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A(n,fc)-PARAMETER FAMILIES AND ASSOCIATED 
CONVEX FUNCTIONS 

S. UMAMAHESWARAM 

1. Introduction. A family F of continuous real valued functions 
f(x) defined on an interval I of real numbers is an n-parameter family 
on I if for every set of n distinct points xi9 • • *, xn of 7 and every set of 
n real numbers yx, • • -, yn there exists a unique funct ion/G F satisfy
ing f(Xi) = y{ for % = 1, • • -, n. A function u defined on / is 'convex' 
with respect to an n-parameter (n i£ 2) family F on I if for every set of 
n points, xx < x2 < • • • < xn in 7, the unique element / G. F defined 
by f(Xi) = ufo), i = 1, • • -, n satisfies (-1)»+' (f(x) - u{x)) g 0 on 
(Xj, xi+l), i = l , • • •, n — 1. In fact, if w is convex with respect to an n-
parameter family F and / G F is determined as above, then / also 
satisfies [5] / ( Ï ) - U ( X ) § 0 on (xn,xn+l) and ( - 1 ) " (f(x)-u(x)) 
=î 0 on (x0, *i) where x0 and xn + 1 are the left and right end-points of 
7 respectively. The above definition of convexity has been extended 
[3] under appropriate assumptions on F to the case when /— u has 
n zeros counting multiplicities on 7. For a discussion of these ideas 
we need the following definitions. 

Assume n ^ 2 and k is an integer 1 =î k =î n. Let k(n, k) = (n(l), 
• • -, n(k)) be an ordered fc-tuple of positive integers satisfying n(l) + 
• • • + n(fc) = n, which we call an Ordered k-partition of n. Let P(n) 
denote the set of all ordered ^-partitions of n with k varying such that 
l g t S n . Also let F C C(7) and u G 0(7) where j > 0 is large 
enough so that the following definitions make sense. 

DEFINITION 1.1. F is said to be a X(n, k)-parameter family on 7 if 
for every set of k (k fixed) distinct points xl < x2< • • • < xfc in 7 and 
every set of n real numbers yir, there exists a u n i q u e / G F satisfying 

(1.1) fir)(Xi) = #r> r = 0 ,1 , • • ', n(f) - U = 1, • • -, *. 

(If F is a X(n, n)-parameter family then we simply say F is an n-
parameter family. ) 

For the sake of brevity of statements we shall denote 

[X(n, *)] = {v(n,j) G P(n), * g j ^ «}. 
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DEFINITION 1.2. If F is a /ut(n, j)-parameter family on I for all fi(n,j) 
G [X(n, k)], then we say F is a [X(n, k)] -parameter family on I. 

(If F is a [X(n, 1)] -parameter family on I, then we refer to F as an 
unrestricted n-parameter family on I.) 

To indicate some known results regarding [X(n, k)] -parameter fami
lies, P. Hartman has proved [2] that in case I is an open interval then 
F is an unrestricted n-parameter family on I if and only if F is a 
X(n, fc)-parameter family on I for k = 1 and k = n. An example due 
to R. M. Mathsen [4] shows that Hartman's theorem cannot be ex
tended to a closed interval I. Further results concerning the charac
teristic properties of n-parameter families and continuity theorems, 
among others can be found in [1], [4] and in some of the references 
contained therein. 

We shall now define a X(n, fc)-convex function. Denote M(j) = n 
+ n(l) + • • • + n(j) for l^j^k and M(0) = n. 

DEFINITION 1.3. Let F be a X(n, fc)-parameter family on an interval 
I. A function u is said to be a X(n, k)-convex function with respect to 
F on I if for every set of k points xx < x2 < ' * * < xk in I the unique 
function / G F determined by 

(1.2) /Ofa) = unfa), r = 0 ,1 , • • -, n(i) - 1, i = 1, • • -, k 

satisfies 

(1.3) ( - l)"«>(/(x) - u(x)) ^ 0 on (xh x i+1), i = 1, • • -, k - 1. 

(If F is an n-parameter family and u is X(n, n)-convex with respect 
to F then we will simply say that u is convex with respect to F. If in 
the above definition, strict inequalities are satisfied in (1.3) then we 
say u is strictly X(n, k)-convex.) 

In this paper one of the theorems (Theorem 3.1) concerns con
tinuity with respect to boundary conditions of a special type for 
X(n, fc)-parameter families. In Theorems 4.3 and 4.4 we state sufficient 
conditions under which if a function u is fx(n, k + l)-convex, it is also 
X(n, fc)-convex. Our main result (Theorem 4.5) concerning X(n, k)-
convex functions is that if F is an unrestricted n-parameter family and 
u is convex with respect to F then u is also X(n, fc)-convex with respect 
to F where X(n, k) G P(n) is arbitrary. We will further show under 
the hypothesis of theorem 4.5, that if / G F is determined by the con
ditions (1.2) then / also satisfies f(x) — u(x) ^ 0 on (xk, xk+i) and 
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( — l)n(f(x) — u(x)) ^ 0 on (x0, Xi). (Hereafter x0 and xk+l stand for 
the left and right end-points of 7 respectively). It will however, remain 
unresolved as to whether the converse of Theorem 4.5 is true or not, 
that is, if F is an unrestricted n-parameter family and u is X(n, 1)-
convex with respect to F for all X(n, 2) G P(n), does it follow that u is 
n(n, fc)-convex with respect to F where jx(n, k) G P(n) and 2 < k = n is 
arbitrary? 

There are several results in the literature concerning smoothness 
properties of convex functions with respect to n-parameter families. 
Some of these can be found in [2], [3] and in some of the references 
contained therein. Of these, we shall mention only the following one 
due to P. Hartman [2], that is "if F is an unrestricted n-parameter 
family on an open interval I and u is convex with respect to F on I 
then u has an (n — 2)-nd order differential and one-sided (n — l)-st 
order differentials at every point x0 G I". Also, relationships between 
convexity and X(n, n — l)-convexity and between different types of 
X(n, ifc)-convexity for fc-tuples k(n, k) G F(n) for which max {n(i), l a i 
^ k) ^ 2 have been studied by R. M. Mathsen in [3]. For instance, 
under the hypothesis that F is an n-parameter family and also a 
X(n, n — l)-parameter family where k(n, n — 1) G P(n) is fixed, he 
has shown (Theorem 2.1 of [3]) that if u is convex with respect to F 
then u is also X(n, n — l)-convex with respect to F. He also proved 
that if F is as above and u is k(n, n — l)-convex with respect to F 
where n(l) j£ 2 and n(n — 1) ^ 2 then u is convex with respect to 
F. 

2. Some more definitions and notations. In the rest of the paper we 
shall use the following notations for the sake of brevity of statements. 

If X(n, k) G P(n) is fixed and m is an integer such that 1 ^ m = k, 
we shall write k(n, k;m + ) = (n(l), • • -, n(ra — 1), n(ra) — 1,1, n(m + 
1), • • -, n(k)) and k(n, k;m— ) = (n(l), • • -, n(m — 1), 1, n(m) — 1, 
n ( m + l ) , •••,n(fc)). 

Note: In case n(ra) = 1, the entry n(m) — 1 = 0 is simply deleted 
so thatX(n, k,m+) = X(n, k;m—) = \(n, k). 

Define {X(n, fc; m)} C P(n) a s A U ß where A = {fi(n, j) G P(n) : 
/i(n,j) is obtained from X(n, fc) by writing n(m) — 1 in the place of 
n(ra) and inserting the integer 1 in exactly one of the (k + 1) gaps 
formed by the elements in the ordered array (n(l), • • -, n(m — 1), 
n(m) — 1, n(m + 1), • • -, n(k))} and B = {fx(n,j) G P(n) : /u,(n, j ) is 
obtained from X(n, fc) by writing n(m) — 1 in the place of n(m) and 
writing n(i) + 1 in the place of n(i) for exactly one i ^ m, leaving 
all the other n(i)'s fixed}. 
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Note: The elements of A are (k + l)-tuples in case n(m) > 1 and 
reduce to fc-tuples in case n(ra) = 1. The elements of B are fc-tuples in 
case n(m) > 1 and reduce to (k — l)-tuples in case n(m) = 1. 

We shall say F is a {X(n, k; m)}-parameter family on I in case F 
is a fi(n, j)-parameter family for all /x(n, j) €E {X(n, k; m)}. 

For 1 =g m < k with n(m) S 2 and n(m + 1) = 1, we shall let 
L(ra) = the largest integer r ^ m + 1 such that n(i) = 1 for all i, 
m + 1 ^ i ^ r. Similarly for 1 < m ^ k with n(ra) S 2 and n(m — 1) 
= 1, we shall let s(m) = the smallest integer r ^ m - 1 such that 
n(i) = 1 for all i, r â i = m — 1. 

Also for X(n, k) G P(n) with n(i) = 2 for at least one i, 1^ i^k, 
let p = min{i : 1 ^ i ê k, n(i) è 2} and q = max{f : 1 ^ i ^ fc, n(t) 
• S 2 } . 

3. X(n, fe)-parameter families. The following is a continuity theorem 
of a special type for X(n, fc)-parameter families. 

THEOREM 3.1. Suppose F is a X(n, k)-parameter family and also a 
{X(n, k; m}-parameter family for some fixed X(n, k) G P(n) and some 

fixed integer m, 1 ^ m ^ k on an interval I. Let xx < x2< ' ' • < xk 

be k arbitrary points in I and {ctj :0^j < +& }be a sequence of real 
numbers such that <%( —» oo as j -» + °° • For each j § 0, let fj Œ F be 
determined by the condition fjn(m)~l (xm) = <% and all the conditions 
in (1.1) except for i = m and r = n(m) — 1. 77ien f-+ fo as j - * + » 
uniformly on compact subsets of I. 

PROOF. Let / be a compact subset of I such that [xu xk] G / . 
Choose a monotone subsequence {ctyp)} C {aj} and denote for con
venience the subsequences {aJ(p)} and (fj(P)} by {a,} and {f} respec
tively. We can assume without loss of generality that {<%} is monotone 
decreasing since the proof will be similar of {otj} is monotone increas
ing. Since/0, fj and fj+l have n(l), • • -, n(m — 1), n(m)— 1, n(m -j-1), 
• • "•, n(k) conditions in common at xp- • -, xk and F is a X(n, fe)-parameter 
family if 09 = aj+ 1 for any j then Jjy = jÇ+1. Therefore we can assume 
without loss of generality that {oj} is strictly decreasing. Consequently, 

/o("(m,- i)(^)</i:<r ,_1,(*m) 
< / . , n , m , - i , ( X r o ) 

< / i ( „ ( m , - i , ( X r o ) 

for all j S 2. These inequalities together with the hypothesis that F 
is a {X(n, fc; m)}-parameter family imply for all j i^ 1 
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S g n [ / i + i ( x ) - / i ( x ) ] . 

Sgn[ / i (* ) - / ! (* ) ] 

- l o n ( x m , x m + 1 ) 

( - . l ) n ( m + 1 ) + 1 on(x m + 1 ,x w + 2 ) 

(_ l)»(m+i) + . . . + n(fc) + 1 on (xfc, xk+l) 

( - l ) n ( m ) on(x m _ 1 ,x m ) 

= ( - l ) » ( D + -+n(m) o n ( X o j i | . l ) i 

Thus {^} is pointwise monotone on each of the intervals (xhxi+l), 
i = 0, 1, • • -, k and pointwise bounded by the functions / 0 and fx on 
I. Moreover by the continuity of the functions f0 and f it follows that 
{fj} is uniformly bounded on / . Now we will show {f} converges to 
f0 uniformly on / . By virtue of Dini's theorem it suffices to show that 
{fj} converges to f0 pointwise on / . If not, there exists some x' G / , 
an € > 0 and a subsequence {fj(q)}, which we again denote by {f} 
such that \fj{x') — /o(*')l > € f° r aU j = 1- Clearly x ' ^ x{ for any 
i, 1 ^ i â k. Let us suppose x' G (xs, xs+i) where s is some integer, 
0 S= s == &. Also we can suppose without loss of generality that s ^ m , 
since the proof will be similar if s < m. 

Now Sgn[fj(x')- fox')) = (-1)M(*)-M(m) a n d consequently j j(x ') 
> fo(x') + € or /}(x') < /o(*') ~~ e according as M(s) — M(m) is 
even or odd. In case M(s) — M(m) is even, let ft G F be the unique 
function determined by the condition ft(x') = f0(x') + e/2 and all the 
conditions of (1.1) except for i = m and r = n(ra) — 1. (ft exists since 
F is a {k(n, k; m)}-parameter family.) Then since ft and f(j ^ 0) have 
n(l), • • -, n(m — 1), n(m) — 1, n(m), • • -, n(fc) conditions in common at 
x1? * • •, Xjt respectively, and since F is a X(n, k) as well as {X(n, fc; m)}-
parameter family, we must have 

foinim)-l)(xm) < hOM-VixJ < //»<">-1>(xw) 

for all j ^ 1. This is a contradiction to the fact that OQ is the limit of 
the decreasing sequence {otj}. In case M(s) — M(m) is odd, the argu
ment is similar if we choose ft G F satisfying the condition h(x') = 
fo(x') — e/2 and all the conditions of (1.1) except for i = m and r = 
n(m) — 1. Thus the sequence {f} converges to f0 pointwise on / . 

Since from every subsequence of the original sequence {f}, we can 

Sgn[/o(x)-/ i+1(*)] 
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by the above process, obtain a further subsequence which converges 
to f0 uniformly on / , it follows that the original sequence must con
verge to f0 uniformly on / . This completes the proof of the theorem. 

COROLLARY 3.2. Suppose F is a X(n, k)-parameter family for some 
fixed X(n, k) G P(n) and also a {X(n, k; i)}-parameter family for each 
i, 1 = i ^ k on I = [a, b]. For each i, 1 ̂  i â fc, let {a^ : 0 = j . < 
+ oo } be k sequences of real numbers such that a^. —* Oj0 as jf —> +'<». 
Also for each j{ ^ 0, 1 = i = k, let fil jk G F be the unique function 
determined by the conditions (1.1) with yiMi)_i replaced by ay. for 
1 = i ^§ k. Then there exists a sequence of functions {fp : 1 ^ p < 
+ oo} where fP = fjiip)...jkip) with ji(p)-++*> as p - > + o o , 1 ^ 
i ^ fc, such thatfp(x) —> f0...o(x) as p —> + oo uniformly on I. 

PROOF. For fixed values for j x , • • *,jk-i, consider the sequence 
{Jf̂ . .jk: 0 ^ j k < +00 } C F. This sequence by Theorem 3.1 con
verges to /jy j ^ o as j f c —» + oo uniformly on I. Again for fixed values 
°f/i> ' ' *> Jk-2 and forjfc = 0 the sequence {fh- -jk_^\ 0 ^ jfe_! < + oo } 
converges to /j1---jfc_2oo as jk-\-* + °° uniformly on I. Continuing 
in this way, we obtain that the sequence {^i0...0 : 0 ^ ^ < +00} con
verges to f0...0 as j ! —» + 00 uniformly on I. (Note that the number of 
zeros in the subscripts in each case here is such that the total number 
of subscripts is fc.) Now by the standard diagonalisation process we 
can obtain sequences {ji(p)} with ji(p) —> 4- 00 a s p — » + o o ? l f g f g f c 
such that {//(p)•••jfc(p)} converges to / 0 . 0 as p—» +00 uniformly on 
I. This completes thé proof of the corollary. 

4. X(n, fc)-convex functions. In this section we shall assume one or 
the other of the following hypotheses and so it will be convenient to 
assign them the abbreviations as follows: 

H: F is a X(n, fc)-parameter family on I. 
Hi: F is a X(n, k; i+ )-parameter family on I. 

Hi': F is aX(n, k; i— )-parameter family on I. 
G»: u is X(n, fc; i + )-convex with respect to F on 1. 

Gi': M is X(n, fc; i— )-convex with respect to F on I 

The following lemmas are consequences of the Definitions (1.1) 
and (1.3). 

LEMMA 4.1. Suppose for some fixed X(n, k) G P(n) with n(m) § 2 
for some m, 1 ^ m ^ fc, F and u satisfy the hypothesis H, Hm and Gm. 
Thenf G F determined by the conditions (1.1) satisfies 

(i) ( - l)^\f(x) - «(*)) ^ 0 on (xm, xm+1) 
(ii) ( - l)m\f(x) - ti(x)) S O o n (Xi, Xi+1) for alii. m ^ t S L(m), 

in case n(m + 1) = 1, 
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(iii) f(x) = u(x) on [xm> z] if equality holds in (i) for some z G 
\Xm> Xm + i) 

(iv) f(x) = u(x) on [xm, max{z, xL(m)}] if equality holds in (ii) for 
some z G (xh xi+l)for some i,m^ i g L(m), in case n(m + 1) = 1. 

LEMMA 4.2. Suppose for some fixed k(n, k) G P(n) with n(m) è 2 
for some m, l ^ m ^ l , F and u satisfy the hypothesis H, Hm' and 
Gm '. Then f G F determined by the conditions (1.1) satisfies 

( i ) ( ^ M c m - i ) ^ ) _ u(x))^Oon(xm_lyxm) 
(ii) (-l)M«-l\f(x) - u(x)) g 0 on (*;_!,Xi)for all i, s(m) ^ i ^ m , 

in case n(m — 1) = 1. 
(iii) f(x) = u(x) on [z,xm], in case equality holds in (i) for some 

(iv) f(x)^u(x) on [min{z, xs(m)], xm] if equality holds in (ii) for 
some z G (*i_i, x^for some i, s(m) ê i^m,in case n(m — 1) = 1. 

We shall prove only Lemma (4.1) since the proof of Lemma (4.2) 
is analogous. In the proof of Lemma (4.1) we shall consider only the 
general case 1 g m < k. The case m = k can be treated by appro
priate modifications of notation in the general proof. 

PROOF, (i) Suppose (-l)M{m)(f(z) - u(z)) > 0 for some z G (xm, 
xm+l). Let g G F be determined by the condition g(z) = u(z) and all 
the conditions of (1.1) except for i = m and r = n(m) — 1. (g exists 
by the hypothesis Hm.). Now g — / h a s n(l), • • -, n(m — 1), n(m) — 1, 
n(m + Ì), • • •, n(k) zeros at xx, • • -, xk respectively with n(l) + • • • + 
n(k) = n and hence must keep a constant sign on (xm, xm+i), namely 
that of g(z) — f(z) = u(z) — f(z), for if otherwise we will have a con
tradiction to the hypothesis Hm. Consequently ( — l)M{m\f(x) — g(x)) 
> 0 on (xm> xm+i). Then by the hypothesis H, it follows that 
(-l)mm)(f(n(Tn)-l)(xJ _ g(n(m)-D^J) > Q, that ÌS 

(4.1) (-l)wW(f4<»<™)-1>(xm) - g{n{m)-l)(xm)) > 0. 

Also by the hypothesis Gm, g must satisfy (—l)M(m)~1(g(x) — u(x)) 
g 0 on (xm,z) and consequently (-l)M{m)-l(g^m)-l\xm)-- ti<»(m)-i) 
(xm)) S 0. This contradicts the inequality (4.1). Thus we must have 
( - l ) M ( m W - «(*)) ^ 0 on (sm, xm + 1). 

(ii) The proof is by induction on i9m^ i^ L(m). By conclusion 
(i), the inequality is true for i = m. Now assume the inequalities are 
true for all i, m g i g / ( < L(ra)). We will show that the inequality 
holds for i = / + 1. Suppose if possible 
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(4.2) (-l)Ma+i> (/(Z) - u ( z ) ) > o for some z G (xJ+l,xJ+2). 

Let g G F be determined by the condition g(z) = u(z) and all the 
conditions of (1.1) except for i = / + 1 and r = 0. (g exists by the 
hypothesis H, since n(j + 1) = 1). Now g — / has n(l), • • -, n(J), 
n(J -h2), • • -, n(k) zeros at xu • • -, *;, jt;+2> * * ',*k respectively and 
hence by the hypothesis H, cannot have any more zeros on (xj, Xj+2)-
Therefore g — / must keep a constant sign on (xj, Xj+2)

 a n d in view of 
the inequality (4.2) it must satisfy 

(4.3) (-l)M(,+1,(/(*/+i)-g(*/+i))>0. 

However g G F is determined by the conditions (1.1) with x / + 1 re
placed by z and hence by the induction hypothesis it must satisfy 
(-l)M ( / )(g(*) - «(*)) = 0 o n (xj, z). In particular (-l)M(J\g(xJ+l) -
u(xj + i)) S 0 and this together with the assumption that n(J + 1) = 1 
contradicts the inequality (4.3). This completes the proof of (ii). 

(iii) Since / satisfies the condition f(z) = u(z) and all the conditions 
of (1.1) (we can ignore the condition with i = m and r = n(m) — 1), 
by the hypothesis Gm we must have (—l)M^w)~1(/(x) — u(x)) ê 0 on 
(xm, z). This inequality together with (i) implies f(x) = u(x) on 
[xm, z\. 

(iv) We shall first consider the case z G (xm, xm+l). Now / satisfies 
the condition f(z) = u(z) and all the conditions of (1.1) (we shall now 
ignore the condition with i = L(m) and r = 0). Consequently by (ii) 
we must have 

(-l)M<m+1>(/(x) - tt(x)) ^ 0 on (z, xm+l), 

(-l)M< i + 1>(/(x) - «(x)) g 0 on (x,, xi+l), m + 1 ̂  i ̂  L(m) - 2 

and ( - l)«tf-<™»(/(x) - «(x)) ^ 0 on (xL(m)_l5 xL(m) + 1). 

These inequalities together with (i), (ii), and (iii) imply f(x) = u(x) 
on [xm, xL(m)]. 

In case z Œ (̂ m+i? ^m+2)? w e can interchange the roles of z and 
xm+i in the preceding argument and then using (iii) as before we can 
obtain in the same way f(x) = u(x) on [xm, xL{m)]. 

The proof for the cases z G (xh xi+i) for some i, m + 2 â i = L(m) 
does not involve any new ideas and hence is omitted. 

In the next two theorems we state sufficient conditions under which 
X(n, k; ra+ ) and k(n, k; m— ) convexity implies X(n, fc)-convexity. 
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THEOREM 4.3. Let \(n, k) Œ P(n) be such that n(i) ^ 2 for at least 
one i, l = t < f c Suppose F and u satisfy the hypotheses H, H{ and 
GÌ for all i, p ^ i < k for which n(i) è 2 and f G F is as in Lemma 
4.1. Then 

(i) f satisfies (-l)M^(f(x) - u(x)) ^ 0 on (xh x i+1), p^i<k. 
(ii) If either (a) p = 1 or (b) p > 1 and F and u satisfy the hypoth

eses Hp ' and Gp ', then u is A(n, k)-convex with respect to F on I. 
(iii) If either (a) n (k) = 1 or (b) n ( f c ) è 2 and Hfc noM« then f(x) — 

u(x)^0on(xk>xk+i). 

The next theorem is an analogue of Theorem 4.3. 

THEOREM 4.4. Let k(n, k) G P(n) be such that n(i) §^ 2 for at least 
one i, 1 < i â k. Suppose F and u satisfy the hypotheses H, H^', and 
GÌ ' for all i, 1 < i^ q for which n(i) i^ 2 and f Œ F is as in Lemma 
4.1. Then 

(i) / satisfies (-l)m-l)(f(x) - u{x)) â O o n ( x ^ , *,), K i g 9. 
(ii) If either (a) 9 = A; or (6) q <k and F and u satisfy the hypoth

eses Hq and Gq, then u is X(n, k)-convex with respect to F on I. 
(iii) If either (a) n(l) = 1 or (b) n ( l ) ê 2 and Gx ' holds, then 

( - l ) » ( f ( x ) - u ( x ) ) S O o n ( * o , * i ) . 

We shall prove only Theorem (4.3) since the proof of Theorem (4.4) 
is analogous. 

PROOF (i). Since n(p) ^ 2, by (i) of Lemma (4.1) / satisfies 
(-l)M<»>(/(x) - u(x)) ^ 0 on (xp, xp+l). In case p + 1 = fc, there is 
nothing to prove. In case p + 1 < k, we can have either (a) n(p + 1) 
S 2 or (b) n(p + 1) = 1. We now use (i) or (ii) of Lemma 4.1 accord
ing as (a) or (b) occurs to get the required inequality on (xp+1, xp+2). 
Again the procedure stops if p + 2 = k. Otherwise repeating the pre
vious argument a finite number of times we arrive at the conclusion 

(i). 

(ii) (a) Obvious 
(b) This follows from (ii) of Lemma (4.2) and (i) above. 

(iii) (a) This follows from (ii) of Lemma (4.1) by letting m = q in 
that lemma. 

(b) Obvious. 

THEOREM 4.5. Suppose F is an unrestricted n-parameter family on 
I and u is convex with respect to F on /. Let X(n, k) G P(n) be arbi
trary and f G F be as in Lemma 4.1. Then 

(i) u is X(n, k)-convex with respect to F on I. 
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(ii) / satisfies (a) f(x) — u(x) ^ 0 on (xk, xk+i) and (b) ( — l)n(f(x) 
- u(x)^0on(x0,xl). 

(iii) In case f(z) = u(z) for some z G (xh xi+l), O ^ i ^ / c then 
f(x) = u(x) on [min{z, xx), max{%, xk}]. 

PROOF (i). We can assume X(n, k) G P(n) is such that n(i) â 2 for 
some i, 1 ^ i ^ fc for if otherwise there is nothing to prove. Now one 
of the following two cases must occur. 

Case I. n(i) = 1 for all i, 1 ^ i < k, 
Case II. n(i) ^ 2 for some i, 1 ^ i < fc. 

In case I, we have n(k) § 2, so the X(n, fc)-convexity of u follows 
from the convexity of u by (ii) (a) of Theorem 4.4 and induction on 
n(k). 

In case II, the proof is by induction on k. Since u is convex we 
obtain by (ii) of Theorem 4.3 that for all ii(n, n — 1) G P(n) with 
n(i) è 2 for some i, l ^ i < n — 1, w i s /x(n, n — l)-convex. Now 
assume that for all j' ^ k + 1 and for all /x(n, j ) G P(n) with /x(t) â 2 
for some i, 1 ^ i < j , w is /x(n, j)-convex. We will show u is X(n, fc)-
convex. By the induction hypothesis u is /x(n, fc + l)-convex for all 
/i(n, fc + 1) G P(n) with n(f) = 2 for some i, 1 ^ i < k + 1. Now by 
our choice of X(n, k) in case II we have for all i, 1 ^ i < k for which 
n(i) ^ 2 that X(n, A:; i+) and X(n, fc; i—) are (k + l)-tuples satisfying 
either n(i) = 1 for all i, 1 = i < k + 1 or n(i) ^ 2 for some i, 1 ^ i 
< fc + 1. Hence we have either by case I or by induction hypothesis 
that u is X(n, k; i + ) and X(n? fc; i—)-convex for all i, 1 ^ i < fc with 
n(i) ê 2. Hence by (ii) of Theorem (4.3) it follows that u is X(n, k)-
convex. 

(ii) If n(i) = 1 for all i, 1 ê i â k these inequalities are known [5] 
to be true. So we shall assume n(i) § 2 for some i,l^i=k and con
sider the two cases I and II as in the proof of (i). If case I occurs then 
the inequalities follow by (i) of Lemma 4.1 and (ii) of Lemma (4.2). If 
case II occurs then (a) follows from (iii) of Theorem (4.3) and (b) fol
lows either from (ii) of Lemma (4.2) with m = p or from (i) of Lemma 
(4.2). 

(iii) If n(i) = 1 for all i, 1 ^ i ^ fc, then the desired identity follows 
from the definition of convexity and (ii). If n(i) è 2 for some i, 1 ^ i 
^ k, again consider the two cases I and II as in the proof of (i). If 
case I occurs and z > xk then we have by (iii) of Lemma (4.1) that 
fix) = u(x) on [xk, z]. Now choose n points xk = tx < t2 < ' ' ' < tn 

= z. Then / satisfies the conditions / (^) = ufa), 1 = i = n together 
with f(xx) = u(xY). Hence by the first assertion in the proof of (iii) 
we will have f(x) = u(x) on [x1? z]. If z < xk then the required iden-
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tity follows from (iv) of Lemma (4.2) with m = k. 
If case II occurs then one of the following must hold, (a) z > xq, 

(b) z < xv and (c) xp < z < xq if p < q. If (a) holds then by (iii) or 
(iv) of Lemma (4.1) we will have f(x) = u(x) on [xq, max{z, xk}]. If 
q = 1, we are done. If q > 1, choose points fcl^i^nso that xq = 
t! < t2 < ' ' • < tn = z. Since u is convex and / satisfies f(t{) = ufc), 
l â f g n with /(*i) = u{xij it must follow from the first assertion in 
the proof of (iii) that f(x) = u(x) on [xly z]. Consequently f(x) = 
u(x) on [xi, max{z, xfc}]. 

If (b) holds (note p <k) then the proof is analogous to that for (a). 
If p = q, then the proof is complete. Otherwise if (c) holds then it 

suffices to consider the case xp < z < xp + 1 since the proof for the cases 
of other intervals will be similar. Now by (iii) of Lemma (4.1) we have 
f(x) = u(x) on [xp, z]. Then choosing points vh 1 ̂  i ̂  n such that 
ï p = Î)J < t)2 < • * • < vn = z and using the hypothesis of convexity 
of u along with f(xk) = u(xk), we obtain f(x) = w(x) on [xp, xfe]. If 
p = 1 we are done. If p > 1, the fact that f(x{) = w(xx) yields also 
f(x) = M(X) on [x1? z ] . Consequently /(x) = W(JC) on [x1}xfc]. This 
completes the proof of (iii). 

COROLLARY 4.6. Let F, k(n, k) and f be as in Theorem 4.5. Suppose 
u is strictly convex with respect to F on I. Then 

(i) u is strictly \(n, k)~convex with respect to F on I. 
(ii) /satisfies strict inequalities in (ii) of Theorem 4.5. 
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