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SINGULAR PERTURBATION PROBLEMS 
USING PROBABILISTIC METHODS 

CHARLES J. HOLLAND 

In this paper we review some recent results [6], [7], [8] in the 
theory of boundary layer expansions for second order semilinear elliptic 
and parabolic partial differential equations that have been obtained 
using probabilistic methods. This approach depends upon the rep
resentation of the solution of the differential equation as the expected 
value of a functional of an Ito stochastic differential equation. This 
method was used by Fleming [2] to derive the regular expansion in 
the theory of singular perturbations. Our results include the validity 
of the ordinary and parabolic boundary layer expansions. This work 
appears to be the first theoretical treatment of these expansions for 
semilinear equations. Even for linear equations this approach has the 
advantage that it only requires local estimates to prove the expansions. 
See the Remarks in § II for a discussion of this point. 

Although this probabilistic approach may seem unnatural, this ap
proach is sometimes the natural one. It is sometimes appropriate to 
model physical phenomena by stochastic differential equations con
taining a small additive noise term. Then the expected value of certain 
physically important qualities are given by the values of the solutions 
of the partial differential equations discussed above. The boundary 
layer expansions describe the effect of the small noise term in regions 
near the boundary in which the small noise term has an important 
effect. 

Probabilistic approaches have also been successful in treating cer
tain other singular perturbation problems. See the article of Papani
colaou [11] elsewhere in this issue and also the work of Hersh [5], 
Ventsel-Freidlin [13], and Friedman [4]. 

I. The Elliptic Case. In this section we review some of the results 
presented in [6] and [7]. For a summary of results using other meth
ods, see [ 1]. For e > 0 we consider the elliptic equation 

<à(z)uZiZi + 2h(z)uZiZ2 + c(z)uZiZ%) + 

/ ( * K + g(*K + F(z,u)=0 
in B, an open subset of J?2, with boundary data u = A on dB, the 
boundary of B. The regular and boundary layer expansions will be 
established on certain subsets of B in which the solutions to (1) are uni-
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formly bounded and the method of characteristics yields a C °° solution 
to (1) with e = 0 taking the boundary data u = A along a certain por
tion of the boundary of B. 

We first treat the case of regular expansions and ordinary boundary 
layer expansions. For considering this case, the problem (1) may be 
reduced to studying the following problem. See [6] for details of this 
conversion. 

Let x = (xl9 x2) G <^2, and let S = (0,1) X (0,1). For e > 0 con
sider the elliptic equation 

elp - <l>it + F(x,<^) = 0, 

(2) JLV = a(x)# lXl + 2b(x)teiX2 

+ c(x)<ti2X2 +f(x)4£l + g(x)44i 

in S with the fixed boundary data 

4>ixl91) = A€(*i, i) = rfri) 
(3) v i ' / o g x ^ 1 

*e(xi,0) = Ae(x1 ,0)= S(xL) * 
along the upper and lower boundaries of S, and the variable boundary 
data 

0e(O,x2) = A<(O,x2), n < 

(4) 0 ^ x2 = 1 
<Ml,x2) = A6(l,x2), 

along the "sides" of S. 
Then we have the following theorem. 

THEOREM 1. Let m satisfy 0 < m < 1/2, and let there exist positive 
constants e0, K* such that the following hold: 

(Al) S is as defined above. 
(A2) a > 0 and ac - b2 > 0 in S. 
(A3) a, fo, c,/, g ar£ C00 functions on S; F is a C™ function on S X 

( - 0 0 , 0 0 ) . 

(A4) Ac is a continuous function of x on dS for 0 < e < e0>
 a n ^ 

S(xx), T(xx) are exjunctions on [0,1] . 
(A5) The method of characteristics defines a C °° solution 0° to (2) 

a?i£/i e = 0 on S taking boundary values ^°(x1, 0) = S(x:) on Éne Zoa^r 
fcowndan/. 

(A6) For 0 < e < e0, there exists a C2 solution 0e to (2) on S, con-
tinuous on S U dS with $e = A€ on dS such that \<f>€\ < K* on S. 

(A7) 0(e) = em. 
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Then there exist functions 01? 02 ' ' ' bounded on S and functions 
$(\XlX2, '''bounded on [0,1] X [0, oo] and satisfying an ex
ponential decay in their second argument such that for any positive 
integer n, 

<^(x) = <f>{\x) + e e^x) + • • • + en0n(x) 

(5) + ^ ( * 1 , ^ ) + e X 1 ( * 1 , ^ ) 

+ • • • e»Xn ( xl9 — ^ ) + o(en) 

uniformly on [0(e), 1 - 8(e)] X [0,1] . 
Further 

(6) <f>ix) = 4>°(x) + e ^i(x) + • • • en6n(x) + o(e") 

uniformly on [0(e), 1 - 0(e)] X [0,1 - 0(e)]. 

Expansion (6) is the regular expansion in the theory of singular 
perturbations. The coefficients <f>{\ 6k in (6) satisfy the equations to 
make the coefficient of ek identically zero in the formal expansion of 
(2) in powers of e. By direct calculation </>° satisfies (2) with e = 0, 
and boundary data </>° = S on the lower boundary while 6k, k = 1, 
2, • • • satisfies 

(7) - ( ek)x% + F,(X,4P(x)) ek + vk + A e,.,) = o 

with boundary data 0k = 0 on the lower boundary of S. r x = 0 and in 
general Tk is a polynomial in 6l, • • • 6k_l of degree fc, with coefficients 
F ^ , F<^ , • • • evaluated at (x,<f>°(x)). If F(x,<f>) is linear in $, then 
rk — 0 for any k. 

Along the upper boundary, in general </>e ^ <f>°, and hence the ex
pansion (6) cannot be correct on the upper boundary. "Near" the up
per boundary one expects a boundary layer region to occur where the 
values of <j>€ change rapidly from the given boundary values to values 
near those given by the regular expansion. This region whose size 
depends upon e is called an ordinary boundary layer since the terms 
representing the difference of the actual value of $€ from the regular 
expansion value satisfy ordinary differential equations. Recall the 
boundary layer expansion (5). Equations for the functions i/>°, XÌ7 

X2, * ' ' Xn are found by formally substituting the expansion (5) into 
(2). In Appendix A of [6] we indicate how this is done. For example 
\fj° = $°(x) satisfies the equation 

(8) c(*i, iMSU + *2, = 0 
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on [0, 1] X [0, oo] with the boundary conditions ^°(x1?0) = T ^ ) -
<t>°(xl9 1), O S x ^ l , and $°(xi9 oo ) = 0. Note that for fixed x1? equa
tion (8) is an ordinary differential equation in the variable x2 with solu
tion 

n*i,*2) = (n*i) - *°(*i, i)) exp(-x2/c(*1, i)). 
We now treat the case of parabolic boundary layers. These boundary 

layers occur when a characteristic of the reduced equation to (1) with 
€ = 0 is tangent to a portion of the boundary of B. For studying this 
case, the problem may be reduced to the previous case (2) — (4) ex
cept that we assume in addition that the left boundary data is also 
fixed. Define Ae(0, x2) = U(x2) for 0 ^ x2 ^ 1. 

We seek an expansion of <\>€ in the region [0, 0(e)] X [0, 1] which 
was not treated by Theorem 1. Let W° be a solution of the parabolic 
equation 

fl(o,*2)wsiXl - w<4 
(9) r r i 

4- [ J o Ftt(0, x29 4>°(0, x2) + kW°(x)) dk J W° (x) = 0 

with boundary conditions 

W°(xl9 0) = 0, 0 ^ xx ^ oo , 

and 

W°(0,x2) = fi(x2),0gx2gl, 

where we have defined R(x2) = U(x2) — 0°(O, x2). 

Then we have the following theorem. 

THEOREM 2. Let the following hold: (A1)-(A7) and (A8) 77i£re 
exists a C2 solution W° to (9) in (0, oo ) X (0,1), continuous in [0, oo] 
X [0,1] , with uniformly bounded derivatives Wiìl,W

iìlXl9W
()

XlX2, 
W2a*2> W2a in (0, oo ) x (0,1). Then, for any a with 0 < a < 1/2 and 
a < m < 1/2, 

0«(X) = </>°(x) + ^\Xl (1 - X2)/6) 
(10) 

+ [1 - e x p [ - ( l - x2)/(ec(x1,l)]] W()(xie-1/2,x2) + o(cn) 

uniformly on [0,€m] X [0,1] . 

If F(x9u) is not linear in u, then (9) is a non-linear parabolic equa
tion for W°. Unless R'(0) = 0, then the derivatives \*£Xa, W2a*a are 
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not uniformly bounded and assumption (A8) is not satisfied. When 
the compatibility condition K'(0) = 0 is not satisfied, then we have 
the following result for the linear case, if U is Lipschitz. 

THEOREM 3. Let the following hold: (A1)-(A7) and (A9) F(x,u) = 
m(x)u + n(x). 

Then, for any a, m with 0 < a < 1/3 and a< m < 1/2, (10) holds 
uniformly on [0, em] X [0,1] . 

II. Remarks. Consider again equation (1) in a domain B. Let D be 
a subdomain of B in which the regular and boundary layer expansions 
are being derived. Outside D it is not necessary that the boundary 
data be of Dirichlet type. We only need to know that there exists 
smooth solutions such that an a priori bound of the type (A6) is satis
fied in D. 

We have not yet treated the case of free boundary layers or turning 
point problems in partial differential equations. It would appear in
teresting to treat these using probabilistic methods. 

It would also be of interest to treat boundary layer expansions in 
problems where, in the subdomain of interest, either Neumann or 
mixed boundary data is prescribed. Oleinik [9], [10], by non-
probabilistic methods, and Freidlin [3], by probabilistic methods, 
have derived some results for singular perturbation problems with 
these types of boundary data. Probabilistic representations of solu
tions to these equations exist: see Freidlin [3] and the references 
there and Stroock-Varadhan [ 12]. 
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