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DIFFERENTIAL EQUATIONS 
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1. Introduction. In this paper we consider equations of the form 

(1.1) Ly = y" + h(t)y' + r(t)y = f(t, y,y')('= dldt = D), 

where h, r a n d / a r e continuous function on a < t < b, \y\ < °°, |t/ ' | 
< » . We allow the open interval (a, h) to be bounded or unbounded 
and envisage the situation where / is a small perturbation in some 
sense in the differential equation (1.1) near the endpoints a and b. 

The asymptotic nature of solutions of (1.1) depends critically upon 
whether solutions of Ly = 0 are oscillatory or nonoscillatory. This 
is clearly illustrated by the results in [1] , [2], [4], [8] and [11]. 
For example, solutions of y" = r(t)y behave at oo like solutions of the 
nonoscillatory equation y" = 0 if tr(t) is integrable at oo y whereas 
solutions oft/" + y = r(t)y behave at oo like solutions of the oscillatory 
equation y" + y = 0 if just r(t) is integrable at oo. In this investigation 
we assume that L is disconjugate on (a, fo), i.e., no nontrivial solution 
of Ly = 0 has more than one zero in (a, fo). For conditions on h and r 
which imply L is disconjugate, see [ 12] - [ 15]. The end results of 
our investigation provide conditions on/which imply (1.1) has solutions 
which are asymptotic to the maximal solutions of Ly = 0 at the end-
points of (a, b). 

A nontrivial solution u of Ly = 0 is said to be a minimal solution 
atfeif 

, ^ _ v(t) 

for all solutions v linearly independent of u. Minimal solutions are 
unique up to multiplication by nonzero constants. Any nontrivial 
solution which is not a minimal solution at b is called a maximal solu
tion at fe. By a positive solution at b, we shall mean a solution which 
is positive in some left neighborhood (ax, b) of b. The assumption that 
L is disconjugate on (a, b) implies the existence of minimal and maxi-
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mal solutions at a and b. We will say that L is disconjugate on the 
closed interval [a, b], even though L may be singular at a or b, pro
vided L is disconjugate on (a, b) in the sense described above and 
provided the minimal solutions ux and u2 at b and a, respectively, are 
linearly independent. Thus, L= D2 is disconjugate on [0, oo] be
cause the minimal solutions at oo and 0 are (multiples of) 1 and t, 
respectively, which are linearly independent. But D2 is not discon
jugate on [ — oo 3 oo ] because the constant solutions are minimal at 
both — oo and oo. Finally, we note that disconjugacy on [a, b] implies 
the existence of minimal and maximal solutions at a and b which are 
positive throughout (a, b). 

THEOREM 1.1. Assume that h, r G C(a, b), f G C((a, b) X R2), L is 
disconjugate on [a, b] and there exist junctions a, ß G C2(a, b) such 
that Lß ^ f(t,ß,ß'), La^f(t, a, a') andß^ a. Let 

(1.2) * (0 = sup{|/(t, y, z)\ : |z| < oo and a(t) ^ y ̂  ß(t)} 

and ux and u2 be positive minimal solutions ofLy = 0atb and a, 
respectively. If ifr(t)u2(t)exp(pp(s) ds) is integrable at a and 
^(f)ii1(f)exp(Jtp(s) ds) is integrable at b, then for any A and B such 
that 

(1.3) lim *$L ^ A ^ l imm lim -5ÖU B ^ limML 
t^a+ UY(t) e-a-H ttl(*) t_^_ U2(t) t^b_ U2(t) 

the boundary value problem 

(1.4) Ly = f(t,y,y'), lim^=A,lim^=B, 
t-+a+ M i ( r ) t_b_ U2(t) 

has a solution y G C2(a, b). 

THEOREM 1.2. Assume that h,r G C(a, b), f G C((a, b) X R2), 
f(t, 0,0) ^ 0 and L is disconjugate on (a, b). 

Let ux and u2 be positive minimal and maximal solutions at b of 
Ly = 0, respectively. If there exist a constant c and a continuous fune-
tion g(f, y), which is nondecreasing in y for y > 0, such that 

(1.5) \f(t,y,y')\^g(t9y)9a<t<b,y>0,-*> <y'< oo, 

and 

(1-6) J "i(*)g(s, cu2(s))exp ( J* p(r) drjds < » , 
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then for each B,O^B<c, equation (1.1) has a solution y defined in 
some left neighborhood ofb such that 

(1.7) lim - ^ - = B. 

Theorem 1.1 will be proven in section 2 and Theorem 1.2, which is 
a consequence of Theorem 1.1, will be proven in § 3. Of course, the 
companion result to Theorem 1.2 emphasizing the asymptotic behavior 
at a instead ofb would also hold. 

As an existence theorem for boundary value problems of the type 
(1.4), Theorem 1.1 extends the main result of Lee and Willett [6] , 
who assume that i/f(£)t/i(£)exp(pp(s) ds), i = 1, 2, is integrable on the 
whole interval [a, b] . However, the results in [6] allow more general 
boundary conditions than (1.4) and more general functions f{t,y,y')* 
with respect to y '. A simple useful consequence of Theorem 1.1 is the 
following. 

COROLLARY 1.1. Iff G. C((0, o° ) X R2), there exist constants cY and 
c2 such thatf(t, c2,0) ^ 0 ^ f(t, ci9 0) and Ci < c2, and 

*(*) = sup{l/(*> y> 2)1 • M < °° > ci < y < c2} 

is integrable at <» and t\fß(t) is integrable at 0, then for each A, cl^â A 
â c2, the problem 

y"+f(t,y,y'),y(0)=A, 

has a solution y G C2(0, <» ) such that cx ^ y(t) ^ c2, 0 < t < oo. 

Many (cf., e.g., [3]; [5], [7] , [9], [10] and [16]) results in the 
literature when applied to (1.1) follow directly from Theorems 1.1 and 
1.2. A simple example is the following: 

COROLLARY 1.2. If for each i = 0, 1, • • -, M, the functions ai(t)V are 
continuous and integrable on some neighborhood of oo y then for each 
positive constant B, there exists a neighborhood N of » such that 

M 

y" + 2 <Wf = ° 
i=0 

has a solution y G C2(N) such that lim(_>oot/(£)/£ = B. 

The converse of Corollary 1.2 obviously holds in the case the func
tions ai(t) are of constant and identical sign. 
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2. Proof of Theorem 1.1. With uY and u2 positive minimal solutions 
of Ly = 0 at b and a, respectively, define u = uY + u2 and 

(2.1)D°y(t) = l i n Ä D^t) = h t ^ ' W - f ^ » , a S * S *, 
,-rf u(s) ^ ,-* W(s) 

where 

W(s) = f*i(*)t*2 '(s) - M 2 ( 5 ) M 1 '(«) 
(2.2) 

= const • exp ( — h(r) òr ) . 

Let 

(2.3) F(t,y,z) = f(t,y, U ^ }
 U ) > 

sothatF(t,y,Dty) = / ( t ,y ,y ' ) . 

Let fc(£) be a positive continuous function on (a, b) for which the 
combination k(t)u(t) exp(J*fh($) ds) is integrable on [a, b]. With a 
and ß as in the assumptions, define 

(2.4) F*(t,y,z) = 

F(t,ß(t), z) + k(t)Arctan(y - ß(t)), 
when y > ß(t), 

F(t,y,z), when<x(t)^ y^ß(t), 

F(t,o(t), z) - fc(*)arctan(a(J) - y), 
when <x(t)> y. 

Then F* G C({a, b) X R2) and (1.2) implies 

(2.5) sup{|F*(f, y, z)\ : \y\ < oo, | z | < oo } ^ *( f) + „*(*). 

The first part of the proof consists of showing the existence of a 
solution y to the boundary value problem 

(2.6) Ly = F*(t, y, D'y), D°y(a) = A, D°y(b) = B, 

for A and B satisfying (1.3). The second part of the proof consists of 
showing that (1.3) is sufficient in this case to imply that the solution 
y satisfies a = y = ß and is thus a solution of Ly = F(tyy,Dly) = 
f(t,y,y'). 

Let a< c < b and consider c fixed in what follows. For 0 < e ^ €0 

^ min(fc — c,c — a) and p, q G (— oo, oo ), define z(f) so that 
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(2.7) z(t) - ptn(t) - qu2(t) = 

0, when c — e < i < c + €, 

P g(t, s)F*(s, z(s - €), D 1 ^ - € ) ) & , 
when c + € ^ t < b 

P g(t, *)F*(s, Z(Ä + €), D 1^* + €)) ds, 
when fl<f^c-€ 

where 

(2.8) g(t,8) = [tl2(*)l*iW - W2(5)w1(f)]/W(5) 

is the Cauchy function for the operator L. If <p(t) = ^(f) + 7rfc(f), 
then the assumptions and (2.2) imply that u2(t)<p(t)W~1(t) is integrable 
at a and Ui(t)<p(t)W~ l(t) is integrable at b. It follows from this observa
tion and (2.7) that D°z(a) and D°z(b) exist and 

(2.9) D°z(a) = p + fC~€fi2(*)W-1(*)F*(*, z(s + c), D1«^ + e)) d», 

(2.10) D°z(fc) = a + f* w1(s)W-1(s)F*(s, z(s - e), D^s - e)) ds. 
J C+€ 

In what follows we will emphasize the dependence of z(t) on its 
various parameters €, p and q by using additional arguments, thus, 
z(t) = Z(t; €, p, 9). 

For € fixed define a mapping T : R2—> fl2 by 

where 
T(p,q)=(P,Q), 

P=A- p u2(s)W-i(*)F*(«, z(« + e, p, q), Dlz(s + e, p, q)) ds, 
J a 

Q=B-\b Ui(8)W-l(s)F*(s, z(s - e, p, q), Dh(s - e, p, q)) ds. 
J c+e 

Since 

P € \u2(s)W-i(s)F*(s>z,D1z)\ds^(C u2(s)W-\s)<p(s) ds 
Ja Ja 

< oo 

and 

I** K W W - W ^ , z, Dlz)\ ds ^ I* u^W-^sMs) ds 
Jc+4 Jc 

< o o , 
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TR2 is bounded uniformly in €, 0 < e < €0. Thus, there exists a com
pact subset K of fl2 independent of € such that TK C K for all 0 < € 
< e0. Since T is continuous, the Browder Fixed Point Theorem implies 
that for each €, 0 < € < e0, T has a fixed point (p€, q€) G K. 

Let z€(t) ^ z(t; p€, q€) and consider X0 = {D°z((t) : 0 < € ^ €0}. 
On compact subsets of (a, b), X0 is a uniformly bounded and equicon-
tinuous set. Hence by the Ascoli-Arzela theorem and the compactness 
of K, there exists a sequence ek 10, such that 

(Pk> qk) = ( /V q<k)-+ (P*> 9*) e fc> 
wk=D°zn-*w* GC(a,b), 

and the convergence of wk to a;* is uniform on compact subsets of 
(a, b). Furthermore, w*(a) = A and u^fo) = B since wk(a) = A and 
wk(b) = B for all values of k. 

Let a* = z€* = uu;fc and z* = wu?*, and consider Xi* = {Dlzk : k 

= 1,2, • • •}. From (2.7) we obtain 

9fc ~~ Pk> when c — € f c < f < c + €fc 

9fc - Pk + r ^f~\F*( s> **(* " €*) ' D lzfc( s ~ €*)) *» 
J c+€fc YV(S) 

when c + efc ^ t < b 

<?* - P* + f ^ H F * ( * > **(* + €*)> D%(8 + efc)) cfe, 
Jc-€jt w j s ; 

when a < f ^ c — €fc. 

Hence, X*x is a uniformly bounded and equicontinuous set, and so the 
Ascoli-Arzela theorem implies there exists a subsequence, without loss 
of generality assume it to be {Dlzk}, which converges uniformly on 
compact subsets of (a, b) to a function z*l G. C(a, b). So from (2.7) and 
(2.13), we obtain 

/« , .x **(*) = p*ui(t) + q*u2(t) 
(2.14) 

+ £ g(t,s)F*(s,z*(s),z*\s))ds, 

(2.15) Z*^) = 9* - p* + I* u(8)W-*(8)F*(8,Z*(8),Z*l(8))d8. 
J c 

But (2.14) implies 

Dlzk(t) = j 

(2.13) 
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D%(t) = 9* - p* + P u(s)W-i(*)F*(s,**(s),z* !(*))<**; 

hence, D1z*(f) = z* x(*) from (2.15). 
Furthermore, 

p* = A - fC fi2(*)W-i(«)F*(*, * * « , D%(*)) cfa, 
J a 

q* = B- f u,(*)W-i(*)F*(s, Ms), D%(«)) <fc, 

and hence by substituting into (2.14)-(2.15), we conclude that 

u(t)z*(t) = Aux(t) + Bu2(t) 

-u2(t) jb
t ui(s)W-\s)F^s>u(s)z^(s\u\s))ds 

-ux(t) P u2(s)W-\s)F*(sM$M),z*Ks))ds9 

J a 

z*\t) = B - A + P u2(s)W-i(s)F*(s, u(s)2*(s), z*!(*)) efc 
J a 

- \b ul(s)W-\s)F*(s9u(s)z*(s\z*\s))ds=D\uz*). 

Hence, y = uz* satisfies (2.6), and the first part of the proof is com
plete. 

The second part of the proof consists of showing the solution y of 
(2.6) satisfies 

(2.18) a(t) ^ y(t) ^ ß(t\ a < t < b; 

hence, y is a solution of (1.4) since F*(t, y(t), Dly(t)) then agrees with 
f(ty y(t), y'(t)) for a < t < b. Inequality (2.18) can be established by 
means of the following elementary maximal principle. 

LEMMA. If y G C(t0, tx), y(t) > 0 for t0<t<tl and D°y(t0) = 0 
= D°j/(f1), then there exists E G (t0, tx) such that 

(2.19) D1t/(E) = 0 and Ly(E)^0. 

PROOF. Since D°y(t) = y(t)lu(t) > 0 in (*0, *i) and l im^ 2 -D°y(t) 
= 0 = limt^tl+D°y(t), there exists a point E in (t0, tx) at which D°y 
is maximal. At this point, it must be the case that (ylu) '(E) = 0 and 
(ylu)"(E) g 0. But 
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" W D - ^ © ' < * > -

L * ( E ) = l T D V D l l -«(£)(- it)(£)sa 

To complete the proof of Theorem 1.1, assume y(t) > ß(t) for some 
t G (a, b); the proof is similar if y(t) < a(t) for some t. Then there 
exists [tl9t2] C [a, b] such that z(t) = t/(*) - fi(t) > 0 for f G fo, t2) 
and D°z(*i) = 0 = D°z(*2), since D°t/(a) ^ D°0(a) and D<ty(b) ^ 
D°ß(b). Hence, the Lemma implies there exists a point E G (t0, tx) 
C (a, b) such that 

(2.20) D 1 * ^ ) = 0 

and 

(2.21) Lz(E) g 0. 

But (2.20) implies Dly(E) = D*fi(E); hence, 

I Ä ( E ) = Ly(E) - Lß(E) 

^F*(E,y(E\Diy(E))-f(E,ß(E\ß'(E)) 

= F(E,ß(E), D*ß(E)) + fc(£)Arctan z(E) - / (E , /8(E), £ ' (£) ) 

= k(E) Arctan z(£) > 0, 

which contradicts (2.21). 

3. Proof of Theorem 1.2. Choose aly aê aY< b, sufficiently close 
to b so that u2(t) > 0 on (a1? b) and 

(3.1) B + \h M1(S)g(S, cu2(s))IW(s) ds^c, 
J al 

where W(t) is defined by (2.2). 

We will show that for any A such that 

0 ^ A ^ c lim t*2(t)/!ii(t)> 

Theorem 1.1 implies the boundary value problem 

ty = f(t,y,y')9 hm t/WM*) = A, lim y(t)/t*2(t) = B, 

has a solution t/ G C2(a, fo), which will be sufficient to prove Theorem 
1.2. Note that u2(t) is not in general a minimal solution of Ly = 0 at 
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aì9 which is required in Theorem 1.1. However, in the present context 
this will not be important for if u2(t) is not a minimal solution at ai9 

then 

ü2(t) = u2(t) - u2(ai)ul(t)lul(ai) >0,al<t<bt 

is such, .and can be used in place of u2(t) since 

(3.2) lim -2ÖL = lim -1®- . 
t-6- u2{t) t^,_ n2(t) 

Let a = 0 so that the boundary inequalities for a are automatically 
satisfied, because A , ß = 0 , and 

La(t) = 0^ f(t, 0,0) = f(t, a(t), *'(*)), ax<t<by 

by assumption. 
Letß(*) = u2(t)z(t\ where 

*W = C " \[ ( J! u " 2 W e x p( " f M T ) * ) dr ) 

u2(s)g(s> cu2(s)) exp ( J fc(r) dr ) cfo, 

so that 

z(t) g 2(öi) = c, al<t<b. 

Since minimal solutions are unique up to a constant factor, 

«*2(*)J w2-2(s)exp r - J h(T)dr)ds 

-CoWlW" w ( ô " ' 
Thus, (3.1) implies 

J flj W(s) 

Hence, 

/8(f) = t#2(t)z(*) ^ 0 = a{t\ ax < t < b, 

and 
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lim -^Vr = <b) S B. ^b_ u2(0 

Finally, from the monotonicity of g and (1.5), we conclude that 

Lß(t) = u2(t)z"(t) + [2u'(t) + h(t)u2(t)]z'(t) 

= -g(t,cu2(t)) 

^-g(t,u2(t)z(t))= -g(t,ß(t)) 

^f(t,ß(t),ß'(t)),al<t<b. 

There remains to show the appropriate integrabihty conditions hold 
at bandog. If 

i/i(0 = sup{|/(*, y, z)| : |z| < » , 0 ^ y ^ u(t)z(t)}, 

then 

*(*) ^ g(t, u2(t)z(t)) ^ g(t, cu2(t)). 

Since Ui(t)g(t, cu2(t))IW(t) is integrable at b by assumption, 

M1(f)i/r(f)exp ( - J' 7t(r) dr ) = c0tii(t)*(t)/W(t) 

is integrable at fo. The appropriate integrabihty condition at ax will 
also hold in the present context because of (3.1), that is (1.6). 

The author wishes to thank Professor James Muldowney for helpful 
suggestions. 
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