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INTRODUCTION TO QUANTIZATION 
AND QUANTUM FIELD THEORY 

The solitons which have been discussed in earlier sections of this vol
ume belong to the realm of classical mechanics; in this section the 
quantum mechanics of solitons is discussed. The most typical difference 
between classical and quantum phenomena is this: quantities such as os
cillation frequency or energy, which classically range over a continuum, 
are constrained to lie in a discrete set of possible values in certain 
quantum situations. For example, the masses of subnuclear particles are 
observed to be restricted in this sense, so it is natural to assume that 
some form of quantum mechanics must be the appropriate mathemati
cal framework, Solitons, because of their extreme localization and sta
bility, are tempting candidates for models of elementary particles; how
ever, if they are to be useful in this respect, their description must be 
raised from the classical to the quantum level. 

Recall that, in principle, one quantizes a system by interpreting all 
observable functions, such as momentum and energy, as self adjoint op
erators on a suitable Hilbert space. Hamilton's classical equations of 
motion are then replaced by Heisenberg^ operator equations, and one 
investigates the spectrum and the temporal evolution of these operators. 
The point spectrum of the Hamiltonian or energy operator describes 
the discrete oscillation frequencies. This procedure, when applied to 
those classical wave equations which support solitons, is called the 
"quantization of solitons." (This phrase is somewhat misleading. The 
equations of motion, not the solitons, are actually quantized.) 

Severe existence problems immediately arise because these classical 
wave equations which are undergoing quantization are infinite dimen
sional, nonlinear Hamiltonian systems. The constructive field theorist 
will first of all concentrate upon matters such as the existence of ob
servables as self adjoint operators. The constructive approach, unfortu
nately, was not represented at the conference. Interested readers are re
ferred to the books by Streater and Wightman [1] and by Simon [2] for 
the general framework, and to the article of Fröhlich [3] for the con
nection with solitons. 

Many physicists tend to take existence of operators and Hilbert 
spaces for granted, and concentrate on approximating quantities of 
physical interest, among them: the ground state eigenvalues of the 
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energy operator, its eigenfunctions, and certain Green's functions which 
describe the propagation from one state to another. To get some feeling 
for the physical ideas behind these calculations, we outline the quan
tization for two related models: the nonlinear sine-Gordon equation 
(<j>tt — <t>xx — sin <£) and the linear Klein-Gordon equation 

In addition to continuous radiation at any wavelength, the classical 
sine-Gordon equation possesses localized solutions of three types: soli-
tons, antisolitons, and breathers. The solitons and antisolitons are local
ized waves which translate at constant speeds, while the breathers con
sist of envelopes which pulsate as they translate. All three types of 
localized waves are nonlinear effects which have no analogues in the 
Klein-Gordon theory. In addition to the radiation modes, the high 
energy physicist now has several new candidates in his search for a de
scription of elementary particles. Let us now see how these localized 
waves affect the spectrum of the quantized Hamiltonian. 

Both the Klein-Gordon and sine-Gordon equations can be written as 
classical, infinite dimensional, Hamiltonian systems, 

_d_/ 4>\ / 0 l\( ÔH/Ô4, \ 
[ ' dt \ m I \ - I 0 A ÔH/ÔTT / ' 

The Hamiltonians H are given by 

(2) f . r i 1 
Hso. - J.» L T (fl2 + (</g2) + (1 ~ C0S4>) J dX-

The Poisson bracket structure is defined by 

(F,G}= r r f f _ f f 1 dx. 

In the classical cases, the functions <J> and TT satisfy the Poisson relations 

{<j>(x, t), <fof, t)} = {TT(X, t\ TT(X', t)} = 0, 

(3) 
{7T(X, t), §(xf, t)} — 8(x — xf), 

with the temporal evolution given by (1), or equivalently, by 

(4) 

! • = { * , * } . 

! - = { » • ' > • 
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One version of the problem of quantization is to find (for each t) self 
adjoint operators <£ and ft on a Hilbert space which satisfy the equal 
time commutation relations (3) and evolve in t according to (4). Of 
course, the brackets { } are now interpreted as operator commutators, 
{Â, Ê] - ÂÈ - ÊÂ. 

For the Klein-Gordon equation, the solution of this problem is well 
known. (See, for example [4].) It begins with the observation that a 
Fourier transformation decouples the classical system into a collection 
of noninteracting normal modes. The Fourier transformation defines a 
canonical transformation from (<j>y IT) to (a, a ), 

a(k t) - N f2 [ # T T ^ , t) 
(5) 

] gikx 

(k2 , m / 4 dx> (k2 + l)1 

where N denotes a suitable normalization constant. Under this transfor
mation, the Poisson bracket structure is preserved with {a (k, t), a(k', t)} 
= iô(k — k'\ the Klein-Gordon Hamiltonian takes the form 

(6) "KG. - Si V^TTp(k)dk P(k) - \a(k)\z, 

and the temporal evolution is given by 

— a(k, t) ={HKG, a(K t)} = i ^/WTÎ a(k, t). 
dt 

Thus, the classical Klein-Gordon equation is equivalent under a canoni
cal transformation to a collection of noninteracting harmonic oscillators, 
each of which is quantized separately following the prescription of 
single particle quantum mechanics [4, 5]. The fundamental excitations 
of these harmonic oscillators are then used to describe the spectrum of 
the Hamiltonian operator fiKG for the Klein-Gordon field. 

The inverse scattering transform is also a canonical transformation 
which maps the classical sine-Gordon field into decoupled, nonlinear 
normal modes. The precise definition of this transformation is given in 
[6]. Here we merely state the form taken by the classical Hamiltonian 
in the new variables: 

HS.G.= S-lV^T^ p(k)dk 
(7) 
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Notice that in these variables the continuous term in the sine-Gordon 
Hamiltonian is indistinguishable from the normal mode Hamiltonian of 
the linear Klein-Gordon theory. The two discrete sums are new. They 
describe the solitons and breathers. Here the integer A labels the num
ber of solitons and B the number of breathers. Just as in the linear the
ory, the density of radiation p(k) can take any value between 0 ^ 
p(k) < co; the variables Pa and P& range over ( — co, co), while 
0 ^ ab ^ IT/2; M = 8/Y and M(ab) = (16 sin a5)/y. y is a dimensionless 
coupling constant which can be scaled out of the classical theory, but 
plays a role similar to Planck's constant h in the quantum theory [7]. 
The decoupling of the classical dynamics through a canonical transfor
mation should permit, at least to some approximation, the problem of 
quantization to be solved by quantizing each nonlinear normal mode 
separately. That is, quantization should be achieved as in the linear the
ory, except that the sine-Gordon field has three basic excitations (radi
ation, solitons, and breathers) rather than one (radiation). For the con
tinuous modes, quantization proceeds as outlined for the Klein-Gordon 
equation. Next, since the soliton behaves like a free particle, one antici
pates that it will contribute only some trivial continuous spectrum. The 
breathers, however, give an interesting structure to the spectrum of 

H s.o.-
Recall that the breather consists of an envelope which translates at a 

constant speed but has an additional internal degree of freedom (the en
velope beats periodically, in time, as it translates). In the variables of 
equation (7), Pb fixes the momentum of translation while ab is related to 
the frequency of these internal oscillations. Pb quantizes trivially as a 
free particle (just as the solitone momentum Pa), but the energy of in
ternal oscillation can assume, after quantization, only certain discrete 
values. By any one of a variety of more or less sophisticated arguments, 
one can show that M(ab) must belong to the discrete set 

where [r] denotes the greatest integer less than or equal to r. 
After quantization, the field consists of a collection of almost linear 

excitations, together with solitons of rest mass M and breathers whose 
"rest masses" belong to the set (8). Pa

2 describes an increase in energy 
of the soliton due to translation; Pb

2 the same increase in the breather's 
energy. The "rest mass" of two breathers can differ because of the 
energy of internal oscillation. Notice that to this order of approx
imation, the only effect of quantization is to make these internal os
cillations energies of the breather discrete. Although the spectrum of 
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the Hamiltonian is distinctly influenced by the breathers, this approx
imation is too crude to answer the natural questions: For example, are 
the important features of the classical soliton (locality, stability, absence 
of scattering) also important after quantization? To what extent will 
quantum effects couple the solitons and cause them to interact? 

To answer such questions, one must first understand why the pro
cedure we have just summarized for the quantization of the sine-Gor
don equation is not exact. The approximation was introduced at the 
first step, which was the canonical transformation from (<£(x, t), 7r(x, t)) to 
nonlinear normal modes. The canonical transformation of the classical 
variables is not linear; it contains products of the form <t>(x, t) TT(X', t). 
Once quantized, the functions <f> and m become operators which do not 
commute when x — xf. The definition of the normal mode momenta 
(p(fc), Pa, Pb} then becomes ambiguous; neglecting this ambiguity of 
product ordering yields the leading-order theory described above. This 
difficulty does not arise in the Klein-Gordon case, where the definition 
of a(k, t) in equation (5) does not contain anv products of the form <J>77. 
The meaning of the canonical variables (a, a*) is therefore not am
biguous, even after quantization; however, the Hamiltonian HKG de
pends upon p(k) = a(fc)a*(fc), and the ordering of products of a, a* be
comes important in the definition of tiKG. For harmonic oscillators the 
correct ordering is well known [4, 5], 

*,a.= X l V F r r f ^ M ^ ^ m ] dk. 
In the sine-Gordon field, even the proper definition of the momentum 
variables is unclear. 

The method of quantization described in the preceding paragraphs 
amounts to an extension of the old quantum theory of Bohr and Som
merfeld to quantum field theory. The next step will be to improve this 
approximation. There are various ways to derive higher-order correc
tions; most authors use the fact that the old quantum theory is the 
leading term in an asymptotic approximation known as the "W.K.B. 
method" (after Wentzel, Kramers, and Brillouin who introduced this 
calculational procedure into quantum mechanics). The common descrip
tion of this W.K.B. method begins with the Schrödinger probabilistic 
representation of the quantum mechanics of particles [8]. As Planck's 
constant h goes to zero, the probability density is concentrated near a 
classical trajectory, that is, near a solution of Hamilton's equation of 
classical mechanics. The W.K.B. method is a systematic asymptotic pro
cedure to calculate effects of small deviations from these classical tra
jectories. 
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In the first article of the section, Brosl Hasslacher and Andre Neveu 
describe extensions of such asymptotic calculations into nonlinear quan
tum field theory. In this setting, the quantum mechanical wave function 
defines a probability density in <£ space which is concentrated, as the 
coupling constant y (or Planck's constant h) goes to zero, near a solu
tion of the classical field equation such as a breather in the sine-Gordon 
case. Hasslacher and Neveu use Feynman (function space) integral rep
resentations to derive the W.K.B. approximation for quantum field the
ory. In this manner they obtain corrections to the leading order approx
imation described above. 

Introductory material about the Feynman integral—W.K.B. method 
of approximation of Dashen, Hasslacher, and Neveu may be found in 
the survey [9]. For general material about the Feynman (function 
space) integrals, we recommend the very tutorial article [10], the gener
al survey [11], and, of course, the two original articles by Feynman [12, 
13]. High energy physicists use many other related approaches to the 
quantization of solitons. Some of these methods are described in [7, 14, 
15] and references therein. 

In the second article of this section, David Cambell studies the "sig
ma model,,, a coupled system of partial differential equations which 
originally was introduced to describe protons and neutrons interacting 
with two types of mesons. The equations should really be quantized, 
but as we explained above, the first step is to find classical localized so
lutions. Cambell does this by an interesting and novel technique utiliz
ing inverse scattering ideas. A more detailed quasiclassical quantization 
apparently remains to be worked out. 

The emphasis we have placed on approximate quantization quite nat
urally raises the question: how reliable is this technique? One test case 
is readily available. The nonlinear Schroedinger equation, 

(9) iqt - qxx + 2|9|2<? = 0, 

can be quantized by the methods outlined above. The resulting for
mulas can be checked by entirely different means because, as is ex
plained in Nohl's article, (9) is equivalent to the usual (linear) Schroe
dinger equation for an arbitrary number of particles interacting via S 
function potentials. The spectrum for this latter problem was studied by 
Lieb and Liniger [16]. For detailed comparisons between the two ap
proaches, and for the relevant literature, we refer the reader to [17]. 

The final article, by Bill Sutherland, replaces the viewpoint of the 
high energy physicist with that of an intuitive solid state theorist. He 
studies the quantum mechanics of a Toda lattice. In particular, he uses 
"Bethe's ansatz" to represent the ground state wave function, excitation 
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spectrum near the ground state, and thermodynamic quantities. Suther
land identifies two types of excitations in the quantum Toda lattice, 
and he traces these excitations to the solitons and the periodic wave 
trains of the classical Toda equations. In reading Sutherland's paper, we 
have found Bethe's original article [18] and the article of Lieb and 
Liniger [16] useful background material. Also, the work of Luther [19] 
provides interesting, although difficult, connections between the field 
theorists' and the solid state physicists' descriptions of quantized soli
tons. 

At the time of the conference, work on quantization dealt largely 
with the spectrum of the quantum operators. Since that time, some 
progress has been made on the scattering theory of the quantum states 
[17, 20] and research emphasis has been placed upon quantum mechan
ical tunneling processes [15]. Finally, the reader will have noticed that 
these quantum mechanical calculations are never compared with experi
mental observations. The main reason is that the current theoretical 
models are far too naive to even consider such a comparison. For ex
ample, as in all soliton research, the limitation to one spatial dimension 
is terribly restrictive. 
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