ON THE PROBABILITY THAT AN INTEGER CHOSEN ACCORDING TO THE BINOMIAL DISTRIBUTION BE k-FREE

J. E. NYMANN AND W. J. LEAHEY

Introduction. Let s and t be integers chosen from among the first n + 1 non-negative integers according to a binomial distribution with parameter p, $0 . Consider the probability that s and t be relatively prime. In [1] we showed that this probability tends to <math>6/\pi^2$, independent of p, as $n \to \infty$. Suppose now we choose a single integer s from the first n + 1 non-negative integers according to a binomial distribution and ask what is the probability that s be square-free. In this paper we show that the techniques of [1] can also be used to show that this probability is $6/\pi^2$ in the limit. In fact we show something more, viz., that the probability that s be k-free, k any integer greater than 1, is $1/\zeta(k)$ where ζ denotes the Riemann zeta-function. (s is k-free if and only if s is not divisible by the k-th power of any prime.) In section 1 we deal with the case k > 2 and in section 2, with the case k = 2.

1. Let *n* be a non-negative integer and denote by N_n the set of integers $0, 1, 2, \dots, n$. Let P_n be a probability distribution on N_n and let Q_k denote the set of non-negative k-free integers. Set $Q_k(n) = Q_k \cap N_n$. For any positive integer d, let $A_n(d) = \{j \in N_n : j \equiv 0 \pmod{d}\}$. We then have the following.

LEMMA 1. Let P_n be any probability measure on N_n . Then for n > 1,

$$P_n(Q_k(n)) = \sum_{1 \le d \le n^{1/k}} \mu(d) \{ P_n(A_n(d^k)) - P_n(\{0\}) \}.$$

PROOF. Let $p_1 < p_2 < \cdots < p_s$ be the primes less than or equal to $n^{1/k}$. Then, if $\tilde{Q}_k(n)$ denotes the complement of $Q_k(n)$ in N_n , we have

$$\tilde{Q}_k(n) = \bigcup_{i=1}^s A_n(p_i^k).$$

Therefore

Received by the editors on October 29, 1975, and in revised form on April 26, 1976.

$$P_n(Q_k(n)) = 1 - P_n(\tilde{Q}_k(n)) = 1 - P_n\left(\bigcup_{i=1}^s A_n(p_i^k)\right)$$
$$= 1 - \sum_{r=1}^s \sum_{\substack{(i_1, i_2, \cdots, i_r) \\ \cap A_n(p_{i_2}^k) \cap \cdots \cap A_n(p_{i_r}^k))} (-1)^{r-1} P_n(A_n(p_{i_1}^k))$$

where the inner sum is taken over all r-tuples (i_1, i_2, \dots, i_r) such that $1 \leq i_1 < i_2 < \dots < i_r \leq s$. Now it is clear that if $(d_1, d_2) = 1$, then $A_n(d_1) \cap A_n(d_2) = A_n(d_1d_2)$. Hence this last expression can be rewritten as

$$1 + \sum_{r=1}^{s} \sum_{(i_1, i_2, \cdots, i_r)} (-1)^r \mathcal{P}_n(A_n((p_{i_1}p_{i_2} \cdots p_{i_r})^k)).$$

Now if $(p_{i_1}p_{i_2}\cdots p_{i_r})^k > n$, $A_n((p_{i_1}p_{i_2}\cdots p_{i_r})^k) = \{0\}$. Hence this last expression is the same as

$$\sum_{1 \leq d \leq n^{1/k}} \mu(d) P_n(A_n(d^k)) + \sum_{r=1}^s \sum_{p_{i_1} p_{i_2} \cdots p_{i_r} > n^{1/k}} \mu(p_{i_1} p_{i_2} \cdots p_{i_r}) P_n(\{0\}).$$

Since

$$\sum_{d \mid p_1 p_2 \cdots p_s} \mu(d) = 0$$

$$\sum_{r=1}^{s} \sum_{p_{i_1} p_{i_2} \cdots p_{i_r} > n^{1/k}} \mu(p_{i_1} p_{i_2} \cdots p_{i_r}) = -\sum_{1 \leq d \leq n^{1/k}} \mu(d).$$

This observation completes the proof of the lemma.

If P_n is the uniform distribution on N_n $(P_n(j) = (n + 1)^{-1}$ for all $j \in N_n$) then it is easy to check that $|P_n(A_n(d)) - d^{-1}| < n^{-1}$ uniformly in d. Using this estimate along with Lemma 1 and the fact that $\sum \mu(d) d^{-k} \to 1/\zeta(k)$, it is not difficult to prove

$$\lim_{n\to\infty} P_n(Q_k(n)) = 1/\zeta(k)$$

for all $k \ge 2$.

From now on P_n will always be taken to be a binomial distribution relative to some fixed parameter p with $0 . Thus <math>P_n(j) = \binom{n}{2} p^{j}(1-p)^{n-j}$. For $1 \leq d \leq n$ define $\epsilon_n(d)$ by

770

$$\epsilon_n(d) = P_n(A_n(d)) - d^{-1} = \sum_{j=0(d)} {n \choose j} p^j (1-p)^{n-j} - d^{-1}.$$

LEMMA 2. $|\epsilon_n(d)| \ll n^{-1/2}$ uniformly in d.

PROOF. See [1].

THEOREM 3. If P_n is a binomial distribution, then $\lim_{n\to\infty} P_n(Q_k(n)) = 1/\zeta(k)$ for all $k \ge 3$.

PROOF. By Lemma 1 we have

$$P_n(Q_k(n)) = \sum_{1 \le d \le n^{1/k}} \mu(d) \{P_n(A_n(d^k)) - P_n(\{0\})\}$$

=
$$\sum_{1 \le d \le n^{1/k}} \mu(d) \{d^{-k} + \epsilon_n(d^k) - (1-p)^n\}$$

=
$$\sum_{1 \le d \le n^{1/k}} \mu(d)d^{-k} + \sum_{1 \le d \le n^{1/k}} \mu(d)\epsilon_n(d^k)$$

-
$$(1-p)^n \sum_{1 \le d \le n^{1/k}} \mu(d).$$

The first sum tends to $1/\zeta(k)$ while the last sum goes to zero as $n \to \infty$. For the middle sum we have by Lemma 2

$$\left|\sum_{1\leq d\leq n^{1/k}} \mu(d)\epsilon_n(d^k)\right| \ll n^{1/k}n^{-1/2}.$$

Thus for k > 2 this term goes to zero which proves the theorem.

2. In this section we show that $\lim_{n\to\infty} P_n(Q_2(n)) = 6/\pi^2 (=1/\zeta(2))$ where P_n is a binomial distribution. As in the proof of Theorem 3 it is sufficient to show that

$$\lim_{n\to\infty}\sum_{1\leq d^2\leq n}|\epsilon_n(d^2)|=0.$$

We need the following lemmas. For proofs of the first two we refer to [1].

Lemma 4.

$$\sum_{|k-pn|>pn^{3/4}} \binom{n}{k} p^k (1-p)^{n-k} \ll n^{-1}.$$

LEMMA 5. If $d > p(n + n^{3/4})$, then $|\epsilon_n(d)| \ll d^{-1}$ uniformly in d.

LEMMA 6. Let K_n be the number of integers d which satisfy $pn^{3/4} \leq d^2 \leq p(n - n^{3/4})$ and which have the property that for some integer k, kd^2 is in the interval $(p(n - n^{3/4}), p(n + n^{3/4}))$. Then $K_n \ll n^{3/8}$.

PROOF. Let u = pn, $v = pn^{3/4}$ and let s = [(u + v)/v]. Suppose $kd^2 \in (u - v, u + v)$. Then we must have $2 \leq k \leq s$. For each such k we ask how many possible d's are there such that $kd^2 \in (u - v, u + v)$. Such d's must lie in the interval

$$(((u - v)/k)^{1/2}, ((u + v)/k)^{1/2}).$$

Hence there are not more than $z_k = ((u + v)^{1/2} - (u - v)^{1/2})k^{-1/2} + 1$ of them. Now it is easy to verify that $(u + v)^{1/2} - (u - v)^{1/2} \le (2v^2/u)^{1/2}$. Therefore

$$K_n = \sum_{k=2}^{s} z_k < (2v^2/u)^{1/2} \sum_{k=2}^{s} k^{-1/2} + s - 1 \leq v(2s/u)^{1/2} + s - 1 \ll n^{3/8}.$$

We now state and prove our main result as

THEOREM 7. Let P_n be a binomial distribution. Then

$$\lim_{n\to\infty} P_n(Q_2(n)) = 6/\pi^2.$$

PROOF. As stated at the beginning of this section we need to show

(1)
$$\lim_{n \to \infty} \sum_{1 \le d^2 \le n} |\boldsymbol{\epsilon}_n(d^2)| = 0.$$

Let $n_1 = pn^{3/4}$, $n_2 = p(n - n^{3/4})$ and $n_3 = p(n + n^{3/4})$. The sum in (1) can then be written as

(2)
$$\sum_{1 \le d^2 \le n} = \sum_{1 \le d^2 \le n_1} + \sum_{n_1 < d^2 \le n_2} + \sum_{n_2 < d^2 \le n_3} + \sum_{n_3 < d^2 \le n_3} +$$

(We assume that n is large enough so that $n_1 < n_2$ and $n_3 < n$.) We will examine each of these sums separately. By Lemma 2

$$\sum_{1 \le d^2 \le n_1} |\epsilon_n(d^2)| \ll n_1^{1/2} n^{-1/2} \le n^{3/8} n^{-1/2} = n^{-1/4}$$

and hence the first term on the right-hand side of (2) goes to zero as $n \rightarrow \infty$. A similar argument works for the third sum on the right-hand side of (2).

By Lemma 5 $|\epsilon_n(d^2)| \ll d^{-2}$ for $d^2 > p(n+n^{3/4}).$ Hence the fourth sum

$$\sum_{n_3 < d^2 \leq n} |\epsilon_n(d^2)| \ll \sum_{n_3 < d^2 \leq n} d^{-2} < \sum_{d = [n_3] \leq 1}^{\infty} d^{-2}$$

and hence goes to zero because it is less than the tail of a convergent series.

The second sum on the right-hand side of (2) is somewhat more difficult to deal with. We break it into two parts

(3)
$$\sum_{n_1 < d^2 \leq n_2} = \sum_{n_1 < d^2 \leq n_2} ' + \sum_{n_1 < d^2 \leq n_2} ''$$

where the summation with the prime on it is taken over those d^2 which have the property that for some integer k, kd^2 is in the interval (n_2, n_3) and the double primed summation is taken over the remaining d^2 . By Lemmas 2 and 6 we have

$$\sum_{n_1 < d^2 \leq n_2} ' |\epsilon_n(d^2)| \ll n^{3/8} n^{-1/2} = n^{-1/8}.$$

Hence the single primed sum goes to zero as $n \to \infty$. We now examine the double primed sum. Recall that

$$\epsilon_n(d^2) = \sum_{k=0(d^2)} \binom{n}{k} p^k (1-p)^{n-k} - d^{-2}.$$

For the d^2 under consideration we have by Lemma 4

$$\sum_{\substack{k=0(d^2)\\k=p(d^2)}} \binom{n}{k} p^k (1-p)^{n-k} = \sum_{\substack{k=0(d^2)\\|k-pn|>pn^{3/4}}} \binom{n}{k} p^k (1-p)^{n-k}$$
$$\leq \sum_{\substack{|k-pn|>pn^{3/4}\\k}} \binom{n}{k} p^n (1-p)^{n-k} \ll n^{-1}.$$

Hence for those d^2 , $|\epsilon_n(d^2)| \ll d^{-2}$. Thus for the double primed sum

$$\sum_{n_1 < d^2 \leq n_2} '' |\epsilon_n(d^2)| \ll \sum_{n_1 < d^2 \leq n_2} d^{-2} < \sum_{d = \lfloor n_1 \rfloor^{1/2} \rfloor} d^{-2}$$

and hence goes to zero as $n \rightarrow \infty$. This completes the proof of Theorem 7.

Reference

1. J. E. Nymann and W. J. Leahey, On the probability that integers chosen according to the binomial distribution are relatively prime, Acta Arithmetica 31 (1976), 205-211.

THE UNIVERSITY OF TEXAS AT EL PASO, EL PASO, TEXAS 79968