
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 7, Number 4, Fall 1977 

REPRESENTATION OF LINEAR FUNCTIONALS 
IN A BANACH SPACE 

GARY D. FAULKNER 

ABSTRACT. In this paper we prove a Riesz representation 
theorem for linear functionals in a reflexive Banach space. 

1. Introduction. As an aid to the extension of operator theory from 
the Hilbert space setting to a general Banach space, G. Lumer [4] 
introduced the notion of a semi-inner-product on a normed linear 
space X as a complex function [ -, • ] on X X X which is linear in the 
first argument only, strictly positive, and satisfies a Schwarz inequality 
| [x, y] | 2 â [x, x] [y, y]. The form [ -, • ] induces a norm in the natural 
way of putting [x, x] 1/2 = ||x||. Lumer showed that every normed 
linear space has a semi-inner-product which is compatible with the 
norm in this fashion. 

J. R. Giles [2] later showed that the axioms of a semi-inner-product 
can be extended to include conjugate homogeneity in the second com
ponent without any loss of generality with respect to applications in 
normed linear spaces. In view of this refinement Giles was able to 
prove that in a smooth semi-inner-product space which is uniformly 
convex, a Riesz Representation theorem holds. That is to say that if 
x* G X*, there is a unique i / E X such that x*(x) = [x, y] for all x G. X. 
The purpose of this paper is to extend the representation theorem of 
Giles to Reflexive Banach Spaces. 

2. DEFINITION 1. Let X be a normed linear space. A function 
[ ' , • ] : X X X -» C is a semi-inner-product on X (s.i.p.) if and only if 
it satisfies the following: 

(a) [ax + ßy, z] = a[x, z] + ß[y, z] for all a,j3 G C, 

(b) [x,x] = | | x | | 2 > 0 if x ^ 0 , 

(c) \[x,y]\^ [x,x][y9y]9 

(d) [x,ßy] =j3[x, t / ] . 

DEFINITION 2. A B-space X is uniformly convex if and only if for each 
e > 0 there exists a 8(e) > 0 so that if ||x|| = \\y\\ = 1 and ||x - y\\ > e 
then ||(x + y)l2\\ < 1 - 8. 
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DEFINITION 3. A B-space X is strictly convex if and only if whenever 
11*11 + M = II* + î/ll w n e r e *> y ^ 0 then * = ky for some X > 0. 

DEFINITION 4. A B-space X is reflexive if and only if the mapping 
/ : X —> X** given by (Jx)(x*) = x*(x) is surjective. 

It is well known that uniformly convex implies both strictly convex 
and reflexive. However, neither converse holds. 

DEFINITION 5. A B-space X is smooth if and only if for each x G X 
with ||x|| = 1 there is a unique x* G X* such that x*(x) = ||x*|| (The 
Hahn-Banach theorem guarantees the existence of at least one such 
functional). 

DEFINITION 6. Following James [3], an element x G X is orthogonal 
to y G X if and only if for each A G C ||x + ky\\ è ||x||. This will be 
written as x _L y. If for each x G M, y G N, M, N C X, we have x _L y 
we write M _L N. 

DEFINITION 7. For x, y G X we say that x is normal to t/ with respect 
to or relative to the s.i.p. [ -, • ] if and only if [y, x] = 0. If M and N 
are subsets of X, we say that M is normal to N if and only if [y, x] = 0 
for all y G N, x G M. 

3. THEOREM 1. Let M and N be subspaces of a normed linear space 
X. A necessary and sufficient condition for M _L N is that there exists a 
s.i.p. [ • , • ] relative to which M is normal to N. 

PROOF. Suppose that M is normal to N with respect to [ • , • ] . If 
x G M and y G N we have ||x + y\\ ||x|| è [x + (/, x] = ||x||2, from 
which it follows that M J_ N. 

Let us now suppose that M _L N, so that M D N = {0}. Hence, for 
each x G M we may define a linear functional^ on sx = span{x, N} = 
{ax + n | a G C, n G A/} as follows: 

- • - . . / . ( « + n) = a||x||2. 

Now/j is clearly linear and in view of 

W « + n)| = M ||*||* S ||x|| M ||x + tila\ = ||*|| H« + n||, 

fx is bounded by ||/x|| ^ ||x||. By observing that /*(x/||x||) = ||x|| we 
obtain ||/x|| = ||x||. fx also satisfies fx(x) = ||x||2 and/x(n) = 0 Vn G N. 
For z ^ M w e may define fz(az) = a||^||2 on the span of {z}. Clearly 
for these z G X, ||/z|| = ||z|| and/z(z) = j|z||2. Thus for each x G X we 
obtain a bounded linear functional fx which may be extended to the 
entire space by the Hahn-Banach tlieorem. We therefore consider fx 
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to be defined throughout X. Now, let <V be a well ordering of X, and 
let x be the initial element of 0/. Define the functional <I>X to befx; and 
if z = kx define &z = \4>Ä. Similarly for x ', the initial element of 0/ not 
in the span of x> define ®x, = fx, and 4>x*f = \4>Är. Continuing in this 
fashion we may, by transfinite induction, define <I>Z for each z £ I 
Since each z G X has a unique initial generation o> relative to the order 
<!/ (i.e., (o is the least element of <V for which z = Xco) the indexing of 
the functional <I>Z is clearly well-defined. We may now set [x, z] = 
<I>z(x), and we need only verify that (a)-(b) of Definition 1 hold, since 
clearly for x G M, y G N we have [y, x] = 4>x(t/) = 0. The condition 
(a) is immediate from the linearity of <ï>z. For condition (b) suppose 
that co is the initial generator of x G X, say x = Xo>, then [x, x] = 
* A * ( M = W 2 / . (« ) = ||Xco||2 = ||x||2 > 0. Similarly, for condition (c), 
if x = Aco and y = /mi> for both <o and i> initial in <V, then we have 

l [ * , y ] l 2 = I < W I 2 = I<ÏV(AÛ>)|2= |/n|2|A|2|<ï>,(a))|2 

^lMl2 |X|2 |U||2 | |a>r= » H I H I 2 = [?/,?/] fox]. 

Finally for part (d) [x,ßy] = [x, 0 3 ^ ] = ß]i<Pv(x) = )94>^(x) = 
/3 [x, j / ] . This concludes the proof. 

REMARK. We may observe that there exist subspaces M and N, both 
with dimension larger than one, that satisfy the hypothesis of this 
theorem. For example if the Banach space has a monotone base {xi} 
then for every n, span {xi9 • • • xn} is orthogonal to its algebraic com
plement. 

James [3], in his 1947 paper introducing the notion of orthogonality 
given in Definition 6, observed that in order for x G X to be orthogonal 
to the null-space N(f) of a functional/it is necessary and sufficient that 
l/(*)l = 11/11 IMI* ^ e sufficiency is easily seen by the following: For 
nGN(f), 

M ||* + n|| ̂  |/(* + »)| - |/(*)| = II/! M. 
S. Mazur [5] shows that in a reflexive B-space X, for any functional 

/ t h e r e is an x G X so that | /(x)| = | | / | | ||z||. Consequently if X is re
flexive a n d / G X* there is an x G X so that x _L N(f). In view of this 
we prove. 

THEOREM 2. Let X be a Banach space. Then a necessary and suf
ficient condition for X to be reflexive is that for every f G X*, there 
exists an s.i.p. [ -, • ] and an element y EL X so that fix) = [x,y] for 
all x G X. 
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PROOF. (Necessity) If N(f) = X, any s.i.p. will suffice with y = 0. 
If N = N(f) 7̂  X, since X is reflexive, there is an x0 G X with x0 ± N. 
The orthogonality relation is homogeneous, thus if M is the span of 
{x} we have M I N . By Theorem 1 there is an s.i.p. [ -, • ] with respect 
to which M is normal to N. For x Œ X consider the element z £ X 
given by z = f(x)x0 — f(x0)x. Clearly z G N so 0 = [z, x0] = 
f(x)||*o||2 ~~ f(xo) [x> *o] • Consequently we have f(x) = 
[x^ (f(xo)/\\xo\\2)xo] = [*> y] • For sufficiency we need only observe 
that every functional assumes its norm on the unit sphere and hence 
by James [6], X is reflexive. 

THEOREM 3. In the event that the normed linear space X is strictly 
convex the y found in Theorem 2 is unique with respect to [ -, • ] . 

PROOF. The proof can be found in [2]. 

Since any separable B-space can be renormed so as to be strictly 
convex [ 1] we may in this setting assume the representing element to 
be unique. 

In Giles' Theorem [2] the space is assumed to be both uniformly 
convex and smooth. In the case that the B-space is smooth then there 
is a unique semi-inner-product so that since uniformly convex B-spaces 
are reflexive Giles' theorem is a consequence of Theorem 2. 

The author wishes to express his appreciation to Professor R. Suonk-
wiler for his guidance in the preparation of this paper, to Professors 
R. Jamison and J. Flemming for their remarks concerning Theorem 2, 
and to the referee for his kind suggestions. 
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