(T), or which is the same thing, a sequence converges to 0 in CC(T) 
iff it converges to 0 uniformly. The space T of ordinals less than the 
first uncountable, with the order topology, affords an example of a 
pseudocompact Warnerian space which is not compact. 

On the other hand, there exist spaces which are neither kR-spaces 
nor pseudocompact, but for which the null sequences in CC(T) are 
hyper-null. Witness the following example. 

EXAMPLE 9. Let a>! denote the first uncountable ordinal, and let T 
consist of a*!, together with all non-limit ordinals <co1, cloaked in the 
order topology. Let (fn)n=i be null in CC(T). Then surely limn/n(o>1) 
= 0, so that for each positive integer k there exists an nk and a tk < o^ 
such that \fn(t)\ < Ilk, for all n ^ nk and all ti^ tk. Let t* = sup*. tk 

and let U = {t E T : t^ *«,}. Then (/n)^=i converges to 0 uniformly 
on U. Since T\U is countable, say T\U = («<)"=!, if we let Uk = 
U U(Si)k

i=i for each k, then it is easy to check that (fn)Z=i is hyper-null 
with associated sequence (Uk)k = l. The reason that T is not a kR-space 
is that the compact-open topology is (nearly) evidently the topology of 
pointwise convergence, and not every function defined on T is 
continuous. 

We turn now to the compact subsets of CC(T) and the relationships 
which exist between them and the equicontinuous and order-bounded 
subsets. First of all, J. Schmets has pointed out that any compact sub
set of CC(T) is equicontinuous at each t G T with a countable basis of 
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neighborhoods, as is easy to verify. So for any T which satisfies the 
first countability axiom, every compact subset of CC(T) is auto
matically equicontinuous. 

In a quite different vein, with Proposition 4.2.3 of [2] H. Buchwalter 
has extended the several theorems which generally appear under the 
heading of Arzela's Theorem. For a variety of reasons we feel it wise 
at this point to present Buchwalter's elegant proof of his theorem. 

PROPOSITION 10 (Buchwalter). Let T be a kR-space. Then every 
compact subset ofCc(T) is equicontinuous. 

PROOF. We may as well assume that the compact subset A of CC(T) 
is uniformly bounded on T, since in any case B = {|/|/(1 + | / | ) : 
fG. A} is compact in CC(T), so that if B is proved equicontinuous, then 
A will automatically be equicontinuous. Let <p : T—> C°°(A) be given 
by the equation (p(t) = F„ where Ft(f) = f(t), for all / G A. By as
sumption / i s bounded on T for e a c h / G A, so that for each t £ T we 
know that Ft G C^iA). Now if S is an arbitrary compact subset of T, 
then A|s is compact in C°°(S), so by the classical Ascoli Theorem [13, 
p. 237], the set A|s is equicontinuous. This means that if sk-j^ s in S, 
then Fsx(f) = f[sx) T* f(s) = Fs(f) uniformly with respect to f G A, so 
that <p(sk) = FSx T* Fs — <p(s) in the norm of C°°(A). Consequently 
<p\s is continuous. Since C°°(A) is completely regular, T is a fcR-space, 
and S is arbitrary and compact in T, the result is that <p is continuous. 
Consequently if tx -j* t in T, then 

sup{|/(*J - / ( t ) | : / e A} = | |F,X-FJ. = | K x - ? , L ^ 0, 

rendering A equicontinuous and concluding the proof. | 
A propos of the proof to Proposition 10, Buchwalter observes that the 

same argument shows that if T is a fcR-space, then any precompact 
subset of CC(T) is equicontinuous. This relates to a very recent theo
rem of Hay don [9, Corollary 3.2], which says that the precompact 
subsets of CC(T) are equicontinuous precisely when every precompact 
subset of CC(T) is relatively compact. That fcR-spaces do not com
pletely exhaust the spaces which have this property is known (see for 
example [10] ). 

On the other hand, there exist T for which not every compact sub
set of CC(T) is equicontinuous. It is in this connection that we derive 
our next two examples. In the first, which uses the T of Example 9, we 
display a convex compact subset of CC(T) which is neither equi
continuous nor even order-bounded, while in the second example we 
show that for the given T all compact subsets in CC(T) are order-
bounded, although there exist compact subsets in CC(T) which are not 
equicontinuous. 



BOUNDEDNESS FOR SPACES OF CONTINUOUS FUNCTIONS 255 

EXAMPLE 11. Let c^ be the first uncountable ordinal, and let T con
sist of ot)1? together with all non-limit ordinals <a)l, endowed with the 
order topology. Then the compact-open topology of CC(T) is the 
simple topology. For each t G TX!**^}, if nt is the positive number 
such that t — nt is a limit ordinal (or is 0), then define the set B by B = 
{nj({t} : t E. T\{(x)i}}. Let co B denote the convex hull of B, and let A 
be the closure in CC(T) of B. We will show that A is (convex and) 
compact but neither equicontinuous nor order-bounded. Since any 
function in CC(T) is bounded on a tail of T, and since B is bounded on 
no such tail, evidently A is neither equicontinuous nor order-bounded. 
To begin showing that A is compect, let Tm = {t G T : nt = m}, for 
all m G N, so that T = {c^} U U ^ i Tm. Note that if g G côB* r , 
then g(co1) = 0. Next we show that if g G co BRT then g ^ 0 on at 
most a countable number of elements of T. Indeed if g 7̂  0 on an 
uncountable subset of T, then there must exist an e > 0 and an m such 
that |g(f)| > e for an uncountable number of elements Tm' of Tm. Now 
let (*i) " = 1 Ç Tm ' and let k G JV such that fc > 2m/e, so that (te/2) > m. 
Next let 

V = { ^ e f f : |fcft)l< € /2 , i= 1,2, • • - , * } , 

so that V is a neighborhood of 0 in RT. If ft G V, then |(g + **)(*,) | > 
e/2, for i = 1, 2, • • -, k9 so that J X i |(g + h)(t-)\ > m. I f / G co B, 
then / = 5^5=1 cinv/^j} ^or appropriate (^)^=1 Ç T and appropriate 
(C;)^=1, where each Cj ^ 0 and where ^ = 1 Cj = 1, and where we as
sume without loss of generality that (Sj)p

j=i 2 (*»)*=i- Th i s means that 

k k v 

t = 1 i = 1 j = 1 

Consequently (g + V) Pi co B = 0 , so that g (f co B R T , with the re
sult that if g G co B f i I , then g ^ 0 on at most a countable number of 
the elements of T, and consequently g is continuous on T. Since the 
compact subsets of T are finite point-sets, what we have shown is that 

c o ß « r = ^Bcc(T) = A. 

However, co BRT is bounded pointwise and is closed in R r, which 
itself is a Montel space. Thus co BR T is compact in BT, meaning 
therefore that A is compact in CC(T), as we wished to prove. 

Example 11 is to be contrasted with Proposition 3.5 of [9], which 
says that in d(T) fortified with the simple topology, each lattice-
closed relatively compact subset D is equicontinuous. The set A of 
Example 11 reveals that the hypothesis of Proposition 3.5 that D be 
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lattice-closed and not just convex is quite essential. Moreover, if it so 
happened that precompact subsets were always relatively compact in 
the CC(T) of Example 11, then Lemma 3.4 and Proposition 3.5 of [9] 
together would imply that each relatively compact subset would be 
equicontinuous. Consequently for the T of Example 11 there exist pre-
compact subsets of CC(T) which are not relatively compact. 

In our forthcoming Example 12 we must assume the existence of a 
measurable cardinal (which within the usual axiom scheme may or 
may not exist). By Theorem 12.2 of [8] a cardinal is measurable iff for 
a discrete space S with that cardinality we have vS y£ S. 

EXAMPLE 12. Let S be a discrete space with measurable cardinality. 
Let s G ^S\S, and let T = S U {s}, as a subset of ^S with the restricted 
topology. Then the compact-open topology on CC(T) is naturally the 
simple topology. In addition, it is routine to verify that every func
tion on T is dominated by a suitable continuous function, so that every 
subset of CC(T) which is pointwise bounded is order-bounded. Con
sequently every compact subset of CC(T) is order-bounded. If B = 
{X{f} : t ê S} U {0}, then since the compact-open topology is the 
simple topology, B is compact. However, B is certainly not equi
continuous at s. 

We remark that every function defined on the T of Example 12 is 
bounded on some neighborhood of the non-isolated point s. We know 
of no essentially different space T which possesses this property, and 
indeed we know of no space T without isolated points for which every 
function on T is bounded on some neighborhood of each element of T. 

Our next proposition gives a clearer indication of the relationships 
between compact, equicontinuous, and order-bounded sets in CC(T), 
under the stipulation that T be pseudocompact. We thank H. Buch-
walter for part (c) — both its statement and its proof— and we remark 
that by Théorème 3.19 of [4], a pseudocompact space T is Warnerian 
iff every null sequence in CC(T) is uniformly null. 

PROPOSITION 13. Let T be pseudocompact. Then the following state
ments hold: 

a. Every convex compact subset of CC(T) is order-bounded (or is 
uniformly bounded). 

b. Each compact subset of CC(T) is order-bounded precisely when 
T is Warnerian. 

c. Each compact subset of CC(T) is equicontinuous precisely when 
T is Warnerian and simultaneously each compact subset of CC(T) is 
metrizable. 
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PROOF. By Proposition 3.5.2 of [13] it suffices to prove part (a) for 
an arbitrary A G 3f, where 3f comprises the balanced convex com
pact subsets of CC(T). Now A G 2C means that A is compact in Cc(vT), 
via Proposition 2.2 of [4], so A is in particular bounded in Cc(vT). But 
T is assumed pseudocompact, so that Cc(vT) = C°°(ßT), and therefore 
A is order-bounded (or uniformly bounded) in C°°(ßT), meaning that 
A satisfies the conclusion of part (a). For part (b), we note that by 
Théorème 3.14 of [4], T is Warnerian iff the bounded subsets are pre
cisely the order-bounded subsets in CC(T). After a moment's reflection 
you will see that this is tantamount to the statement of (b). Part (c) is 
proved as follows. By hypothesis, if A is compact in CC(T), then A is 
equicontinuous, so is equicontinuous in C°°(ßT) by Théorème 4.3.3 of 
[2]. Consequently A is relatively compact in C°°(ßT). The unique
ness of comparable compact Hausdorff topologies shows that the 
closure in C°°(ßT) of A has the uniform-norm topology inherited from 
C°°08T), so A is metrizable. That T is Warnerian follows from part (&) 
and Theorem 3. For the other direction in part (c), we assume that A 
is compact and metrizable in CC(T\ and let (fn)Z=i Q A. Then there 
exists a subsequence (fnk)t=i and a n / G A such that/nk ~jf / i n CC(T). 
Since T is Warnerian, Theoreme 3.19 of [4] implies that/nfc ~jf/uni
formly, so that A is compact in C°°(ßT). By the classical theorem of 
Arzela, A is therefore equicontinuous. I 
Part (a) of Proposition 13 asserts that if T is pseudocompact, then the 
convex compact subsets in CC(T) are relatively tame, in contrast to 
their possible behavior for other T (e.g., Example 11). 

Example 2 after Corollaire 3.12 of [4] describes a pseudocompact, 
non-Warnerian space. On the other hand, a non-trivial (i.e., non-
compact) pseudocompact Warnerian space is afforded by the ordinals 
T less than the first uncountable, endowed with the natural order 
topology. This T satisfies the first countability axiom, so we are as
sured by the comments preceding Proposition 10 that each compact 
subset of CC(T) is equicontinuous. Yet we do not know if when T is 
pseudocompact and Warnerian, then every compact (or even every 
convex compact) subset of CC(T) must be equicontinuous. Of course, 
by our earlier remarks, the only points of T in question with respect to 
equicontinuity are those which lack a countable basis of neighbor
hoods. 

We conclude this section by discussing the order-bounded subsets 
of CC(T), first vis-a-vis the compact and equicontinuous subsets. Recall 
that if g G CC(T), then by definition Bg = {/G CC(T) : | / | ^ |g|}. 

LEMMA 14. Let g G CC(T). Then the set Bg is compact (or is equi
continuous) iffg(t) = Ofor each non-isolated t G T. 
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PROOF. If Bg is compact in CC(T), then it is compact in RT. However, 
for each t E. T, the function g(t) X{t} is a limit point in RT of the set Bg, 
and g(t)X{t} is evidently continuous precisely when g(t) = 0 or when t 
is isolated in T. Conversely, assume that g(t) = 0 for each non
isolated t G T. Note first that Bg is equicontinuous at every isolated 
t G T. Moreover, since g is continuous, we know by the hypothesis 
that g is small in some neighborhood of each non-isolated t G T, 
rendering Bg equicontinuous at those points as well. | 

PROPOSITION 15. Each order-bounded subset of CC(T) is relatively 

compact in CC(T) (or is equicontinuous) precisely when T is discrete. 

PROOF. An immediate application of Lemma 14. I 

Next we study when the bounded subsets of CC(T) are order-
bounded. 

PROPOSITION 16. Every bounded subset of CC(T) is order-bounded 
iff each lower semi-continuous function which is bounded on each 
compact subset ofTis majorized by a function continuous on T. 

PROOF. It is routine to show that a set B in CC(T) is bounded iff 
BQ Bh= {/G CC(T) : \f\ ^ \h\}, for an appropriate lower semi-
continuous \h\ bounded on each compact subset of T, and the rest 
follows. I 

COROLLARY 17. If T is paracompact and locally compact, then the 
bounded subsets ofCc(T) are order-bounded. 

PROOF. Any locally compact and paracompact space is the union of 
pairwise disjoint, hemicompact, closed and open subsets, so it suffices 
from Proposition 16 to assume that T is hemicompact and locally com
pact. Let \h\ be lower semi-continuous and bounded on the compact 
subsets of T, and let T = Un=i Ai> where each A^ is compact and 
An°+1 D 4 If \\h \An\\„ëcnêcn+1 for each n, then let fx = c2 = /2 , 
and for n ^ 3, let /n G CC(T) be positive, such that/n = cn on A ^ A J ^ 
a n d / n = 0 on \_2 U (AA^+ 1) . T h e n / = 2 " = 1 /n G CC(T\ and as
s u r e d l y / ^ \h\, and Bf D B w . | 

As we mentioned earlier, pseudocompact spaces T are Warnerian iff 
the bounded subsets of CC(T) are order-bounded. Example 12 shows 
that there are T which are neither paracompact nor locally compact 
nor pseudocompact, but for which the bounded subsets of CC(T) are 
all order-bounded. 

One might think that there should be an intimate relationship be-' 
tween the coincidence of null and hyper-null sequences on the one 
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hand and the coincidence of the bounded and order-bounded subsets 
on the other hand. The relationship is not too intimate, however, 
since for the T of Examples 9 and 11 the null sequences in CC(T) are 
hyper-null, while there exist bounded subsets of CC(T) which are not 
necessarily order-bounded. In the reverse direction, if T is discrete 
and cardinality of T è 2N<>, then CC(T) satisfies the reverse pattern, by 
Proposition 8. 

3. Boundedness of linear forms on CC(T). In Section 2 we dwelled 
on certain types of bounded subsets of CC(T). Now we turn to linear 
forms on CC(T) and discuss how they react on those types of bounded 
subsets of CC(T). The following result prepares us for Theorem 19, and 
is essentially Hewitt's Theorem 22 of [11] in a disguised form. Our 
proof carries the flavor of the proofs of Théorème 14 in [6] and of 
Lemme 1.8 in [4]. 

PROPOSITION 18. Let F be a linear form on CC(T), and let F be 
bounded on all hyper-null sequences ofCc(T). Then F corresponds to 
a [i EL MIßT) such that supp /x is a compact subset ofvT. 

PROOF. First of all, F must be bounded on Bx = {/G CC(T) : \f\ ^ 
1}, since otherwise F is unbounded on a hyper-null sequence con
tained in Bx. Thus F |COO(T) corresponds to a bounded linear form F on 
C°°08T), by P(J) = F( / ) , for a l l / G C 1(7), w h e r e / is the (unique) 
continuous extension to ßT of f. The Riesz-Kakutani Theorem yields 
a fi G MIßT) such that P ( / ) = SßTf dfi. Note that supp \x is com
pact in ßT. Now assume that s G (supp fi)\vT. Then by Theorem 8.4 
of [8] there exists a positive, continuous function g on T such that 
g(s) = » . For each n, let Fn = {tGßT: g(t) > n}, so that Pn is open 
inßT. For each n, since s G (supp /x) H Fn, there exists an/ n G d°°(T) 
such that supp^j C Fn and such that 

F(/„)=F(/n)= jjd^fO. 

Then for appropriate (cn) n = i i n *he r eals, we have | F(c r^ l)| "^ oo while 
(cn/n)n=i i s hyper-null in CC(T) with respect to (Uk)%=i, where Uk = 
(T\Pfc)°, for k = 1, 2, • • •. This contradicts the hypothesis on F. Con
sequently the support of [x is compact and lies inside vT. To finish the 
proof we need only show that F corresponds to \i on all of CC(T). But 
iff G CC(T\ then { n ( / - 0n ° / ) } - = 1 is hyper-null, so that F ( / - 0n ° / ) 
-£» 0, which means finally that 

F(f) = lim F(0n . / ) = lim f ( 0 ~ / ) d|* = f T fdfi. I 
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Amongst other things, Theorem 19 will demonstrate the simple fact 
that a linear form F on CC(T) is bounded on all hyper-null sequences 
iff it is bounded on all order-bounded sets, and thus it is trivial to 
translate Proposition 18 into precisely Hewitt's Theorem 22 in [11]. 
However, the proof of Proposition 18 yields a slightly but strictly 
stronger result than that stated. Our proof shows that if F is bounded 
on Bx and is also bounded on those hyper-null sequences (fn)Z = i 
which eventually vanish on each member of the associated sequence 
(Uk)% = i, then F corresponds to the /u, advertised in Proposition 18. 

We are now ready for Theorem 19, and remark beforehand that the 
proof that (f) implies (e) is due to H. Buchwalter. 

THEOREM 19. Let F be a linear form on CC(T), and regard the fol
lowing statements: 

a. F is continuous on CC(T). 
b. F is bounded on all bounded subsets ofCc(T). 
c. F is bounded on all compact subsets ofCc(T). 
d. F is bounded on all null sequences of CC(T). 
e. F is bounded on all convex compact subsets of CC(T). 
f F is bounded on all order-bounded subsets of Cc( T). 
g. F is bounded on all equicontinuous, pointwise-bounded subsets 

ofCc(T). 
to. F is bounded on all hyper-null sequences ofCc(T). 
i. F corresponds to a measure in M(ßT) with compact support in vT. 

Then the following relations hold: 
a 

u 
b <=> c <=> d 

u 
e <=}/<=> gç=> to <=> i 

Moreover, all the conditions (a) through (i) are equivalent (or indeed 
(b)ì=>(a)) precisely when T is replete. Finally, (e) ^>(d) whenever T 
is simultaneously pseudocompact and non-Warnerian. 

PROOF. For arbitrary locally convex spaces, the implications 
(a)^=>(b)t=i (c) t=> (d) and (c)^>(e) are always trivially valid. By 
Theorem 3, (e)=> (g) =>(h) and (/);=> (h). Next, if (/n)n=i Q Bf and 
if 0 < | F(fn)\= cn -^ oo 9 then F is unbounded on the hyper-null se
quence (fnlvCn)Z=h showing that (to =>(/). Proposition 18 says that 
(to)=>(i). To prove that (i)=>(e), let F satisfy the conditions of (i). 
Then F is a bounded (in fact continuous!) linear form on Cc(vT), and 
thus is bounded on all convex bounded subsets of CC(T). Théorème 
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2.5 of [4] tells us that Cc(vT) is the ultrabornological space associated 
to CC(T), whereupon the convex compact subsets of CC(T) are convex 
and bounded in Cc(vT) by Proposition 2.2 of [4]. Now condition (e) 
follows directly. Next, the fact that all the implications are equivalent 
iff T is replete follows immediately from the foregoing and from the 
fact that each one-point evaluation, for t G vT, gives rise to a linear 
form on CC(T) which is bounded on all order-bounded subsets of CC(T), 
and all such forms are continuous precisely when T' = vT. Finally we 
prove that if T is pseudocompact and non-Warnerian, then (e) z£> (d). 
For such a T there exists a bounded subset B of CC(T) which is not 
order-bounded, and by the proof of Proposition 16 we may assume 
that B = {/G CC(T) : | / | = h}, for an appropriate lower semi-
continuous function h. Let us find ( / J ; = 1 Ç B, (£n)*= 1C T, and 
(Vn)£ = 1 a sequence of pairwise disjoint open subsets of T, such that 
for each n the following conditions hold: tn G Vn, | / n ( 0 | > n • 2n, and 
h > n • 2n on Vn. Then for n there exists a gn G C(T) such that |gn| â 
|/n | ^ K gn(tn) = n • 2-, and gn = 0 on AV n . Define F by F ( / ) = 
S n - i [ / ( 0 /2 n ] , for a l l / G CC(T). Since T is pseudocompact, F is 
linear and bounded on all order-bounded subsets of CC(T), and F 
corresponds to 2 ; = 1 [Sj2n] G M(T)Ç M(vT) = MOST). Butgn G B 
and F (gn) = n for each n, so that F is not bounded on the bounded set 
B, which means that (e) ^> (d), as we wished to prove. | 

The example just used in proving that in general (e) ̂ > (d) shows 
that even innocuous-looking measures defined in terms of elements of 
T can yield unbounded linear forms on CC(T). We mention also that 
(e) can imply (d) even if neither all the compact subsets nor all the null 
sequences of CC(T) are order-bounded. In fact, this is what happens if 
T = Tx © T2, where Tx is the space exhibited in Example 7 and where 
T2 is the space given in Examples 9 and 11. It results from our earlier 
discussions of Tx and T2 that neither all the compact subsets nor all 
the null sequences of CC(T) are order-bounded. On the other hand, if 
F is a linear form on CC(T), then F is bounded on the order-bounded 
subsets of CC(T) iff F is bounded on the order-bounded subsets of both 
Cc(Ti) and CC(T2), and a like statement holds for the continuity of F 
on CC(T). However, T^ and T2 are replete, so all linear forms bounded 
on the order-bounded subsets of Cc(rx) and on CC(T2) are continuous. 
Therefore (i) => (a), so (e) =>(d) for this T. 

We conclude the paper by describing what Hewitt, Nachbin and 
Shirota, De Wilde and Schmets, and Buchwalter have in turn proved, 
and by comparing their results in light of the ideas appearing in 
Sections 2 and 3. First let us recall that a locally convex space E is 
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bornological (resp. ultrabomological) iff E is an inductive limit of 
normed (resp. Banach) spaces, which happens iff £ is a Mackey space 
and additionally every linear form on E which is bounded on all 
bounded (resp. convex compact) subsets of E is continuous. 

The collection of theorems began with E. Hewitt, who proved in 
1950 that T is replete iff every linear form on CC(T) which is bounded 
on all order-bounded subsets of CC(T) is continuous [11, Theorem 22]. 
In 1954, L. Nachbin and T. Shirota simultaneously solved a problem 
posed by J. Dieudonné; at the same time they each established that 
T is replete iff CC(T) is bornological (see [15] and [16]). (Actually, 
our Theorem 19 tells us that the proof given by Shirota is a bit stronger 
than that stated, since Shirota utilized Hewitt's Theorem and proved 
besides that if T is replete, then CC(T) is a Mackey space. Nachbin's 
proof did not rely on Hewitt's Theorem; the proof was direct, and it 
gave the result as stated.) In 1971, M. De Wilde and J. Schmets proved 
in [7] that T is replete iff CC(T) is ultrabomological. (Indeed, their 
proof too yields a slightly different conclusion, because what they 
really proved was that T is replete iff Cc( T) is an inductive limit of the 
Banach spaces (Ef)fGe(T)if^0, where for each such/, Efis the span of By.) 
Finally, in 1972, H. Buchwalter [4] proved that T is replete iff CC(T) 
is the inductive limit of the Banach spaces (EH)HEJI, where Ji is the 
collection of all balanced, convex, pointwise closed, equicontinuous 
and pointwise bounded subsets of £(T), and where EH is the span of 
H, for each H E S. 

The half of each of the above-mentioned theorems which is the 
difficult one to prove is the half in which T is assumed to be replete 
and CC(T) is shown to possess an appropriate property. With this in 
mind, one might conjecture that the Nachbin-Shirota Theorem is 
stronger than the Hewitt Theorem, that the De Wilde-Schmets 
Theorem is stronger than the Nachbin-Shirota Theorem, and finally 
that the Buchwalter Theorem is stronger than the De Wilde-Schmets 
Theorem. 

However, Theorem 19 settles the score — somewhat differently from 
the conjectures mentioned above. Indeed, because in general we have 
(f)^> (b), the Nachbin-Shirota Theorem (as stated) is not exactly 
stronger than the Hewitt Theorem. On the other hand, since (6) i=> (e) 
but in general (e) ^£> (b), the De Wilde-Schmets Theorem is genuinely 
stronger than Hewitt's Theorem and the Nachbin-Shirota Theorem. 
Finally, the equivalence of (e) and (g), together with the fact that a 
subset A of CC(T) is equicontinuous and pointwise bounded iff the 
balanced, convex, pointwise closed hull of A is also equicontinuous 
and pointwise bounded, yields the equivalence of the theorems of 
De Wilde-Schmets and of Buchwalter. 
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