CHARGE SINGULARITY AT THE VERTEX OF A SLENDER CONE OF GENERAL CROSS-SECTION

J. A. MORRISON

Abstract. Let the equation of the cone be given in spherical coordinates $(r, \boldsymbol{\theta}, \varphi)$ by $f\left(\boldsymbol{\epsilon}^{-1} \tan \theta \cos \varphi, \boldsymbol{\epsilon}^{-1} \tan \theta \sin \varphi\right)=0$, with $\theta=$ $O(\epsilon)$, where $0<\epsilon \ll 1$ is a parameter. The potential V satisfies Laplace's equation $\nabla^{2} V=0$ exterior to the cone, with boundary condition $V=0$ on the cone. A solution is sought in the form $V=$ $r^{\rho} U(\boldsymbol{\theta}, \varphi)$, and the boundary condition leads to an eigenvalue problem for ρ. The quantity of interest is the smallest $\rho>0$. For $0<\rho<1$ there is a singularity in the surface charge density of the form $r^{\rho-1}$ at the vertex of the cone, in addition to any edge singularities that may be present.
Near the cone, for $\boldsymbol{\theta}=\mathrm{O}(\boldsymbol{\epsilon})$, the complex variable $\boldsymbol{\tau}=\boldsymbol{\epsilon}^{-1} \tan (\boldsymbol{\theta} / 2) e^{i \boldsymbol{\varphi}}$ is introduced, and in the inner limit the equation for U tends to the 2 -dimensional Laplace equation as $\boldsymbol{\epsilon} \rightarrow 0$. The eigenvalue problem is solved by a singular perturbation procedure, by matching the inner solution to the outer solution, away from the cone. Let C_{ϵ} denote the contour in the τ-plane which corresponds to the cone. Suppose that the domain exterior to the circle $|w|=\lambda(\epsilon)$ is mapped conformally onto the domain exterior to C_{ϵ} by $\tau=g(w, \boldsymbol{\epsilon})$, with $\tau-w-\alpha_{0} \rightarrow 0$ as $|w| \rightarrow \infty$, so that $\dot{\chi}(\epsilon)$ is the outer radius of C_{ϵ}. It is found that

$$
\begin{aligned}
1 / 2 \psi(-\rho)+ & 1 / 2 \psi(1+\rho)-\psi(1)+\epsilon^{2} \kappa \rho(\rho+1) \\
& \sim \log (1 / \epsilon \lambda)+\epsilon^{2} \alpha_{0} \alpha_{0}^{*}
\end{aligned}
$$

where ψ denotes the logarithmic derivative of the gamma function, the asterisk denotes complex conjugate, and $\boldsymbol{\kappa}$ is determined in terms of the mapping function $g(w, \boldsymbol{\epsilon})$. Details of the derivation of the above result will be given elsewhere [1]. Examples of cones with particular cross-sections have been considered.
The charge singularity at the vertex of a sectorial flat plate of angle χ has been investigated earlier by Morrison and Lewis [2]. For that problem, Laplace's equation was solved by separation of variables in conical coordinates. This leads to a dual eigenvalue problem for ρ and for a separation constant δ. Analytic expressions for the singularity strength were derived for $0<(2 \pi-\chi) \ll 1$, for $|\pi-\chi| \ll 1$, and for $0<\chi \ll 1$, by means of singular perturbation techniques, and
numerical results were obtained for other values of χ. The present result generalizes the one for small angles to cones of general crosssection.

References to related work are given in [1] and [2].

References

1. J. A. Morrison, Charge singularity at the vertex of a slender cone of general cross-section, submitted to SIAM J. Appl. Math.
2. J. A. Morrison and J. A. Lewis, Charge singularity at the corner of a flat plate, SIAM J. Appl. Math., to appear.

Bell Laboratories, Murray Hill, New Jersey 07974

