ON THE PROBABILITY THAT AN INTEGER CHOSEN ACCORDING TO THE BINOMIAL DISTRIBUTION BE \boldsymbol{k}-FREE

J. E. NYMANN AND W. J. LEAHEY

Introduction. Let s and t be integers chosen from among the first $n+1$ non-negative integers according to a binomial distribution with parameter $p, 0<p<1$. Consider the probability that s and t be relatively prime. In [1] we showed that this probability tends to $6 / \pi^{2}$, independent of p, as $n \rightarrow \infty$. Suppose now we choose a single integer s from the first $n+1$ non-negative integers according to a binomial distribution and ask what is the probability that s be squarefree. In this paper we show that the techniques of [1] can also be used to show that this probability is $6 / \pi^{2}$ in the limit. In fact we show something more, viz., that the probability that s be k-free, k any integer greater than 1 , is $1 / \zeta(k)$ where ζ denotes the Riemann zetafunction. (s is k-free if and only if s is not divisible by the k-th power of any prime.) In section 1 we deal with the case $k>2$ and in section 2 , with the case $k=2$.

1. Let n be a non-negative integer and denote by N_{n} the set of integers $0,1,2, \cdots, n$. Let P_{n} be a probability distribution on N_{n} and let Q_{k} denote the set of non-negative k-free integers. Set $Q_{k}(n)=$ $Q_{k} \cap N_{n}$. For any positive integer d, let $A_{n}(d)=\left\{j \in N_{n}: j \equiv 0\right.$ $(\bmod d)\}$. We then have the following.

Lemma 1. Let P_{n} be any probability measure on N_{n}. Then for $n>1$,

$$
P_{n}\left(Q_{k}(n)\right)=\sum_{1 \leqq d \leqq n^{1 / k}} \mu(d)\left\{P_{n}\left(A_{n}\left(d^{k}\right)\right)-P_{n}(\{0\})\right\} .
$$

Proof. Let $p_{1}<p_{2}<\cdots<p_{s}$ be the primes less than or equal to $n^{1 / k}$. Then, if $\tilde{Q}_{k}(n)$ denotes the complement of $Q_{k}(n)$ in N_{n}, we have

$$
\tilde{Q}_{k}(n)=\bigcup_{i=1}^{s} A_{n}\left(p_{i}{ }^{k}\right) .
$$

Therefore

Received by the editors on October 29, 1975, and in revised form on April 26, 1976.

$$
\begin{aligned}
P_{n}\left(Q_{k}(n)\right)= & 1-P_{n}\left(\widetilde{Q}_{k}(n)\right)=1-P_{n}\left(\bigcup_{i=1}^{s} A_{n}\left(p_{i}^{k}\right)\right) \\
= & 1-\sum_{r=1}^{s} \sum_{\left(i_{1}, i_{2}, \cdots, i_{r}\right)}(-1)^{r-1} P_{n}\left(A_{n}\left(p_{i_{1}}^{k}\right)\right. \\
& \left.\cap A_{n}\left(p_{i_{2}}^{k}\right) \cap \cdots \cap A_{n}\left(p_{i_{r}}^{k}\right)\right)
\end{aligned}
$$

where the inner sum is taken over all r-tuples $\left(i_{1}, i_{2}, \cdots, i_{r}\right)$ such that $1 \leqq i_{1}<i_{2}<\cdots<i_{r} \leqq s$. Now it is clear that if $\left(d_{1}, d_{2}\right)=1$, then $A_{n}\left(d_{1}\right) \cap A_{n}\left(d_{2}\right)=A_{n}\left(d_{1} d_{2}\right)$. Hence this last expression can be rewritten as

$$
1+\sum_{r=1}^{s} \sum_{\left(i_{1}, i_{2}, \cdots, i_{r}\right)}(-1)^{r} P_{n}\left(A_{n}\left(\left(p_{i_{1}} p_{i_{2}} \cdots p_{i_{r}}\right)^{k}\right)\right)
$$

Now if $\left(p_{i_{1}} p_{i_{2}} \cdots p_{i_{r}}\right)^{k}>n, A_{n}\left(\left(p_{i_{1}} p_{i_{2}} \cdots p_{i_{r}}\right)^{k}\right)=\{0\}$. Hence this last expression is the same as

$$
\sum_{1 \leqq d \leq n^{2 / k}} \mu(d) P_{n}\left(A_{n}\left(d^{k}\right)\right)+\sum_{r=1}^{s} \sum_{p_{i_{1}} p_{i_{2}}, \cdots p_{i_{r}}>n / k} \mu\left(p_{i_{1}} p_{i_{2}} \cdots p_{i_{r}}\right) P_{n}(\{0\}) .
$$

Since

$$
\begin{gathered}
\sum_{d \mid p_{1} p_{2} \cdots p_{s}} \mu(d)=0 \\
\sum_{r=1}^{s} \sum_{p_{i_{1} p_{i_{2}}} \cdots p_{i_{r}}>n^{1 / k}} \mu\left(p_{i_{1}} p_{i_{2}} \cdots p_{i_{r}}\right)=-\sum_{1 \leqq d \leqq n^{1 / k}} \mu(d) .
\end{gathered}
$$

This observation completes the proof of the lemma.
If P_{n} is the uniform distribution on $N_{n}\left(P_{n}(j)=(n+1)^{-1}\right.$ for all $\left.j \in N_{n}\right)$ then it is easy to check that $\left|P_{n}\left(A_{n}(d)\right)-d^{-1}\right|<n^{-1}$ uniformly in d. Using this estimate along with Lemma 1 and the fact that $\sum \mu(d) d^{-k} \rightarrow 1 / \zeta(k)$, it is not difficult to prove

$$
\lim _{n \rightarrow \infty} P_{n}\left(Q_{k}(n)\right)=1 / \zeta(k)
$$

for all $k \geqq 2$.
From now on P_{n} will always be taken to be a binomial distribution relative to some fixed parameter p with $0<p<1$. Thus $P_{n}(j)=$ $\binom{n}{j} p^{j}(1-p)^{n-j}$. For $1 \leqq d \leqq n$ define $\epsilon_{n}(d)$ by

$$
\epsilon_{n}(d)=P_{n}\left(A_{n}(d)\right)-d^{-1}=\sum_{j=0(d)}\binom{n}{j} p^{j}(1-p)^{n-j}-d^{-1}
$$

Lemma 2. $\left|\epsilon_{n}(d)\right| \ll n^{-1 / 2}$ uniformly in d.

Proof. See [1].
Theorem 3. If P_{n} is a binomial distribution, then $\lim _{n \rightarrow \infty} P_{n}\left(Q_{k}(n)\right)$ $=1 / \zeta(k)$ for all $k \geqq 3$.

Proof. By Lemma 1 we have

$$
\begin{aligned}
P_{n}\left(Q_{k}(n)\right)= & \sum_{1 \leqq d \leqq n^{1 / k}} \mu(d)\left\{P_{n}\left(A_{n}\left(d^{k}\right)\right)-P_{n}(\{0\})\right\} \\
= & \sum_{1 \leqq d \leqq n^{1 / k}} \mu(d)\left\{d^{-k}+\epsilon_{n}\left(d^{k}\right)-(1-p)^{n}\right\} \\
= & \sum_{1 \leqq d \leqq n^{1 / k}} \mu(d) d^{-k}+\sum_{1 \leqq d \leqq n^{1 / k}} \mu(d) \epsilon_{n}\left(d^{k}\right) \\
& -(1-p)^{n} \sum_{1 \leqq d \leqq n^{1 / k}} \mu(d) .
\end{aligned}
$$

The first sum tends to $l / \zeta(k)$ while the last sum goes to zero as $n \rightarrow \infty$. For the middle sum we have by Lemma 2

$$
\left|\sum_{1 \leqq d \leq n^{1 / k}} \mu(d) \epsilon_{n}\left(d^{k}\right)\right| \ll n^{1 / k} n^{-1 / 2}
$$

Thus for $k>2$ this term goes to zero which proves the theorem.
2. In this section we show that $\lim _{n \rightarrow \infty} P_{n}\left(Q_{2}(n)\right)=6 / \pi^{2}(=1 / \zeta(2))$ where P_{n} is a binomial distribution. As in the proof of Theorem 3 it is sufficient to show that

$$
\lim _{n \rightarrow \infty} \sum_{1 \leqq d^{2} \leqq n}\left|\epsilon_{n}\left(d^{2}\right)\right|=0
$$

We need the following lemmas. For proofs of the first two we refer to [1].

Lemma 4.

$$
\sum_{|k-p n|>p n^{3 / 4}}\binom{n}{k} p^{k}(1-p)^{n-k} \ll n^{-1}
$$

Lemma 5. If $d>p\left(n+n^{3 / 4}\right)$, then $\left|\epsilon_{n}(d)\right| \ll d^{-1}$ uniformly in d.

Lemma 6. Let K_{n} be the number of integers d which satisfy $p n^{3 / 4}$ $\leqq d^{2} \leqq p\left(n-n^{3 / 4}\right)$ and which have the property that for some integer $k, k d^{2}$ is in the interval $\left(p\left(n-n^{3 / 4}\right), p\left(n+n^{3 / 4}\right)\right)$. Then $K_{n} \ll n^{3 / 8}$.

Proof. Let $u=p n, v=p n^{3 / 4}$ and let $s=[(u+v) / v]$. Suppose $k d^{2} \in(u-v, u+v)$. Then we must have $2 \leqq k \leqq s$. For each such k we ask how many possible d 's are there such that $k d^{2} \in(u-v, u+$ $v)$. Such d 's must lie in the interval

$$
\left(((u-v) / k)^{1 / 2},((u+v) / k)^{1 / 2}\right)
$$

Hence there are not more than $z_{k}=\left((u+v)^{1 / 2}-(u-v)^{1 / 2}\right) k^{-1 / 2}$ +1 of them. Now it is easy to verify that $(u+v)^{1 / 2}-(u-v)^{1 / 2} \leqq$ $\left(2 v^{2} / u\right)^{1 / 2}$. Therefore

$$
K_{n}=\sum_{k=2}^{s} z_{k}<\left(2 v^{2} / u\right)^{1 / 2} \sum_{k=2}^{s} k^{-1 / 2}+s-1 \leqq v(2 s / u)^{1 / 2}+s-1 \ll n^{3 / 8}
$$

We now state and prove our main result as
Theorem 7. Let P_{n} be a binomial distribution. Then

$$
\lim _{n \rightarrow \infty} P_{n}\left(Q_{2}(n)\right)=6 / \pi^{2}
$$

Proof. As stated at the beginning of this section we need to show

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{1 \leqq d^{2} \leqq n}\left|\epsilon_{n}\left(d^{2}\right)\right|=0 . \tag{1}
\end{equation*}
$$

Let $n_{1}=p n^{3 / 4}, n_{2}=p\left(n-n^{3 / 4}\right)$ and $n_{3}=p\left(n+n^{3 / 4}\right)$. The sum in (1) can then be written as

$$
\begin{equation*}
\sum_{1 \leqq d^{2} \leqq n}=\sum_{1 \leqq d^{2} \leqq n_{1}}+\sum_{n_{1}<d^{2} \leqq n_{2}}+\sum_{n_{2}<d^{2} \leqq n_{3}}+\sum_{n_{3}<d^{2} \leqq n} . \tag{2}
\end{equation*}
$$

(We assume that n is large enough so that $n_{1}<n_{2}$ and $n_{3}<n$.) We will examine each of these sums separately. By Lemma 2

$$
\sum_{1 \leqq d^{2} \leqq n_{1}}\left|\epsilon_{n}\left(d^{2}\right)\right| \ll n_{1}{ }^{1 / 2} n^{-1 / 2} \leqq n^{3 / 8} n^{-1 / 2}=n^{-1 / 4}
$$

and hence the first term on the right-hand side of (2) goes to zero as $n \rightarrow \infty$. A similar argument works for the third sum on the right-hand side of (2).

By Lemma $5\left|\epsilon_{n}\left(d^{2}\right)\right| \ll d^{-2}$ for $d^{2}>p\left(n+n^{3 / 4}\right)$. Hence the fourth sum

$$
\sum_{n_{3}<d^{2} \leqq n}\left|\epsilon_{n}\left(d^{2}\right)\right| \ll \sum_{n_{3}<d^{2} \leqq n} d^{-2}<\sum_{d=\left[n_{3}!1 / 2\right]}^{\infty} d^{-2}
$$

and hence goes to zero because it is less than the tail of a convergent series.

The second sum on the right-hand side of (2) is somewhat more difficult to deal with. We break it into two parts

$$
\begin{equation*}
\sum_{n_{1}<d^{2} \leqq n_{2}}=\sum_{n_{1}<d^{2} \leqq n_{2}}^{\prime}+\sum_{n_{1}<d^{2} \leqq n_{2}}^{\prime \prime} \tag{3}
\end{equation*}
$$

where the summation with the prime on it is taken over those d^{2} which have the property that for some integer $k, k d^{2}$ is in the interval (n_{2}, n_{3}) and the double primed summation is taken over the remaining d^{2}. By Lemmas 2 and 6 we have

$$
\sum_{n_{1}<d^{2} \leqq n_{2}}^{\prime}\left|\epsilon_{n}\left(d^{2}\right)\right| \ll n^{3 / 8} n^{-1 / 2}=n^{-1 / 8}
$$

Hence the single primed sum goes to zero as $n \rightarrow \infty$. We now examine the double primed sum. Recall that

$$
\epsilon_{n}\left(d^{2}\right)=\sum_{k=0\left(d^{2}\right)}\binom{n}{k} p^{k}(1-p)^{n-k}-d^{-2}
$$

For the d^{2} under consideration we have by Lemma 4

$$
\begin{gathered}
\sum_{k \equiv 0\left(d^{2}\right)}\binom{n}{k} p^{k}(1-p)^{n-k}=\sum_{\substack{k \equiv 0\left(d^{2}\right) \\
|k-p n|>p n^{3 / 4}}}\binom{n}{k} p^{k}(1-p)^{n-k} \\
\leqq \sum_{|k-p n|>p n^{3 / 4}}\binom{n}{k} p^{n}(1-p)^{n-k} \ll n^{-1}
\end{gathered}
$$

Hence for those $d^{2},\left|\epsilon_{n}\left(d^{2}\right)\right| \ll d^{-2}$. Thus for the double primed sum

$$
\sum_{n_{1}<d^{2} \leqq n_{2}}^{\prime \prime}\left|\epsilon_{n}\left(d^{2}\right)\right| \ll \sum_{n_{1}<d^{2} \leqq n_{2}} d^{-2}<\sum_{d=\left[n_{1} 1 / 2\right]}^{\infty} d^{-2}
$$

and hence goes to zero as $n \rightarrow \infty$. This completes the proof of Theorem 7.

Reference

1. J. E. Nymann and W. J. Leahey, On the probability that integers chosen according to the binomial distribution are relatively prime, Acta Arithmetica 31 (1976), 205-211.

The University of Texas at El Paso, El Paso, Texas 79968

