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SUCCESS PROBABILITIES OF A CONDITIONED 
RANDOM WALK 

W. D. KAIGH 

ABSTRACT. Let X\, X2, * • • be a sequence of i.i.d. Bernoulli 
random variables with P[X\ = +1] = p and P[Xi = —1] 
= 1 — p for some fixed p with 0 < p < 1 and form the 
simple random walk with initial state an arbitrary positive 
integer z by setting S0 = z, Sn = z + Xt + • • • + Xn, n 
Ä 1. We consider the chance behavior of the increments X̂  
conditioned by the time of first entry of the zero state by the 
corresponding random walk. In the context of the classical 
problem of gambler's ruin, we determine the conditional 
probability of a "win" by the gambler at any stage prior to his 
ruin, given only his initial capital z and the time of ruin. 

1. We consider the version of the classical ruin problem in which a 
gambler with initial capital z competes in a sequence of independent 
games against an infinitely rich adversary. At the conclusion of each 
game the gambler's fortune is either increased or decreased by one unit 
according to the outcome of some random experiment. The gambler 
has a fixed but arbitrary success probability p of winning at each stage 
and the sequence of trials continues indefinitely until the cumulative 
fortune of the gambler diminishes to zero, i.e., until the gambler's 
initial capital is exhausted and he is "ruined." In probabilistic termi
nology we assume the individual gains X1? X2, • • • are independent 
and identically distributed Bernoulli random variables with P[XX 

= +1] = p and P[XX = — 1] = 1 — p for some fixed p with 0 < p 
< 1. The gambler's cumulative fortune after n trials is given by 
S0 = z, Sn = z + Xi + • • • + Xn for n = 1,2, • • \ The sequence {Sn} 
is said to form a simple random walk with initial state z and absorbing 
state at the origin. 

Historically, problems associated with gambler's ruin such as the 
probability of ultimate ruin, expected duration of the game, etc. have 
received much attention in probability theory. A thorough discussion 
is presented in Chapter XIV of Feller (1968). In this note we consider 
the following 

PROBLEM. Given only the amount of initial capital z and the time of 
ruin n, determine the (conditional) probability that the kth trial re
sulted in a "win." 
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Again in probabilistic terminology, for integers n and z with 
l ^ z ^ n w e define the random time Tz to be the first index n with 
Sn = 0 and we wish to determine the conditional probability P[Xk 

= +11 Tz = n] for each k = 1, 2, • • -, n. 
We remark that extensive effort concerning the (asymptotic) chance 

behavior of the random walk {Sn} conditioned by the events {T0> n} 
and {T0 = n} has been conducted by several authors, e.g., Belkin 
(1972), Iglehart (1974), Kaigh (1975) and (1976), but here we consider 
the conditional increments Xk instead of the cumulative sums Sk. 

2. As stated previously our goal is to calculate P[Xk = ± 1 1 Tz 

= n] which will be denoted by p±(z; n; k). 
To provide comparison and insight note that the event {Tz = n} 

implies the event {Sn = 0} and consider P[Xk = ± 11 Sn = 0] . An 
easy symmetry argument shows that since the conditional expectation 
E(Sn | Sn = 0) = 0 and since Xk assumes only the two values ± 1, we 
have 

- zln = E(Xk | Sn = 0) = ( - 1 ) P[Xk = - 1 1 Sn = 0] 

+ ( + l)P[Xfc= + l | S n = 0] , 

and 

P[X f c= ± l | S n = 0 ] = ( IT z/n)/2forfc= 1,2, • • -,n. 

It is instructive to note that the above expression depends on neither 
p nor k. The lack of dependence on p is guaranteed by the statistical 
concept of sufficiency and it is clear that conditioning by the event 
{Tz = n} will not alter this phenomenon. This observation is of 
definite significance because our subsequent probability computations 
will simplify to application of elementary counting techniques and the 
classical definition of probability. However, in contrast to the above, 
it will be seen that an effect of the additional requirement that the 
entry of the zero state at time n be the first such entry is that 
p±(z; n; k) is not independent of k. 

Following these observations we begin now the calculation of the 
desired conditional probabilities. To facilitate our counting arguments 
it is convenient to introduce the notion of a path. For integers x 
and y with x > 0 a path from the origin (0,0) to the point (x, y) is a 
polygonal line whose vertices have abscissas 0 ,1 , • • •, x and ordinates 
s0, sl9 • • -, sx satisfying s0 = 0, sx = t/, s* — si_l = x{ = ± 1 for i = 1, 2, 
• • -, x. The preceding definition is easily generalized to include paths 
between arbitrary points (JC1? yY) and (x2, y^j with integer coordinates. 
A more detailed discussion is presented on page 68 of Feller (1968). 
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Conditioning by Tz= n involves consideration only of all paths 
from (0, z) to (n, 0) which avoid the x-axis until time n. We introduce 
the following notation: Let u(z; n) be the number of paths with Tz 

= n and for k = 1, 2, • • -, n let Ü±(Z; n; k) be the number of paths with 
Tz — n and xk = ± 1 . 

The immediate consequence of the earlier discussion concerning 
the lack of dependence of the conditional probabilities p±(z; n; k) on 
the Bernoulli success probability p, is that given Tz = n, the u(z; n) 
paths satisfying this condition are equally likely. As a result we have 
that 

(1) p^z; n; k) = ü±(z; n; k)lu(z; n) for 1 g z ^ n and fc = 1,2, • • -, n. 

Next we record several identities involving the terms in (1). Clearly, 

u(z; n) = v+(z; n; k) + v~(z; n; k), k = 1, 2, • • •, n and 
(2) 

v+(z; n; n — 1) = t;+(z; n;n) = 0 f o r l § 2 ^ n . 

From page 352 of Feller (1968) we obtain 

<3> »<*">-Ì((„+\,/2) forlS*S"-
where we adopt the convention that the above and all similar expres
sions which follow vanish if z and n are of opposite parity. Similarly, 
binomial coefficients of the form (£) are taken to be zero if it is not 
the case that K and N are integers with 0 S K S N. 

Since each Xk = ± 1 , we note that v±(l; 2n + 1; k + 1) = 
©±(2; 2n; fc) and v^Z; n + 1; fc + 1) = Ü±(Z + 1; n; fc) + !>=•=(* -
1; n; fc) for 2 2g z ^ n and fc = 1,2, • • •, n to obtain recursively 

ü±(z;n;*) = 2 ( - l ) M * •? * W ; n + z - 1 
j«o v J ' 

(4) - 2j; k + z - 1 - 2j) 

for 1 ^ z ë n and k = 1,2, • • -, n. 

Although a closed form for w(z; n) was exhibited in (2), it is of interest 
that a similar recursive argument will provide the analogous formula 

[(*-i)/2] / z - y - l \ 
"(*; ») = S ( - i y ( ^ Ml; n + z - 1 - 2/) 

i-o v J ' 

(5) 
for 1 S z S n. 
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The computational significance of (4) and (5) is that for fixed k and 
n with l ë f c ^ n the functions u( ; n) and v±( ' ; n ; l ) , l â z â n } are 
determined by their respective values at z = 1. As a result in the 
following section we devote our attention to u(l; n) and 
Ü ± ( 1 ; n; k) to ultimately obtain a computational expression for (1). 

3. Our immediate objective is to determine t;±(l; 2n 4- 1; k). Since 
we have from (3) that 

(6) u(l;2n + 1) = y ^ T ( 2 " +
1

1 ) = ^ r ( 2 n ) 
2 n + l \ n + l / n + 1 \ n / 

it is clear from (1) that this task is equivalent to a determination of 
p±( l; 2n + 1; k) = P[Xfc = ± 1 | I^ = 2n + 1]. To compute this we 
note that p+(l; 2n + 1; k) + p~(l; In + 1; fc) = 1 and obtain 

E(Xfc| Ti = 2n-h 1 ) = ( + l )p + ( l ; 2n + 1; k) 
+ ( - l ) p - ( l ; 2 n + l ; k ) 

( ) = 2 p + ( l ; 2 n + l ; * ) - l 

forfc= 1,2, • • -,2n + 1. 

Employing the linearity property of conditional expectation we have 

E(Xk | Tx = 2n + 1) = E(Sfc - Sk_l \TX = 2n + 1) 
= E(Sfc | Tx = 2n + 1) 

(°) 
- E ( S f c _ 1 | T 1 = 2 n + l ) 

forfc = 1,2, • • -,2n + 1. 

A combination of (7) with (8) provides 

p+(l; 2n + 1; k) = [1 + E(Sfc | Tx = 2n + 1) - E(Sk_! | ^ 

(9) = 2 n + l ) ] / 2 

forfc = 1,2, • -,2n + 1. 
From (9) we see that it suffices to determine E(Sfc | TY = 2n + 1) 

for k = 0, 1, • • -, 2n + 1. We perform this computation in a direct 
manner first obtaining the conditional probability distributions 
P[Sk = x | Tl = 2n -f 1] and then employing the definition of expec
tation. As an initial step we introduce further notation. For k = 0, 1, 
• • -, 2n + 1 let w(x; 2n + 1; k) be the number of paths with Tx = 2n 
+ 1 and Sfc = x. A brief reflection will show that the possible condi
tional values for Sfc satisfy S2n+i = 0 and 1 ̂  Sfc ̂  min(fc + 1, 2n — k 
+ l ) f o r 0 ^ f c ^ 2 n . 
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An application of the elementary multiplicative counting rule yields 

w(x; 2n + 1; ft) = u(x; k + 1) u(x; 2n + 1 - k) 
(10) 

forft=0,l, • • -,2n + 1. 

The conditional probability distribution for Sk is obtained following 
division of (10) by u(l; 2n + 1). An application of (3) then provides 

P[Sk = x\Tl = 2n+l] 

= t(n + l)x2l(k + l)(2n - k + 1)] 

/ jfc+l \ / 2n-k+l \ / / 2 n \ 
\(k + x + l ) /2 / \(2n -k + x+ 1)12/1 \n ) 

(11) 
forfc= 0,1, • • • ,2nandl^xSmin(fc+ l , 2 n - fc + 1); 

P[S2n+i = 0 | T, = 2n + 1] = 1. 

To illustrate with a numerical example we take 2n + 1 = 21. From 
(6) we compute u(l; 21) = 16796 paths from (0,1) to (21,0) satisfying 
Tx = 21. We take k = 13 and apply (11) to obtain the possible condi
tional values for S13 as 2, 4, 6, 8 with corresponding conditional prob
abilities 6006/16796,8008/16796,2574/16796,208/16796, respectively. 

Although not required here it is of interest that the transition density 
of the Brownian excursion stochastic process (see [5] ) can be ob
tained by passage to the limit in a suitable normalization of (11). 

To compute E(Sk \ Tx = 2n + 1) it is necessary to evaluate the 
series 

(12) E(S*| T, = 2n + 1) = £ xP[Sk = x \ Tx = 2n + 1]. 
X 

To perform this we consider separately the cases k even and k odd so 
we must evaluate each of the following: 

E(S2fc | T1 = 2n + 1) = S (2x + 1) P[S2k = 2x + 11 TY = 2n + 1] 

(13) 

E(S2fc+11 T, = 2n + 1) = 2 (2x + 2) P[S2fc+1 = 2x + 2 | Tj = 2n + 1]. 
X 

Examination of (11) and (13) indicates an apparent difficulty for a 
direct calculation. Instead we employ the identity 

2JC + 1 = [(k + x + l)(n - ft + x + 1) 

- ( f c - x ) ( n - ft-x)]/(n+ 1) 
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to simplify binomial coefficients, and after manipulation the first 
series in (13) becomes 

-?«*+»(*+?+ 1)( . - ' ;:r-1) / (*) 
Using symmetry of the binomial coefficients involved and further 
manipulation, we obtain 

E(S2fc | Ty = 2n + 1) 

2* 

y 
(14) „_o " ' v y ' v n - y 

+(?) (2:--?)i(i)-
The identity 

(2x + 2) = [(k + x + 2)(n - Jfc - * + 1) 

- ( J f e - * ) ( n - k - x - l ) ] / ( n + l ) 

and similar treatment provides 

E(S2fc+1 | Ty = 2n + 1) 

<15> -/sv<*+i<\+i)(^v)/(2;) 
The series appearing in (14) and (15) have respective closed forms 

y=0 .?>-<) (2;:r)/(2;) 
=w»-*i(?)(2::f)/(2;) 

(16) 1 ' I» - <a + D/21 ( a + ' ) ( 2n ; j* - l )/Qn) 
2k + l 

„=o '" " • \ y / \ n - y 

= [(* + l)(n - fc)/n] 

'2k + 1 \ / 2n - 2k - 1 \ //2»0 r r ) r - _ T 1 ) / D . 
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The validity of (16) is easily seen but since the derivations are quite 
tedious we omit the verification. It is curious that the above series 
admit a probabilistic interpretation as the expected absolute deviation 
about the mean of a symmetric hypergeometric random variable. 

Substitution of the expressions of (16) into (14) and (15) produces 

"<wr.—+«-«».-*«(?)(•:: f)/(?) 

-(?)(2::f)/(2;) 
E(S2 i+11 Tj = 2n + 1) = 4[(* + l)(n - k)ln] 

CT) C;-V)/(2;) 
forfc = 0,1, • • -,n. 

Following substitution of the terms of (17) into (9) and simplification 
we obtain 

p±(l; 2n + 1; 2k) = p±( l; 2n + 1; 2k + 1) 

fork = 0,1, • • -,n. 

A combination of (1), (6), and (18) provides 

ü*(l; 2n + 1; 2k) = o*(l; In + 1; 2Jk + 1) 

(19) =u( l ; 2n + l)/2 ± [(n - 2A:)/2n(n + 1)] 

(?)(2::f) 
forfc = 0,1, • • -,n. 

It is interesting to note the symmetry about 2k = n which appears 
in (17), (18), and (19). A rough interpretation is that with the initial 
state z = 1, the random fluctuations of the initial and final portions of 
the random walk are probabilistically identical. 

Because of the relation (4), formula (19) enables us to compute 
ü±(z; n; k) which can be used in (1) to calculate finally the conditional 
probabilities p±(z; n; k). Our problem thus is solved and we conclude 
with a table illustrating the conditional success probabilities for a 
gambler with values of initial capital 1, 3, 5, 7, 9, 11 ruined after 11 
trials. 
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2-3 

4-5 

6-7 

*(l;ll;k) 

42 
(1.000) 
28 

(0.667) 
23 

(0.548) 
19 

(0.452) 
14 

(0.333) 
0 

(0.000) 

u+(3; 11; k) 

48 
(0.533) 
48 

(0.533) 
43 

(0.478) 
37 

(0.411) 
28 

(0.311) 
0 

(0.000) 

TABLE 1 

ü+(5; 11;*) 

27 
(0.360) 
27 

(0.360) 
27 

(0.360) 
25 

(0.333) 
20 

(0.267) 
0 

(0.000) 

u +(7; 11; it) 

8 
(0.229) 

8 
(0.229) 

8 
(0.229) 

8 
(0.229) 

7 
(0.200) 

0 
(0.000) 

U+(9; 11; k) 

1 
(0.111) 

1 
(0.111) 

1 
(0.111) 

1 
(0.111) 

1 
(0.111) 

0 
(0.000) 

u+(ll;11; 

0 
(0.000) 

0 
(0.000) 

0 
(0.000) 

0 
(0.000) 

0 
(0.000) 

0 
(0.000) 

10-11 

u(l; 1] ) = 42 u(3; 11) = 90 ti(5; 11) = 75 M(7; 11) = 35 w(9; 11) = 9 «(11; 11) = 1 

The numbers appearing in parentheses are the corresponding 
p+(z; n;k). The v(z; n; k) are calculated from the appropriate formulas 
and the following chart containing numerical values for v(l; n; k). 

o+(l;ll;*)= 2 (~iy (° T j)v+(l;ll - 2j;k - 2j) 

t>+(3; 11; k) = 2 (~iy ( 2~J)v+(l; 13 - 2;; k + 2 - 2ft 

o+(5; 11; Jk) = 2 ( " l ) j ( 4 Tj)vHl; 15 -2j;k + 4- 2ft 

t>+(7;ll;fc)= 2 (- lvC6"- / ' )^(l;17-2;;fc + 6-2;) 
j=o * J ' 

ü+(9; 11; k) = i (~iy(8 7j)v+(h 19 - 2/; k + 8 - 2ft 
j=o x J ' 

o+(ll; 11; k) = 2 ( - IM ( 1 0 ~ j )»+( l ; 2 1 - %; fc + 10 - 2;) 
j=o x J ' 



u+(l; 1;*) 

0 
(0.000) 

2-3 

1 

4-5 

6-7 

8-9 

10-11 

12-13 

14-15 

16-17 

18-19 

20-21 

c*(l;3;*) 

1 
(1.000) 

0 
(0.000) 

tf-U; 5; k) 

2 
(1.000) 

1 
(0.500) 

0 
(0.000) 

c*(1; 7. 

5 
(1.000) 

3 
(0.600) 

2 
(0.400) 

0 
(0.000) 

k) u+U; 9; k) 

14 
(1.000) 

9 
(0.643) 

7 
(0.500) 

5 
(0.357) 

0 
(0.000) 

telili; 

42 
(1.000) 
28 

(0.667) 
23 

(0.548) 
19 

(0.452) 
14 

(0.333) 
0 

(0.000) 

k) u*(l; 13; k) 

132 
(1.000) 
90 

(0.682) 
76 

(0.576) 
66 

(0.500) 
56 

(0.424) 
42 

(0.318) 
0 

(0.000) 

t*(l; 15; 

429 
(1.000) 
297 

(0.692) 
255 

(0.594) 
227 

(0.529) 
202 

(0.471) 
174 

(0.406) 
132 

(0.308) 
0 

(0.000) 

k) v*-(U 17; k) 

1430 
(1.000) 
1001 
(0.700) 
869 

(0.608) 
785 

(0.549) 
715 

(0.500) 
645 

(0.451) 
561 

(0.392) 
429 

(0.300) 
0 

(0.000) 

t7*(l;19;Jfc) «*•(!; 21; W 

U(l;l)=l ti(l;3)=l t*(l;5) = 2 ll(l; 7) = 5 w(l; 9) = 14 tt(l; 11) = 42 t*(l; 13) = 132 
M(1; 15) = 429 u(l; 17) = 1430 t*(l; 19) = 4862 ti(l; 21) = 16796 

4862 
(1.000) 
3432 
(0.706) 
3003 
(0.618) 
2739 
(0.563) 
2529 
(0.520) 
2333 
(0.480) 
2123 
(0.437) 
1859 

(0.382) 
1430 

(0.294) 
0 

(0.000) 

16796 
(1.000) 
11934 
(0.711) 
10504 
(0.625) 
9646 
(0.574) 
8986 
(0.535) 
8398 
(0.500) 
7810 
(0.465) 
7150 
(0.426) 
6292 
(0.375) 
4862 
(0.289) 

0 
(0.000) 

o 
M 

s 
o 
> 

oo 
h-» 
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