ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 7, Number 4, Fall 1977

REPRESENTATION OF LINEAR FUNCTIONALS
IN A BANACH SPACE

GARY D. FAULKNER

ABsTracT. In this paper we prove a Riesz representation
theorem for linear functionals in a reflexive Banach space.

1. Introduction. As an aid to the extension of operator theory from
the Hilbert space setting to a general Banach space, G. Lumer [4]
introduced the notion of a semi-inner-product on a normed linear
space X as a complex function [ , -] on X X X which is linear in the
first argument only, strictly positive, and satisfies a Schwarz inequality
|[x,y]|2= [x,x] [y,y]. Theform [ -, - ] induces a norm in the natural
way of putting [x,x] V2= ||x||. Lumer showed that every normed
linear space has a semi-inner-product which is compatible with the
norm in this fashion.

J. R. Giles [2] later showed that the axioms of a semi-inner-product
can be extended to include conjugate homogeneity in the second com-
ponent without any loss of generality with respect to applications in
normed linear spaces. In view of this refinement Giles was able to
prove that in a smooth semi-inner-product space which is uniformly
convex, a Riesz Representation theorem holds. That is to say that if
x* € X*, there is a unique y € X such that x*(x) = [x,y] forallx € X.
The purpose of this paper is to extend the representation theorem of
Giles to Reflexive Banach Spaces.

2. DeriNniTioN 1. Let X be a normed linear space. A function
[+, +]:X X X — Cis a semi-inner-product on X (s.i.p.) if and only if
it satisfies the following:

(a) [ax + By,z] = a[x,z] + B[y, z] foralle,B € C,
(b) [x,x] = |x]|2>0 ifx # 0,

© IxyllP= (%« [y, 4],

d)  [xByl =Blxy].

DEerFiNITION 2. A B-space X is uniformly convex if and only if for each
€ > 0 there exists a §(€) > 0 so that if |x|| = |ly|| = 1 and ||x — y|| > €
then ||(x + y)2| <1 — 8.
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DerFiniTION 3. A B-space X is strictly convex if and only if whenever
x| + |lyll = |lx + y|| where x, y # 0 then x = Ay for some A > 0.

DeFintTiON 4. A B-space X is reflexive if and only if the mapping
J: X = X** given by (Jx)(x*) = x*(x) is surjective.

It is well known that uniformly convex implies both strictly convex
and reflexive. However, neither converse holds.

DeFiNITION 5. A B-space X is smooth if and only if for each x € X
with ||x| = 1 there is a unique x* € X* such that x*(x) = ||x*| (The
Hahn-Banach theorem guarantees the existence of at least one such
functional).

DerFiniTION 6. Following James [3], an element x € X is orthogonal
to y € X if and only if for each A € C ||x + Ay|| = ||x||. This will be
written as x L y. Ifforeachx €E M,y €E N M,NC X, wehavex 1L y
we write M L N.

DermviTioN 7. For x, y € X we say that x is normal to y with respect
to or relative to the s.i.p. [ -, -] if and only if [y,x] = 0. If M and N
are subsets of X, we say that M is normal to N if and only if [y,x] = 0
forally € N,x € M.

3. TueoreM 1. Let M and N be subspaces of a normed linear space
X. A necessary and sufficient condition for M L N is that there exists a
sd.p. [ -, +] relative to which M is normal to N.

Proor. Suppose that M is normal to N with respect to [ -, - ]. If
xEM and y EN we have |x + y| x| = [x + y,x] = ||x]|% from
which it follows that M L N.

Let us now suppose that M L N, so that M M N = {0}. Hence, for
each x € M we may define a linear functional f, on s, = span{x, N} =
{ax + n| a € C,n € N} as follows:

- falox + n) = afx|2
Now f, is clearly linear and in view of
|felex + m)l = o [[x]]> = ] led [l + nle| = [lx]| lax + n],

fx is bounded by |fi| = ||x|]. By observing that f(x/||x|)) = ||| we
obtain ||f| = ||x||. f: also satisfies f,(x) = [x||> and f(n) = 0 Yn € N.
For z & M we may define f,(az) = al|z|? on the span of {z}. Clearly
for these z € X, ||£|| = ||z|| and f.(z) = ||z|> Thus for each x € X we
obtain a bounded linear functional f, which may be extended to the
entire space by the Hahn-Banach theorem. We therefore consider f,
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to be defined throughout X. Now, let &V be a well ordering of X, and
let x be the initial element of V. Define the functional @, to be f,; and
if z = Ax define ®, = A®,. Similarly for x’, the initial element of v not
in the span of x, define ®, = f, and fPW = AP,. Continuing in this
fashion we may, by transfinite induction, define ®, for each z € X.
Since each z € X has a unique initial generation  relative to the order
@ (i.e., w is the least element of V for which z = Aw) the indexing of
the functionals @, is clearly well-defined. We may now set [x,2] =
®,(x), and we need only verify that (a)-(b) of Definition 1 hold, since
clearly for x € M,y € N we have [y,x] = ®,(y) = 0. The condition
(a) is immediate from the linearity of ®,. For condition (b) suppose
that o is the mltlal generator of x € X, say x = \w, then [x,x] =
®, ,(Aw) = \|]2f,(0) = [Ao|? = |x]|2 > 0. Similarly, for condition (c),
ifx=Awandy = y.v for both @ and v initial in ¥, then we have

[[xy]12 = |®,(x)]2 = B, A0)|2 = |ul2\]2®,(w)]?
= [l = fufPlnol? = [y, 4] (5,3,

Finally for part (d) [x8y] = [x (Bup] = Ba®,(x) = BO,.(x) =
B[z, y]. This concludes the proof.

ReEmMark. We may observe that there exist subspaces M and N, both
with dimension larger than one, that satisfy the hypothesis of this
theorem. For example if the Banach space has a monotone base {x;}
then for every n, span {x;, - * - x,} is orthogonal to its algebraic com-
plement.

James [3], in his 1947 paper introducing the notion of orthogonality
given in Definition 6, observed that in order for x € X to be orthogonal
to the null-space N(f) of a functional fit is necessary and sufficient that
[f@)l = |If]l |x- The sufficiency is easily seen by the following: For
nE

’

1Al llx + n| Z 1fGx + n)l = |f@)] = [ £] [<].

S. Mazur [5] shows that in a reflexive B-space X, for any functional
f there is an x € X so that |f(x)] = ||f|| || Consequently if X is re-
flexive and f € X* there is an x € X so that x L N(f). In view of this
we prove.

TueoreM 2. Let X be a Banach space. Then a necessary and suf-
ficient condition for X to be reflexive is that for every f € X*, there
exists an s.ip. [ -, -] and an element y € X so that f(x) = [x,y] for
allx € X
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Proor. (Necessity) If N(f) = X, any s.ip. will suffice with y = 0.
If N = N(f) # X, since X is reflexive, there is an x, € X with x, L N.
The orthogonality relation is homogeneous, thus if M is the span of
{x}wehave M | N. By Theorem 1 thereisans.i.p. [ -, - ] with respect
to which M is normal to N. For x € X consider the element z € X
given by z = f(x)xo — f(xo)x. Clearly zEN so 0= [z,x] =
F@)||x0]|2 — f(xo) [, xo] - Consequently ~ we  have  f(x)=
[x,m/”xoﬂz)xo] = [x,y]. For sufficiency we need only observe

at every functional assumes its norm on the unit sphere and hence
by James [6], X is reflexive.

TuEOREM 3. In the event that the normed linear space X is strictly
convex the y found in Theorem 2 is unique with respectto [ -, - ].

Proor. The proof can be found in [2].

Since any separable B-space can be renormed so as to be strictly
convex [1] we may in this setting assume the representing element to
be unique.

In Giles” Theorem [2] the space is assumed to be both uniformly
convex and smooth. In the case that the B-space is smooth then there
is a unique semi-inner-product so that since uniformly convex B-spaces
are reflexive Giles’ theorem is a consequence of Theorem 2.

The author wishes to express his appreciation to Professor R. Suonk-
wiler for his guidance in the preparation of this paper, to Professors
R. Jamison and ]. Flemming for their remarks concerning Theorem 2,
and to the referee for his kind suggestions.
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