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FORMS OF SINGULAR ASYMPTOTIC EXPANSIONS 
IN LAYER-TYPE PROBLEMS 

PACO A. LAGERSTROM* 

1. Introduction. A crucial part of singular perturbation techniques 
is to find a correct form of the asymptotic expansions used. This form 
should neither be so general that it precludes an actual construction of 
a solution nor too restrictive for the problem studied. Other aspects of 
techniques such as matching are closely tied up with the construction 
of a correct form. In this paper we shall describe how more sophisti
cated techniques have developed from what today (1975) seem simple 
techniques, and also point out some problems which need further 
study. By analyzing the ideas underlying techniques used in solu
tions of a class of problem and finding their shortcomings one may ex
tend these techniques so as to make them applicable to more difficult 
problems. The progressive development of techniques will be illus
trated by various examples in this paper. We shall restrict ourselves to 
layer-type techniques (as defined in Lagerstrom-Casten) and for sim
plicity we shall mainly deal with comparatively simple second-order 
differential equations with one small parameter. Other cases will be 
briefly mentioned, but not discussed, in the last section. In the prob
lems discussed here there will be an inner and an outer expansion. 
From these it is desirable to construct expansions which are uniformly 
valid over the entire interval considered. It should be emphasized 
that most of the equations considered are model examples designed to 
give simple illustrations of techniques used in solving actual physical 
problems. The introduction of singular-perturbation techniques have 
practically always come from applied mathematicians dealing with 
concrete physical problems. 

If € is the small parameter and x is the outer variable, one has to 
distinguish several functions of c. First the stretching parameter used 
for the inner layer. It may be € itself so that the inner variable is x* = 
x/e. One has, however, also to consider the possibility of coordinate 
changes y = f{(x, e), y* = f2(x, e), where y is of the order of x, and y* 
is of the order of x*. Sometimes the scale of the dependent variable 
may also be changed. The layer of rapid transition may occur at either 
endpoint (boundary layer) or in the interior (for which the name shock 
layer, or shock structure, is used). Thus the inner variable may be of 
the form, say, (x — x0)fe where x0 is a constant. Secondly one has to find 
suitable expansion parameters for the inner and outer expansion. 
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These are asymptotic sequences 8y(e) and 8j*(e). This concept makes 
clear sense when one deals with Poincaré expansions. However, the 
a priori assumption that the inner and outer expansions are of the 
Poincaré form should not be made. One must, however, always have a 
systematic method for finding the forms of the expansions. The expan
sions uniformly valid in the entire interval are normally not of the 
Poincaré form. In many examples, however, the uniformly valid ex
pansion can be simply constructed from the inner and outer expan
sions. Thirdly there are the gauge functions which form an asymptotic 
sequence ^(e) and which measure to which order an asymptotic ex
pansion is valid in a certain domain, whose endpoints may be func
tions of e. These concepts are discussed more explicitly in § 2. 

§ 3 gives a sequence of examples to illustrate various forms of ex
pansions which may be used. The systematic study of layer-type 
singular perturbations was started, at least in this country, by Fried
richs and co-workers in the early forties by analyzing the ideas of 
Prandtl's boundary-layer theory. By a simple model example 
Friedrichs gave an intuitive justification for Prandtl's boundary-layer 
theory and also showed how one may obtain higher-order approxima
tions. (Prandtl's proposed technique for obtaining higher-order terms 
turned out to be incorrect.) Example II analyzes a variant of this 
model example, essentially along Friedrichs' lines. However, we 
have added a discussion of the importance of transcendentally small 
terms. We have also added a negative comment that, due to integrated 
effects, one cannot find a solution by the inner expansion alone. The 
important concept of integrated effects is illustrated in Example I by 
a simple equation due to Kaplun. The same concept will appear in 
Example III. 

Friedrichs' technique was, however, unable to cope with the prob
lem of flow at low Reynolds numbers. His assumption that the expan
sion parameters and the gauge functions were simply integral powers 
of the stretching parameters precluded a solution of this problem. By 
a profound rethinking of the ideas of matching and that of the validity 
of an expansion, Kaplun, in the mid-fifties, was able to show how the 
low Reynolds number problem may be solved. This vastly extended 
the techniques and the understanding of singular perturbations. Ex
amples III and IV are model equations, due to the author, constructed 
to give simple illustrations of Kaplun's ideas, whose importance have 
been grasped rather slowly by workers in the field. Example III 
demonstrates the idea, due to Kaplun, of successively improving the 
expansion parameters and also gives an example of integrated effects. 
Example IV shows how the intuitive ideas lead to construction of ex
pansions which are not of the Poincaré form. It also discusses an im-
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portant coordinate transformation due to Bush who, by analyzing the 
original solution, managed to recast it in Poincaré form. The equally 
important concepts of numbering and grouping of terms of an expan
sion, which basically are a consequence of Kaplun's ideas, are also 
discussed. Example V is an example, due to Boa, taken from an actual 
problem in chemical reactions, which also illustrates the failure of the 
use of Poincaré expansions. 

Example VI is an old nonlinear model equation due to the author, 
meant to illustrate how in a simple equation one may, depending on 
the boundary conditions, obtain boundary layers at either endpoint 
and also interior layers of rapid transitions (shock layers). (Inciden
tally, this example also illustrates a variety of other phenomena, not 
discussed here.) The problem of the position of the shock layer is dis
cussed. Computer results are also given for comparison. The inner 
expansion has been carried to higher order and gives, surprisingly, a 
uniformly valid solution. 

Example VII discusses the use of correction boundary layers. 
Fraenkel has given two examples to show that Kaplun's intermediate 
matching method, which is heuristically justified (and whose difficulty 
of application has often been vastly exaggerated in the literature), is in 
some cases actually inferior to Friedrichs' formal matching rule, as 
extended by Van Dyke and Fraenkel. However, it is pointed out here 
that if one uses the correction boundaiy layer, i.e., the inner expansion 
of the exact solution minus the outer expansion, then, granting the as
sumptions made by Fraenkel, the difficulties disappear. 

In order to shorten this paper we have only used examples pre
viously discussed in the literature, to which the reader is referred for 
analytical details. The main purpose of this paper is to compare sys
tematically the various expansion forms used. However, in many cases 
the author has introduced new ideas and solutions, not to be found in 
the literature. 

As mentioned above, many of the problems studied here are model 
equations introduced to illustrate and give credence to solutions of 
actual problems in fluid mechanics. The reader not interested in this 
subject may, however, safely skip the references to fluid mechanics and 
concentrate on the actual model equations which are all relatively 
simple. 

§ 4 briefly mentions some important phenomena not discussed here 
and also surveys some unsolved difficulties for the examples of this 
paper. 

2. Basic definitions. We are given a function f(x,e) and an asymp
totic sequence of gauge functions £y(e) 
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(2.1) £0= U i + i « & 

We may consider transformations 

(2.2) y>y* — functions of x and €. 

Here y is of the same order as x, and y* is of different order (larger or 
smaller). (There may of course be many variables, y, j / * , y**, etc., all 
of different order). The most general form of approximations would be 
a sequence 

(2.3a) F1( î/ , j /*,6),F2 ,F3 ,etc., 

such that 

(2.3b) ij~\f- Fj) - ^ 0 withe, 

uniformly in some interval. The end points of the interval may depend 
on €. We then say that is an approximation uniformly valid to order 
£j in the interval considered. If the interval is the entire interval con
sidered for/we say that Fj is uniformly valid everywhere to order £,-. 

We shall with one exception (Example VII) restrict ourselves to the 
classical case for which f(x,e) is defined implicitly by a differential 
equation (of second order) and two boundary conditions or a period
icity requirement. 

The form (2.3) is often too general for the actual construction of 
approximations. In a layer-type problem one often (exceptions will be 
noted below) uses Poincaré-type expansions 

(2.4a) FB(y,e)= J S ^ A ^ ) , 

(2.4b) F n * ( y * e ) = É 8k*(e)Ak*(y*), 
k=0 

valid in different intervals and where Fn and Fn* match in some sense 
(to be discussed later). The 8k(e) and 8k*(e) are asymptotic sequences, 
referred to as expansion parameters. The idea that endpoints of the 
interval may depend on e was introduced systematically by Kaplun 
around 1955 as part of his reexamination of the ideas underlying layer-
type techniques. 

From the expansions (2.4) one may sometimes construct an expan
sion which is uniformly valid everywhere. The standard construction 
of the composite expansion yields expansions of the form 

(2.5) Fn(tf,y*,e)= f, 8,(e)Bj(y, y*,e). 
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In Kaplun's method of optimal coordinates (generalized by Van Dyke 
and Legner) the expansion valid everywhere does not have the form 
(2.5) but has a more general form. There are also other forms possible. 
This problem is discussed in Van Dyke [ 13, pp. 227-228]. 

3. Examples. 
I. AN EXAMPLE OF SWITCHBACK (INTEGRATED EFFECT). This example 

is not a model for a physical problem but will give a simple mathe
matical illustration of a concept which we shall encounter later. We 
consider the problem (see Kaplun [7, p. 15] ) 

(31) £(X2£ ) -« , / (D-0 , / ( ,* )=«-^ 
The solution is 

(3.2) / = x-1 - 1 + 6 In x. 

If we neglect the right-hand side of the equation the solution is 

(3-3) / = ^ , „ ( 1 - * - 1 ) . 

Thus the term of order € in (3.1) gives rise to the term (x_1 — 1) of or
der unity in (3.2), and (3.3) has no meaning as an approximation to 
(3.2). The reason is that € acts over an interval which increases with e, 
even though its value at the right endpoint decreases fast. Thus the 
integrated effect of a term of formal order e gives rise to a term of 
order unity in the solution. The terminology as well as the example is 
due to Kaplun (who in his original unpublished manuscript replaced 
the second boundary condition by a matching condition). He also 
used the catchy but less objective term switchback. It indicates that 
if you assume the solution to be of order e you are forced to backtrack 
and consider terms of order unity. One may of course make the in
terval seem less large by introducing the variable t = In x and put 
g(t, e) = f(x, c). The problem is then 

(3-4) -ff- + | ' = e, g(0) = 0, g(l/e) = e-* 

and the solution is 

(3.5) g = e-< - 1 + et. 

Still, the interval increases in length as 1/e which, even if not ex
ponentially large, is large enough to give rise to an integrated effect. 

The notion of switchback is of great importance for singular per
turbation techniques and has not been studied systematically. Some 
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discussion is found in Kaplun [7] and in Lagerstrom-Casten [9, 
p. 97ff). 

II. MODEL EQUATION FOR PRANDTL'S BOUNDARY-LAYER THEORY. We 

shall now discuss a simple variant of Friedrichs' model equation re
ferred to in § 1. Several variants have been studied extensively. An 
especially interesting survey of these, including nonlinear equations, 
has been given recently by Erdelyi. We shall choose the simple variant 
discussed in detail in Lagerstrom-Casten [9, p. 76fï] : 

d2f df 
(3.6a) e —-J- + - / - a - 2bx = 0, 

dxz dx 

(3.6b) /(0,e) = 0 , / ( l , e ) = l . 

One may construct outer and inner expansions which, using Fraenkel's 
notation, are 

(3.7a) 

(3.7b) 

where 

(38.b) /o = 

j=0 

k 

H J / = 2 égjix*), ex* = x, 
i=0 

(1 - a - b + ax + bx2),fy = 2b • 

go = C0(l - e-*'), 

g l = d ( l - «-»*) + ax*, 

g2 = C2(l - e-"') + bx*2 - 21 

g, = 0, if j > 2. 

2fex, J5 = 0, if j > 1, 

We note that we have a very simple type of singular perturbation 
problem. The small parameter e multiplies the highest derivative so 
that the reduced equation (e = 0 in 3.6a) can satisfy only one boundary 
condition. By standard methods one finds that the condition at x = 1 
should be retained for the outer expansion and that a boundary layer 
of thickness e occurs at x = 0. The gauge functions £j(e) and the ex
pansion parameters dj(e) and ô,-*(e) are simply ej. Furthermore the 
whole outer expansion may be obtained independently of the inner 
expansion. By matching, to be discussed below, one finds 

(3.9) C0 = (1 - a - b), Ci = 2b, C2 = 0. 
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Matching can be done simply by using the formal rule 

(3.10) EkHkf= HkEkf. 

To the author's knowledge this rule was first used systematically by 
Friedrichs (private communication some thirty years ago). It has been 
generalized by Van Dyke and discussed thoroughly and corrected by 
Fraenkel. Later, examples will be given where (3.10) and the generali
zations mentioned are inapplicable. 

If we form the composite expansion in the standard way 

(3.11) Ckf= Ekf+ Hkf- EkHkf, 

we find 

(3.12) EkCkf= Ekf, HkCkf= Hkf, 

which seems to indicate that Ckf is an approximation uniformly valid 
to order €k in the entire interval O â x â l . The reason for subtracting 
the last term is to avoid duplication due to the fact that E fc/and Hkf 
contain common terms. This duplication may also be avoided by 
introducing the perturbation (or correction) boundary-layer. One 
forms the difference 

(3.13) Dkf=f-Ekf 

and obtains the boundary-layer correction to Dkf, 

(3.14) HkDkf= - ( C 0 + eCje-**, k^ 1. 

In this way one eliminates all polynomial terms in Hkf which, one 
feels, really belong to the outer expansion. The idea of a perturbation 
(or correction) boundary layer has often been used. However, in most 
cases, as in the present example, the idea is more of a "nicety." There 
are only two terms in the inner expansion of Dkf, but the computations 
are hardly shortened. We shall see later, in discussing Example VII, 
that in certain cases it is of essential importance. 

We note that Ekf and Hkf are limit-process expansions, formed in 
the manner of a Taylor series. Applying the outer limit (x fixed, e —> 0) 
one obtains f0. The same limit, applied to €~l(f— f0), yields fv Simi
larly, repeated application of the inner limit (x* fixed, e —» 0) yields 
go, gi, and g2. 

The classical formal matching procedure expressed by (3.11) hides 
the deeper meaning of matching, and in some important cases it is not 
applicable. In studying flow at low Reynolds numbers (model equa
tions will be discussed below), Kaplun introduced the concept of 
intermediate matching. We notice that /0 is a n approximation to order 
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unity in any interval 

(3.15a) Z 1 = [ T ? 1 ( e ) g X g l ] , e « r , 1 ( € ) , 

and that g0 is valid in the interval 

(3.15b) I2 = [0 g x g Tj2(e)], % « 1. 

The common domain, or domain of overlap, is then 

(3.15c) 7 3 = ^ 1 « , « ^ « 1}, 

that is, if x is of order T7 with rj in I3, then both expansions are valid. 
If the overlap regime is known and contains 77, it is easily seen that, 

ifîjx^ = x, then 

(3.16) lim„(/0 - go) = lim (f0 - g0) = 0. 
e-»0,x,,fixed 

This determines C0 . In practice it is often superfluous to actually re
write f0 and go in terms of xv. One simply forms f0 — g0 and notices 
that some terms cancel identically and others tend to zero with e if the 
order of x is not too large or too small. However, for pedagogical pur
poses it is recommended to do the complete version a couple of times, 
and in difficult cases it may be wise to proceed carefully (see for in
stance Cole's discussion of the van der Pol relaxation oscillation). 

Unlike the older matching principle intermediate matching is not 
formal but based on intuitive ideas. It also works when, say, the inner 
expansion is not a limit-process expansion (see Examples IV and V 
below). The problem is of course to determine the domains of validity 
of the inner and outer expansions and thus the domain of overlap. 
Kaplun introduced heuristic principles based on a consideration of the 
equation for fj and g7-. This principle is, however, somewhat risky. It is 
discussed in Lagerstrom-Casten [9]. (After publication ofthat paper it 
was found by Casten that the domain of overlap of Erf and Hrffor 
Example II is somewhat smaller than stated in the paper. The func
tion 7] = eine does not lie in the overlap domain to order e even 
though e « 77. Thus (4.21d) of the paper needs correcting. For the 
lower limit one may for instance take el~a where a is an arbitrarily 
small strictly positive number. This still leaves plenty of overlap. It 
also furnishes another example of the well-known fact that log func
tions are treacherous.) One danger is switchback (see I, above), a con
cept which needs more exploration. Some discussion is given in 
Kaplun and also in Lagerstrom-Casten. 

It may be worthwhile to describe the matching for the present case 
in very simple terms. The first term of the inner expansion has to pick 
up fo(0). In addition it has to satisfy the first inner equation, and 
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the inner boundary condition, which yields f0(0)(l — e~x*). The 
term e~~x* is irrelevant for the outer expansion. Similarly, egY has to 
pick up the slope of/0 at x = 0,/0 '(0) = a, since ax = e ax*; in addition 
it must contain any correction of order € to the outer expansion at 
x = 0 — in this case 2b (which comes from ef0"). This accounts for the 
terms ax* and 2b in g2. Finally €2g2 has to pick up the quadratic term 
of/o at the origin /"(0)(x2/2) = fox2 = e2fox*2, the linear term of efx = 
— 2ebx = — 2€2fox*, and finally the constant of order e2 for the outer 
expansion at x = 0 (which in this case is zero). If f0 had had a cubic 
term ~ r 3 , / i a quadratic term ~ x 2 and / 2 a linear term ~ x a n d / 3 a 
constant term/3(0), these would have to be picked up by e3g3. These 
are terms which need not vanish for x* large (unlike e~x*). In the 
present case, g2 7̂  0 even though fk = 0, k > 1 and gfc = 0, k > 2. 
Similar remarks would apply to the more general case in which — a — 
bx is replaced by a function h(x) which at x = 0 has a longer power 
series h(x) = h(0) + xh'(0) + (x2/2)/i"(0) + • • • or a similar function 
which depends on e. This is the reason for the duplication of terms in 
the inner and outer expansion. In Dkf = f— Ekf an appropriate num
ber of these terms will disappear. The correction boundary layer in 
our special case HkDkf would terminate with the second term (of order 

«). 
The exact solution of (3.6) is 

1 —x* 

(3.17) / = (1 - a - & + 2eb) _ g_1 / g+&s2 + ax - 2ebx, 

and agrees with the composite expansion except for the term e~l,e 

which is called transcendentally small because 

(3.18) r 1 / f « 6 n , alln. 

This formula is, however, not uniformly valid in n in the sense that for a 
fixed e < 1, no matter how small, en tends to zero as n —» °° while 
e~l,€ is fixed. In fact, e~lle may be equal to or larger than en for 
moderate values of n and values of € normally regarded as small. From 
the power series for ex one finds that 

(3.19a) € 2 > e-U'9c> 0. 

The smallest exponent for which equality occurs for e > 0 is 

e = 2.718. 
(3.19b) 

€£'is tangent to e~ll€ at € = e~l = .3679. 

Numerical calculations give the following approximate results 
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(3.19c) e3 ^ e-1/« for .2205 ^ e ^ .5534, 

(3.19d) e4 ^ e - ^ f o r .1161 ^ e ^ .6995. 

Denoting the composite expansion by h we find that the error is 0 at 
x = 0, increases with x, and at x = 1 it is 

(3.20) f-h= (1- a-^b + 2eb)e-^. 

This is also the relative error since/(l) = 1. For e = 1/2 it is approxi
mately .1353(1 — a). These numbers show that the terms called 
transcendentally small may be numerically important. In (3.1), or a 
similar equation with a -f 2bx replaced by a power series in x, one may 
truncate the composite expansion for some integer k and find the 
equation for f — C^f and the corresponding boundary-conditions for 
this function and solve this problem taking the transcendentally small 
terms into account. The possible methods of doing this will not be dis
cussed here. We make two final comments. First, if one writes (3.6) 
in the inner variable x*, one obtains, with g(x*, e) = f(x, e) and prime 
denoting derivative with respect to x*, 

(3.21a) g" + g ' - ea - 2e2fox*2 = 0, 

(3.21b) g(0) = 0 , g ( l / € ) = l . 

This does not turn the problem into a regular perturbation problem 
because terms containing e have an integrated effect as discussed in 
Example I. One may of course easily solve (3.21) with e = 0 in (3.21a), 
keeping (3.21b), but the result is wrong. If one replaces € _ 1 by o° there 
is no solution. 

As a second comment we observe that the outer limit of/(x) at x = 0 
is 0. Thus the outer limit has a discontinuity at x = 0. However, the 
outer expansion is only valid in some interval which does not contain 
x = 0. Thus the/0"(x) should not be used at x = 0. This is fortunate 
since otherwise the term/0"(x) in the equation for^ would contain a 
term proportional to 8 '(x). Thus if limit-processes are used too piously, 
one obtains equations with the double disadvantage of being com
plicated and of being wrong. 

III. MODEL EQUATION FOR INCOMPRESSIBLE FLOW AT Low REYNOLDS 

NUMBER. The model equation below was introduced by the author to 
give a simple illustration of Kaplun's solution (and explanation) of the 
century-old Stokes paradox and the relation of the Stokes and Oseen 
equations. Kaplun's basic ideas were first published in Lagerstrom-
Cole [10] (see "The Method of Kaplun," p. 873ff). The same method 
was later used by Proudman and Pearson [ 12] to solve the Whitehead 
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paradox. As stated earlier, the reader not interested in fluid dynamics 
need not bother about the technical terms used above. He is, however, 
advised to keep in mind some intuitive interpretation (for instance as 
a nonlinear equation for spherically symmetric temperature equilib
rium) of the model equation below. In the easily available literature, 
this equation is most fully discussed in Lagerstrom-Casten [9] and the 
analytical derivations of various formulas are omitted here. 

The equation is 

(3.22b) / ( 6 j € ) = o , / ( o o , e ) = l . 

Intuitive reasoning shows that the first term of the outer expansion is 
fo = 1. Because of the first boundary condition this cannot be uni
formly valid at the "body" (i.e., x = e), and we therefore 
introduce an inner variable by ex* = x. The equation for the leading 
term of the inner expansion is then 

(3.23a) f | + ^ ^ = 0, 
dx*z x* ax* 

and we must retain the inner boundary condition 

(3.23b) go(*V) = 0 , a t x * = 1. 

We first study the case n = 2. The solution of (3.23) is then 

(3.24) g0 = B In x*. 

This does not satisfy the boundary condition at infinity (Stokes para
dox), but from the point of view of singular perturbation techniques 
this is irrelevant. Kaplun's original reasoning, reproduced for the 
model example in Lagerstrom-Casten [9], makes it intuitively 
plausible that ^0 and g0 have a (very small) domain of overlap, and 
matching gives 

(3.25) B = <p(e) + o(<p(e)); <p(e) = - 1 / l ne . 

We notice several significant differences from the previous example. 
Whether written in x or x* the highest derivative in (3.22a) is not mul
tiplied by e (or any function thereof which is o(l)). As a consequence 
the outer expansion cannot be determined independently of the inner 
expansion as in the previous example. The gauge functions £fc(e) and 
the expansion parameters are, at least for the beginning of the outer 
and inner expansions, powers of <p(e) rather than of €, whereas x* is 
still determined by dividing x by e . It can also be seen intuitively that 
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the inner limit off is zero which of course cannot match with the outer 
limit which is unity. Thus, from the point of view of matching, the 
term go(**) should be considered as the first term of the inner ex
pansion. This shows the idea of correct numbering in (2.4a, b). One 
should put S0 = 1 and So* = B. The outer expansion f0 + efY + 
is continued by solving the appropriate equation fo r^ and matching 
with g0. This matching also gives the constant bY in the second term of 
the inner expansion, <p2bi In x*. Actually all terms of the inner expan
sion satisfy (3.23), since the last term of (3.22a) remains transcenden-
tally small relative to <£>(e). Thus we may always assume gj(x*) = 
Bj(e) In x*. One may then refine the expression for B given by (3.25). 
If one replaces <p by 

(3.26) p = - l/(ln € + y ), y = Euler's constant = .5772, 

then go still matches with/0> and the second inner term is zero. (From 
a numerical point of view this is not an improvement. The "small" 
parameter <p is oo for e = 1, and <p is <*> for e = e~y = .561. However, 
the idea is important and numerically better values for <p may be ob
tained by considering higher-order terms. This basic idea was dis
covered by Kaplun in 1955. Van Dyke [13] calls it telescoping and 
illustrates its importance by a very instructive figure on p. 244. It 
seems hardly worthwhile to consider transcendentally small terms, due 
to f(dfldx) until a numerically reasonable value of B has been ob
tained.) This procedure can be continued, however in order to do so 
one must carry the outer expansion to a correspondingly high order. 
In fact the entire inner expansion, if one neglects transcendentally 
small terms, may in principle be written as In x* times a function of e. 

The outer expansion is of less interest in the present context and will 
not be given here. 

We shall now consider the case n = 3. The leading term of the in
ner expansion is now 

(3.27) g0(x*) = C0(l - llx*), C0 = 1. 

It happens to satisfy the outer boundary condition, but this is a coin
cidence as will be seen by considering the second term which we 
assume to be of the form eg!« Its equation is 

(3.28) d2gi/dx*2 + 2/x + dgjdx2 = -(llx* - l)(l/x*)2. 

The solution satisfying the inner boundary condition is 

(3.29) gi = - ( l n **)/** - In x* + Biln x*. 
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As will be seen later, g{ does not satisfy the outer boundary condition 
(Whitehead's paradox), but again this is irrelevant. Matching with 
f0 + e/i, where 

E2(x), 

I e-H-ndt, 
J x 

gives B{ = —Ine. Thus the second term of the inner expansion con
tains a term of order e and a term of order e Ine. From the point of 
view of matching these should be combined into one term. Thus when 
the inner expansion has the form (2.4b), it is necessary occasionally to 
group terms with different coefficients of e into one term. 

The occurrence of a term of order e is an example of an integrated 
effect: A term of formal order e gives rise to a term of order e In e in 
the solution. The effect is weaker than in Example I. 

Actually in the present example the inner expansion is contained in 
the outer expansion. This was noticed and explained by Kaplun [7] 
for the corresponding problem in fluid dynamics and is also discussed 
in Lagerstrom-Casten [9, pp. 103, 104]. This somewhat freakish 
phenomenon does not occur in the modified example which we shall 
discuss below. 

For n = 1 the problem is regular. In fact the intuitive reasoning 
thatyò = 1 is no longer valid. See [9, p. 93]. 

For e large, the expansion in powers of 77 = 1/e is regular (whereas 
the corresponding case in fluid dynamics has in general a very com
plicated expansion). There are many examples which show that if one 
takes a couple of terms in the expansion, for large and small values of a 
parameter, the results may agree nicely for some intermediate value of 
the parameter. 

IV. MODEL EQUATION FOR COMPRESSIBLE FLOW AT LOW REYNOLDS 

NUMBERS. This example was introduced by the author to show that, 
contrary to what used to be stated in the literature, the Stokes equa
tion is linear for incompressible flow only by accident. It should not 
be derived by linearization but by a limit process applied to the full 
equation. Again forgetting about fluid mechanics we consider the 
problem 

dx2 x dx dx \ dx J 

(3.31b) / ( € , € ) = o , / ( oo , € )= 1. 

(3.30) 
/ = 

En(x) = -
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It differs from (3.22) for n = 2 by the addit ion of (dfldx)2 to the equa
tion. Again we find that the first term of the outer expansion isf0 = 1 
and that it should match with a function g0 satisfying the equation 
corresponding to (3.23). 

(3.32b) go(**><0 = Oforx* = e~lx = 1. 

The general solution of (3.31) is 

(3.33) g 0 = ln( l + B l n x * ) . 

Note that (3.32) is nonlinear, and hence B no longer enters as a 
multiplicative constant. Matching gives 

(3.34) B = <p(e)(e - l),<p(e) = - 1 / l n e . 

Again, as in the previous case for n = 2, one may cancel some sub
sequent terms of the inner expansion by successively refining the 
choice of B. This necessitates finding corresponding terms of the outer 
expansion which will not be discussed here. (For details see [9] and 
references given there). The reason is that if B = (dg0/dx*)x* = 1 (which 
in a physical problem often is a physically significant quantity) is 
known, one has two boundary conditions for (3.31a) at x* = 1 and can 
obtain a complete solution. Fur thermore the term f(dfdx) is transcen-
dentally small compared to <p(e). The same two statements are valid 
for the previous example for n = 2. (In example II (n = 2) all &•(**) 
obey the same equation. In the present case this is not true. However, 
successive terms g,(x*), using B = (e — l)<p(e), may be obtained from 
go(**, B)5 using a bet ter value of B and developing in <p(e).) The 
parenthetical comment following (3.26) still applies to the problem of 
considering transcendentally small terms. 

The essential feature of the present example is that the inner expan
sion is not an inner-limit expansion (it is not of the Poincaré form 
(2.4b)) even if the terms are numbered and grouped properly. In fact, 
g0 would contribute to every term in the inner-limit expansion. The 
leading term in the inner-limit expansion, assuming B small, is 

(3.35) go(x*) = Bin x*. 

Now go(x*) can be easily matched t o / 0
 = 1 by various rules. The only 

trouble is that the value thus obtained for B is wrong, it is in fact the 
value obtained in Example III (for n = 2). The reason is, of course, that 
g0(x*) does not overlap with f0 = 1. One needs the full expression 
(3.33) for matching. Kaplun's heuristic ideas for domains of validity 
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(together with his extension theorem) show that one must have a 
solution of the full equation (3.31) in order to obtain overlap with the 
domain of validity. Incidentally, for the present equation Cohen and 
Lagerstrom (unpublished) have given a rigorous proof that the state
ments made above are correct. This may be gratifying. However, to 
the authors a proof of a result obtained by intuitive reasoning is un
interesting unless the proof itself introduces some new mathematical 
ideas. A proof that such a result is wrong would have been much more 
interesting since it would require a serious rethinking of the underlying 
ideas. 

We have thus found an example for which the inner expansion is not 
of Poincaré form. The leading term is a function of x* and e which is 
not of the form ôo*(e)A1*(x*). There is still, however, a well-defined 
method for constructing it. 

Using the above solution as a starting point, Bush has shown that by 
a change of variables it may be brought into Poincaré form. If one 
defines 

(3.36) y= - l n x , y * = <p(€)y,<p = -1 / l ne , 

the inner expansion is then of the form 

(3.37a) Y(l(t/*) + ^(e)Y1(?/*) + • • • , 

where 

(3.37b) Y 0 ( y * ) = l n [ l + ( e - l ) ( l - y * ) ] . 

This may have certain advantages but it does not invalidate the rule 
that one should not always look for a Poincaré-type expansion. 

V. AN EXAMPLE FROM THEORY OF CHEMICAL REACTIONS. Boa [1] 

has studied the following equation 

(3.38) d2u\di2 + (A2lu2 + 2u- v)duldt + A2(l - 1/u) = 0, 

for v >̂> 1. There then exists a limit cycle which is a relaxation 
oscillation. If one uses singular perturbation techniques for finding the 
relaxation oscillation, see for instance Cole [3, p. 38ff], one finds that 
the equation for the very rapid part of the motion is 

(3.39) d2u\di2 + (A2lu2 + 2u - v)du\dt = 0. 

In order to get reasonable results one needs to keep both the term 
A2lu2 and the term 2u. Although for v large we use layer-type tech
niques the solution will obviously not be of the Poincaré form. 
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VI. A NONLINEAR MODEL EQUATION FOR SHOCK LAYERS, ETC. The 

equation is 

(3.40a) e d2yldx2 + y dyldx - y = 0, 

with the boundary conditions 

(3.40b) y(x0)=Y0,y(x1)=Yl. 

This example was introduced by the author in the fifties for a 
Caltech discussion group on singular perturbat ion. Its purpose was to 
show how a shock layer can occur and how its position may be deter
mined. This layer may in fact start as a boundary layer at x = 0 and 
then, depending on the values of Y0 and Y1? wander across the interval 
(in the interior it is a shocklayer) and finally becomes a boundary 
layer at x = 1. An unexpected bonus was the discovery by Kaplun of 
the possibility of a corner layer. Full details of the first approxima
tion are given by Cole [3, p . 29fï] who also discusses another unex
pected phenomenon, that of the transition layer. W e refer to Cole 
[3 , p . 29ff.] for a discussion of the first approximation and shall dis
cuss here some aspects of higher order approximations and give some 
values obtained by computing. For future references we shall give 
various forms of (3.40). Putt ing 

V ê t = x, Vef(t, e) = j/(x, e), 

v = dfldt = dyldx, 

we obtain 

(3.41b) d2fIdt2 + f dfldt - f = 0. 

Putt ing 

(3.42a) eu = x,g(u,e) = y(x,e),w = dgldu = vie, 

we obtain 

(3.42b) d2gldu2 + g dgldu - eg = 0. 

The equations are invariant under an obvious group, translation of 
the independent variable. W e may first assume that f(0) = 0, and 
h e n c e / " ( 0 ) = 0. This yields solutions odd in t. The general discus
sion will refer to odd solutions. For specific boundary-value problems 
we shall have to introduce a shift of the origin. The phase-plane 
equations for (3.41) are 

(3.43) dfldt = v, dvldt = / ( l - v). 

The phase portrai t is given in [3 , p . 35] . W e shall only consider the 

(3.41a) 
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case for which v > 1 (although the general discussion will also be ap
plicable to other cases). For e <K 1 there is then a layer of rapid 
transition given by a hyperbolic tangent. We shall first assume it to be 
centered around the origin. By a shift of the origin this layer may 
become a boundary layer or a shock layer in a given region. 

Integrating (3.43) we find, assuming v > 1, 

(3.44a) f2 + v + ln(ü - 1) = C, 

and, for f(t) odd, 

(3.44b) fl2 +(v- v(0)) + In ^ " ^ = 0. 

We note that as | / | —> oo 7 v —» 1, so that for t large/— t We also see 
that v has a maximum Ü(0) a t / = 0 (for v > 1). 

We shall now study the perturbation problem, with (3.40a) as the 
outer equation and (3.42b) as the inner equation. Assuming 

(3.45) y = y0 + cyl + e2y2 

we find (disregarding the solution y0 = 0 since we study the case 
v > 1) that the odd solution is 

(3.46) f/0 = x, jß = 0, for; > 0. 

Shifts in the x-origin will be discussed in connection with specific 
boundary-value problems. We notice that (3.46) is consistent with the 
fact that the linear term off at infinity is t. Since (3.40a) is equivalent 
to (3.41b), it is clear that the expansion of y in powers of e needs to be 
complemented by an inner expansion. 

For the solution of the inner equation we assume 

(3.47) g = go + € g l + • • • . 
The equation for g0 is 

(3.48) digjdu2 + g0 dgjdu = 0, 

which has the odd solution, depending on a parameter ß which we may 
assume ^ 0, 

(3.49) g() = ß tanhOS^/2). 

(3.48) has the obvious group 

(3.50) g0 —» ago, u —> a~lu, w0 —» a2w0 

which corresponds to the integral 

(3.51) g02/2 + w0 = w0(0). 
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From this derive 

(3.52a) go2(co)/2=u;0(0) 

which also follows from the exact solution, 

(3.52b) g0(oo ) = ß, Wo(p) = £2/2. 

We notice that the group (3.50) takes one phase curve into another 
and could be derived directly from the integral (3.49). There is a 
corresponding, but considerably more complicated, group derivable 
from the integral (3.44). The integral may also be used to relate the 
behavior o f /a t infinity and at zero. However, we shall not pursue this 
further in the present paper. 

The equations for the higher order approximations are 

(3.53a) gi" + (gogi)' = go, 

(3.53b) g2" + (gog2)' = g i ( l - g 1 ' ) , e t c . 

The left hand side of the equations are the same, for a given g0. An 
odd solution of the homogeneous equation is found by differentiating 
g0 with respect to /3, 

(3.54a) ^ = -*&_ = tanh08W2) + — f" fnN . 
v j dß ^ J 2 cosh2(ßul2) 

An even solution is found by differentiating with respect to u 

(3.54b) t//2 = (2/ß2) g<5 = cosh-208W2). 
A particular solution for g1? i//p

(1) = i//p, may be found by quadrature. 
Since, for large values of u, g0 ~ ß we expect \pp — u,u large. This is 
verified by detailed computation. Defining 
(3.55a) G0 

(3.55b) H0 

Ko 

(3.55c) 

we find a particular solution from 

(3.56) g i ' + gogi = Go 

which gives 

j goO) ds = 2 In cosh(j8w/2), 

coshßw + 1 _ ß2 

= eG{) = cosh2(ßW2) 

= r ^o< 
Jo 

s) ds 

2 
sinh ßu 

2ß 

2gó 
+ u/2 

= (l//3) sinh(j3w/2) cosh(ßul2) + u/2. 
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(3.57a) 4,p=H0-
l(u) l"o H0(s)G0(s) ds. 

To better show its behavior for large u we transform it by integration 
by parts, using (3.55c), 

(3.57b) i//p = In cosh(ßul2)((2lß) tanhOSu/2) + uH^1) 
Cßul2 

- (IIB) tanh(/8fi/2) + H0~
 l(ul2 - (2/0) 5 tanh 5 ds). 

Jo 

For large values of u we find, within terms exponentially small in u, 

(3.58) i//j ~ 1, i//2 ~ 0, i//p - ti - 1/0 - (2Jß) In 2. 

Thus for u large gj(l — g t ') is exponentially small and the equation for 
g2 has a particular solution which is exponentially small for u large. 
The homogeneous equation for g2, and for any gfc, k i^ 1, has the same 
general solution as that for gY. 

We note that if gi obeys (3.56), then gx '(0) — 0. This is then true in
dividually for ifjp and for I/J2 which may be obtained from (3.57a) by 
shifting the lower limit of integration. Thus, using (3.54a) 

(3.59) l f r p ' ( 0 ) = ^ 2 ' ( 0 ) = 0,* 1 ' (0) = /8. 

We shall now discuss boundary-value problems for the region x0 = 
0, *! = 1. The various types of phenomena occurring depend on the 
values of Y0 = t/(0) and Y{ = j/(l). This, as well as the role of the 
equation for y as an outer equation and the equation for g as an inner 
equation, are discussed by Cole [3] and will not be repeated here. We 
shall assume that Yj is of order unity, (which includes Y0 = 0), in other 
words independent of e. 

First consider the case of a boundary-layer at x = 0. The first outer 
solution is 

(3.60a) t/o = x + Y{ - 1, 

and the first inner solution is 

(3.60b) go(tt) = j8 tanh [ ! " ( « + *)] , 

where 

(3.60c) ß = Yi - 1 

and k is determined from 

(3.60d) Y0 = ß tanh(ßkl2). 
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If wTe now consider g0 + egY we see that at large distances in u its 
leading term is eu = x which matches with (3.46). Since g0 already 
matches the constant term of the outer solution we must put 

(3.61a) gi = * P + OK 

(i//2 is negligible for u large) and select C so that for u large the con
stant term of gl is zero. 

From (3.58) we find 

(3.62a) C = 1/0 + (2/j8) In 2, 

which gives, from (3.59) 

w0'(0) + €Wl '(0) = 02/2 + 6(1 + 2 In 2). 

However g0 + egY has now an error of order e at x = 0. A simple way 
of handling this is a correction of k. Writing k = k0 + e/q + e2k2 ' ' ' 
we satisfy the boundary condition to higher order by demanding 

(3.63) g0(*) + eg,(fc) + • • • = y0. 

Note that a shift in w does not affect the matching conditions. The 
first term k0 is identical with the k determined by (3.60d). Since the 
constant of the outer solution has already been matched we must write 
each g l9 £ > 0, as 

(3.64) g £ = * p ( £ , + D ^ 2 , 

where for £ > 1, \\fp
{l) is a particular solution which is exponentially 

small for u large. The D£ are then in principle determined by (3.64). 
Thus it seems that in principle our perturbation method may be used 
to satisfy the boundary condition at x = 0. However, at x =vT there 
will be an "exponentially small" error which, as we have seen in 
Example II, may be significant. We shall not discuss this difficulty 
here. Instead we shall turn to another problem which shows the 
difficulty even more clearly. 

We consider the case of an interior shock layer. The corresponding 
range of Y0 and Yx is given in [3]. The outer solution is discontinuous. 
It has a left part and a right part 

(3.65a) y0L = Y0 + x, y0R = Yx - 1 + x. 

The discontinuous jump occurs where y0L + y0R = 0, that is, at 

(3.65b) x = xd = (1 - Y0 - Yx)/2. 

The inner solution (shock layer) is to leading order 

(3.66) g0 = ß tanh(ßl2)(u -xd), 2ß=Yl-Y0- l. 
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(3.69) 

For the next approximation we may choose 

(3.67) g! = $p(u - xd) + Crf^u - xd\ 

where as before, Cx is chosen so that the constant term at infinity 
vanishes, i.e., by (3.62a). But, unlike the previous example, the inner 
solution satisfies no boundary conditions, only matching conditions. 
Thus our scheme gives us no guidance for what to do with the i//2 part 
of gj or, more generally, of g£,£ > 0. We know only that if i//p

(£), 
£ > 1 is exponentially small for u — xd large, then the coefficient of 
i// ! in gz must be zero. 

There is a further difficulty. Let us define xc as the crossing point of 
the exact solution, i.e., 

(3.68) y(x - xc) = 0. 

Let us take a concrete example 

Y 0 = - l / 2 , Y i = 1, 

xd = 1/4,0= 1/4. 

As e tends to infinity the solution tends to the straight line 

(3.70) y = 3x/2 - 1/2. 

We expect xc to vary with e. (3.70) gives us xc = 1/3 at e = oo ? and, as € 
decreases to zero, we expect xc to decrease to xd = 1/4. Numerical 
computations (the author is indebted to Elliot Fischer, graduate stu
dent at Caltech, for doing all the numerical work), using the shooting 
method, give the following table 

€ *c (dyldx)xc 

1.587486 

1.960218 

2.364419 

3.084508 

5.1407 

• l / 2 , y ( l ) = l , y ( a 

For e small the shooting method becomes very sensitive to the assumed 
value of the slope at x = 0, and for e = .01 about a dozen trials were 
needed. We note from Table 1 that dyldx approaches its asymptotic 
value (=1) better at x = 1 than at x = 0 which of course is due to the 
fact that 1 — xc is considerably larger than xc. 

.5 

.1 

.05 

.025 

.01 

(.3211, .3212) 

(.2836, .2837) 

(.2635, .2636) 

(.2523, .2524) 

(.2500, .2501) 

Table 1. j/(0) = -

(dyldx)x=o 

1.499577 

1.455651 

1.318689 

1.101985 

1.000970 

x - xr) = 0 

(dyldx) x=i 

1.290778 

1.016623 

1.000242 

1.000000 

1.000000 
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The results agree with the qualitative ideas. They also show that for 
practical purposes, e starts to get "small" only below .05. This fact is 
further confirmed if one performs a perturbation method treating e as 
large. The problem then becomes a regular perturbation problem and 
y may be developed in powers of TJ = 1/e whose coefficients are poly
nomials in x the computation of which is straight-forward but tedious. 
For € = 1/2, 7) = 2 four terms give very good results. This can no 
longer be expected when r) is in the neighborhood of .01. As antici
pated xc moves from 1/3 to xd = 1/4 as e decreases. However, our 
present method does not indicate how this is to be described analyti
cally. An examination of the exponentially small errors in the bound
ary conditions seems to be necessary. (The value of g0 + eg1? as com
puted above, with e = .01 and xc = xd = —1/4, is y = 1.000 at x = 1 
and y — — .5039 at x = 0. Thus the boundary condition at x = 1 is 
better satisfied than that at x = 0. As explained above this is to be 
expected since the function has more time to reach its asymptotic value 
as x varies from 1/4 to 1 than when x varies on an interval only a third 
as long.) 

The integral (3.44b) determines v as a function o f / w i t h u(0) as 
parameter. Thus we have, since y = V ë / 

r Y, e - W 2 
(3.71) € - i / 2 = > dßv= Z(Ü(0),€). 

J Y 0e- l /2 

For given values of Y0 and Y: we then find v(0) as a function oft and, 
in principle, the boundary-value problem can be solved. This cannot 
be done analytically but may be adaptable to perturbation methods. 
In general, any improvement of the perturbation solution found above 
will have to involve transcendentally small terms. 

The deadline for the present paper prevents the author from examin
ing the present example further. It is hoped that the discussion will be 
continued in a subsequent paper. 

VII. EXAMPLES BY FRAENKEL. In a study of the formal matching 
principle (3.10) and its generalizations, Fraenkel [5] gives examples in 
order to show that it may be much superior to matching based on 
overlap. A different interpretation of Fraenkel's result will be given 
here. Fraenkel ([5], part I, pp. 216, 217) first studies a given function 
and then (part II, p. 245ff) a function defined by a two-point boundary-
value problem. We shall only discuss the first example and then 
present some abstract arguments about the general situation. We 
present a nonessential simplification of FraenkeFs function. Let 
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N 

0 < e « l , e g x ^ l , e x * = x , U(x*) = ]£ (x*)~->, 

(3.72) 

V(x)= X x , ' , / (x,c)= (7(x*)V(x). 

We shall assume that N is a finite number large enough to make the 
example interesting. One finds 

(3.73a) £ „ / - ( f ( z - V )v(x),Hpf= l / (**)£ tf, 

(3.73b) H„E„/ = ( ± (x*)-i ) ( £ ** ) = EPtf„, 
j =0 j =0 

(3.73c) / - C p / = o(en). 

(Cpfis defined as in (3.11)). Now 

(3.74a) / - E p / < < e« implies x* » €^lir) + 1\ 

(3.74b) / - Hqf«L €« implies x* <<C e - ^ + 1>. 

If we want overlap to order eq we must then have p=q2+q. Thus 
assume that V(x) is defined above, but that U(x*) has some unknown 
coefficients to be determined by matching, or more generally that f is 
defined by a differential equation. To determine the coefficients in 
H2fhy overlap we need to find Eef, whereas the much simpler match
ing principle H2E2f= E2H2f suffices. To study this in more gen
erality we shall make the following assumptions which are certainly 
fulfilled in the above example and also in the example given by 
Fraenkel ([5] , part II, p. 245ff). We assume that /(x, e) has an outer 
Poincaré expansion Epf and an inner expansion Hqf. The inner ex
pansion is used near x = 0 or near x = 6. In these expansions one 
should carefully group and number the terms as discussed above and 
also by Fraenkel. (His reasoning differs from ours. It is not certain 
that the results always agree.) We furthermore assume 

(3.75a) HpEpf= EpHpfi 

and that /— Cpf = o(£p(e)) in the entire interval where the £p are 
suitable gauge functions, say ep. Instead of / w e now consider the 
difference function defined by 

(3.75b) Dkf=f-Ekf. 

We now expand D^f and compare the expansion with Dkf. One finds 
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(3.76) Dkf- HkDkf =f-Ekf- Hkf + HkEkf. 

By assumption this difference is o(£k) in the entire interval. Similarly 

(3.77) Dkf- EkDkf=f- Ekf 

which is o(£fc) in any interval [a, 1], a > 0 (and hence by Kaplun's ex
tension theorem in a slightly larger interval 17(e) « x ^ 1, r\ <K 1). 
Thus the inner and outer expansions of Dkf overlap. Actually, the 
inner approximation, the perturbation boundary-layer HkDkf, is a 
uniformly valid approximation to Dkf in the entire interval. If one then 
adds Ekf to HkDkf one obtains a composite expansion of / valid to 
order £fc. 

Thus, to the author, Fraenkel's examples show, not that matching 
based on overlap is unwieldy, but that it may be of great advantage to 
work with the correction boundary layer, i.e., one should consider the 
expansions of Dkf rather than those off. As mentioned, in the Example 
II the use of Dkf is a nonessential alternative method, but in Fraenkel's 
examples it is of essential importance. 

4. Conclusions. We have seen through a succession of examples 
how the techniques of layer-type singular perturbations has been suc
cessively refined. The classical Example II was, at the time it was 
introduced by Friedrichs, very illuminating. However, because of its 
simple nature it has also been misleading. The singular nature of the 
problem was obvious from the fact that the small parameter multiplied 
the highest order derivative (this, unfortunately was for some time con
sidered the criterion for a layer-type problem). Each term may be 
constructed by limit process, and the inner and outer expansions are 
of Poincaré type with ej as expansion parameters, and the term mul
tiplied by ej is the (J + l)th term in each expansion so there is no 
problem of numbering or grouping of terms. There are no integrated 
effects and the composite expansion is formed in a very simple way. 
However, even in this example the transcendentally small terms 
should be considered (which happens to be simple for the problem in 
question). A major break with or rather extension of the, by present-
day standards, simple methods which work for Example II was made 
by Kaplun. His method leads to a solution of Examples III and IV. In 
this case the expansion parameters are not integral powers of e and 
there are integrated effects (to the authors knowledge the first example 
of an integrated effect was found by Proudman-Pearson, essentially 
using Kaplun's methods). Proper attention must be paid to the correct 
ordering and grouping of terms. Since we still deal with Poincaré 
type expansions they may be technically obtained (a posteriori!) as 



LAYER-TYPE PROBLEMS 633 

limit process expansions, but this hides their true nature. Examples IV 
and V show that one should not a priori assume that the expansions are 
of Poincaré type. 

There are many remaining problems. The question of transcen-
dentally small terms must be further examined. The use of coordinate 
transformations (as exemplified by Bush's treatment of Example IV) 
should be investigated systematically. The same is true for the con
struction of composite expansions. Various methods are discussed by 
Van Dyke [ 13, pp. 227-228]. However, difficulties arise when the 
inner solution does not have exponential decay (as in Example IV) and 
when there is an interior shock layer. The variation of the position of 
the shock layer with € may pose problems (as in Example VI). Also, 
while the author believes that his discussion of Example VII is cor
rect, an intuitive justification is needed. More generally, Kaplun's 
heuristic ideas why equations have solutions with domain of overlap 
must be further developed, especially in view of integrated effects. 
There is also the problem why matching outside the domain of over
lap can be made. For instance, in Example III one may find the un
known constant in go(**) by applying the outer limit to the difference 
fo ~~ go- Kaplun told the author (in connection with the real physical 
problem) that this was obvious but gave no explanation why it was 
obvious. 

The author wishes to emphasize that all examples, except Example 
VII ultimately come from "honest" physical problems. One may of 
course invent odd-ball problems which may show a bewildering 
variety of the forms of the expansions of their solutions. Some of these 
may be useful for getting new ideas. A main conclusion of this paper, 
and of the study of other equations, is the platitudinous advice that if 
existing techniques do not work for a specific problem, try to extend 
these techniques to suit the problem, but try to understand why they 
work. 

We may finally ask the question: Why, in this age of highspeed 
computing, use perturbation techniques (regular or singular)? To the 
author the importance of an expansion is that it shows the qualitative 
form of the solution and the dependence on the parameter. For Ex
ample VI the solution g0 + egx gives us a good idea of the qualitative 
nature of the solution, even if it is not numerically reliable except for 
very small values of €. On the other hand the expansion of the same 
problem for rj = Ik small works numerically well even for e = 1/2, but 
the terms in the expansion are dumb polynomials which do not give a 
quick insight into the nature of the solution and its dependence on 
parameters. 
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The author has the pious hope that perturbation solutions may serve 
as a guidance for computer solutions, even though this idea seems at 
present to be going out of fashion. However, the author knows of 
several instances for which extensive (and expensive) computer re
sults have disagreed with the qualitative ideas of what the solution 
should look like, and the computer results have subsequently been 
shown to be erroneous. Conversely, it must be admitted that computer 
experiments have lead to new qualitative results, subsequently ex
plained analytically. Computation is also useful in determining the 
crucial question of the range for which e may be regarded as small. 

Partial differential equations have not been considered here. A be
wildering variety of forms are needed. Many examples are given in 
[3]. The phenomenon of sublayers is often of importance. Only one 
example will be mentioned here, which shows how, in dealing with 
actual physical problems, one is forced to introduce some very sophisti
cated ideas which are far removed from the by now standard ideas of 
singular perturbation methods. This is a new technique for dealing 
with sublayers successfully applied by Stewartson, Messiter and 
Sychev. References and a short summary of this technique is given in 
Lagerstrom [8, pp. 208-209, 211-212]. 

Another topic omitted here is the problem of several small parame
ters. The order of one parameter relative to the other parameter as 
both tend to zero is crucial in such cases. 
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