DIFFERENTIAL INEQUALITIES AND THE ASYMPTOTICS OF SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS

D. WILLETT*

1. Introduction. In this paper we consider equations of the form

$$
\begin{equation*}
L y \equiv y^{\prime \prime}+h(t) y^{\prime}+r(t) y=f\left(t, y, y^{\prime}\right)\left(\left(^{\prime} \equiv d / d t \equiv D\right)\right. \tag{1.1}
\end{equation*}
$$

where h, r and f are continuous function on $a<t<b,|y|<\infty,\left|y^{\prime}\right|$ $<\infty$. We allow the open interval (a, b) to be bounded or unbounded and envisage the situation where f is a small perturbation in some sense in the differential equation (l.1) near the endpoints a and b.

The asymptotic nature of solutions of (1.1) depends critically upon whether solutions of $L y=0$ are oscillatory or nonoscillatory. This is clearly illustrated by the results in [1], [2], [4], [8] and [11]. For example, solutions of $y^{\prime \prime}=r(t) y$ behave at ∞ like solutions of the nonoscillatory equation $y^{\prime \prime}=0$ if $\operatorname{tr}(t)$ is integrable at ∞, whereas solutions of $y^{\prime \prime}+y=r(t) y$ behave at ∞ like solutions of the oscillatory equation $y^{\prime \prime}+y=0$ if just $r(t)$ is integrable at ∞. In this investigation we assume that L is disconjugate on (a, b), i.e., no nontrivial solution of $L y=0$ has more than one zero in (a, b). For conditions on h and r which imply L is disconjugate, see [12]-[15]. The end results of our investigation provide conditions on f which imply (1.1) has solutions which are asymptotic to the maximal solutions of $L y=0$ at the endpoints of (a, b).

A nontrivial solution u of $L y=0$ is said to be a minimal solution at b if

$$
\lim _{t \rightarrow b_{-}} \frac{u(t)}{v(t)}=0
$$

for all solutions v linearly independent of u. Minimal solutions are unique up to multiplication by nonzero constants. Any nontrivial solution which is not a minimal solution at b is called a maximal solution at b. By a positive solution at b, we shall mean a solution which is positive in some left neighborhood $\left(a_{1}, b\right)$ of b. The assumption that L is disconjugate on (a, b) implies the existence of minimal and maxi-

[^0]mal solutions at a and b. We will say that L is disconjugate on the closed interval $[a, b]$, even though L may be singular at a or b, provided L is disconjugate on (a, b) in the sense described above and provided the minimal solutions u_{1} and u_{2} at b and a, respectively, are linearly independent. Thus, $L \equiv D^{2}$ is disconjugate on $[0, \infty$] because the minimal solutions at ∞ and 0 are (multiples of) 1 and t, respectively, which are linearly independent. But D^{2} is not disconjugate on $[-\infty, \infty]$ because the constant solutions are minimal at both $-\infty$ and ∞. Finally, we note that disconjugacy on $[a, b]$ implies the existence of minimal and maximal solutions at a and b which are positive throughout (a, b).

Theorem 1.1. Assume that $h, r \in C(a, b), f \in C\left((a, b) \times R^{2}\right), L$ is disconjugate on $[a, b]$ and there exist functions $\alpha, \beta \in C^{2}(a, b)$ such that $L \beta \leqq f\left(t, \beta, \beta^{\prime}\right), L \alpha \geqq f\left(t, \alpha, \alpha^{\prime}\right)$ and $\beta \geqq \alpha$. Let

$$
\begin{equation*}
\psi(t)=\sup \{|f(t, y, z)|:|z|<\infty \text { and } \alpha(t) \leqq y \leqq \beta(t)\} \tag{1.2}
\end{equation*}
$$

and u_{1} and u_{2} be positive minimal solutions of $L y=0$ at b and a, respectively. If $\psi(t) u_{2}(t) \exp \left(\iint_{p} p(s) d s\right)$ is integrable at a and $\psi(t) u_{1}(t) \exp \left(\int^{t} p(s) d s\right)$ is integrable at b, then for any A and B such that

$$
\begin{equation*}
\lim _{t \rightarrow a+} \frac{\alpha(t)}{u_{1}(t)} \leqq A \leqq \lim _{t \rightarrow a+} \frac{\beta(t)}{u_{1}(t)}, \lim _{t \rightarrow b-} \frac{\alpha(t)}{u_{2}(t)} \leqq B \leqq \lim _{t \rightarrow b-} \frac{\beta(t)}{u_{2}(t)} \tag{1.3}
\end{equation*}
$$

the boundary value problem

$$
\begin{equation*}
L y=f\left(t, y, y^{\prime}\right), \lim _{t \rightarrow a+} \frac{y(t)}{u_{1}(t)}=A, \lim _{t \rightarrow b-} \frac{y(t)}{u_{2}(t)}=B \tag{1.4}
\end{equation*}
$$

has a solution $y \in C^{2}(a, b)$.
Theorem 1.2. Assume that $h, r \in C(a, b), f \in C\left((a, b) \times R^{2}\right)$, $f(t, 0,0) \leqq 0$ and L is disconjugate on (a, b).

Let u_{1} and u_{2} be positive minimal and maximal solutions at b of $L y=0$, respectively. If there exist a constant c and a continuous function $g(t, y)$, which is nondecreasing in y for $y>0$, such that

$$
\begin{equation*}
\left|f\left(t, y, y^{\prime}\right)\right| \leqq g(t, y), a<t<b, y>0,-\infty<y^{\prime}<\infty \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int^{b} u_{1}(s) g\left(s, c u_{2}(s)\right) \exp \left(\int^{s} p(\tau) d \tau\right) d s<\infty \tag{1.6}
\end{equation*}
$$

then for each $B, 0 \leqq B<c$, equation (1.1) has a solution y defined in some left neighborhood of b such that

$$
\begin{equation*}
\lim _{t \rightarrow b-} \frac{y(t)}{u_{2}(t)}=B \tag{1.7}
\end{equation*}
$$

Theorem 1.1 will be proven in section 2 and Theorem 1.2, which is a consequence of Theorem 1.1, will be proven in $\S 3$. Of course, the companion result to Theorem 1.2 emphasizing the asymptotic behavior at a instead of b would also hold.
As an existence theorem for boundary value problems of the type (1.4), Theorem 1.1 extends the main result of Lee and Willett [6], who assume that $\psi(t) u_{i}(t) \exp \left(\int^{t} p(s) d s\right), i=1,2$, is integrable on the whole interval [a, b]. However, the results in [6] allow more general boundary conditions than (1.4) and more general functions $f\left(t, y, y^{\prime}\right)$. with respect to y^{\prime}. A simple useful consequence of Theorem 1.1 is the following.

Corollary 1.1. If $f \in C\left((0, \infty) \times R^{2}\right)$, there exist constants c_{1} and c_{2} such that $f\left(t, c_{2}, 0\right) \geqq 0 \geqq f\left(t, c_{1}, 0\right)$ and $c_{1}<c_{2}$, and

$$
\psi(t)=\sup \left\{|f(t, y, z)|:|z|<\infty, c_{1}<y<c_{2}\right\}
$$

is integrable at ∞ and $t \psi(t)$ is integrable at 0 , then for each $A, c_{1} \leqq A$ $\leqq c_{2}$, the problem

$$
y^{\prime \prime}+f\left(t, y, y^{\prime}\right), y(0)=A
$$

has a solution $y \in C^{2}(0, \infty)$ such that $c_{1} \leqq y(t) \leqq c_{2}, 0<t<\infty$.
Many (cf., e.g., [3]; [5], [7], [9], [10] and [16]) results in the literature when applied to (1.1) follow directly from Theorems 1.1 and 1.2. A simple example is the following:

Corollary 1.2. If for each $i=0,1, \cdots, M$, the functions $a_{i}(t) t^{i}$ are continuous and integrable on some neighborhood of ∞, then for each positive constant B, there exists a neighborhood N of ∞.such that

$$
y^{\prime \prime}+\sum_{i=0}^{M} a_{i}(t) y^{i}=0
$$

has a solution $y \in C^{2}(N)$ such that $\lim _{t \rightarrow \alpha} y(t) / t=B$.
The converse of Corollary 1.2 obviously holds in the case the functions $a_{i}(t)$ are of constant and identical sign.
2. Proof of Theorem 1.1. With u_{1} and u_{2} positive minimal solutions of $L y=0$ at b and a, respectively, define $u=u_{1}+u_{2}$ and

$$
\begin{equation*}
D^{0} y(t)=\lim _{s \rightarrow t} \frac{y(s)}{u(s)}, D^{1} y(t)=\lim _{s \rightarrow t} \frac{u(s) y^{\prime}(s)-u^{\prime}(s) y(s)}{W(s)}, a \leqq t \leqq b \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
W(s) & =u_{1}(s) u_{2}^{\prime}(s)-u_{2}(s) u_{1}^{\prime}(s) \tag{2.2}\\
& \equiv \mathrm{const} \cdot \exp \left(-\int^{s} h(\tau) d \tau\right)
\end{align*}
$$

Let

$$
\begin{equation*}
F(t, y, z)=f\left(t, y, \frac{u^{\prime}(t) y+W(t) z}{u(t)}\right) \tag{2.3}
\end{equation*}
$$

so that $F\left(t, y, D^{1} y\right)=f\left(t, y, y^{\prime}\right)$.
Let $k(t)$ be a positive continuous function on (a, b) for which the combination $k(t) u(t) \exp \left(\int^{t} h(s) d s\right)$ is integrable on $[a, b]$. With α and $\boldsymbol{\beta}$ as in the assumptions, define

$$
F^{*}(t, y, z)=\left\{\begin{array}{l}
F(t, \beta(t), z)+\begin{array}{c}
k(t) \operatorname{Arctan}(y-\beta(t)) \\
\text { when } y>\beta(t) \\
F(t, y, z), \quad \text { when } \alpha(t) \leqq y \leqq \beta(t) \\
F(t, \alpha(t), z)- \\
k(t) \arctan (\alpha(t)-y) \\
\text { when } \alpha(t)>y
\end{array} \tag{2.4}
\end{array}\right.
$$

Then $F^{*} \in C\left((a, b) \times R^{2}\right)$ and (1.2) implies

$$
\begin{equation*}
\sup \left\{\left|F^{*}(t, y, z)\right|:|y|<\infty,|z|<\infty\right\} \leqq \psi(t)+\pi k(t) \tag{2.5}
\end{equation*}
$$

The first part of the proof consists of showing the existence of a solution y to the boundary value problem

$$
\begin{equation*}
L y=F^{*}\left(t, y, D^{1} y\right), D^{0} y(a)=A, D^{0} y(b)=B \tag{2.6}
\end{equation*}
$$

for A and B satisfying (1.3). The second part of the proof consists of showing that (1.3) is sufficient in this case to imply that the solution y satisfies $\alpha \leqq y \leqq \beta$ and is thus a solution of $L y=F\left(t, y, D^{1} y\right)=$ $f\left(t, y, y^{\prime}\right)$.

Let $a<c<b$ and consider c fixed in what follows. For $0<\epsilon \leqq \epsilon_{0}$ $\leqq \min (b-c, c-a)$ and $p, q \in(-\infty, \infty)$, define $z(t)$ so that

$$
z(t)-p u_{1}(t)-q u_{2}(t)=\left\{\begin{array}{c}
0, \quad \text { when } c-\epsilon<t<c+\epsilon \tag{2.7}\\
\int_{c+\epsilon}^{t} g(t, s) F^{*}\left(s, z(s-\epsilon), D^{1} z(s-\epsilon)\right) d s \\
\text { when } c+\epsilon \leqq t<b \\
\int_{c-\epsilon}^{t} \begin{array}{c}
g(t, s) F^{*}\left(s, z(s+\epsilon), D^{1} z(s+\epsilon)\right) d s \\
\text { when } a<t \leqq c-\epsilon
\end{array}
\end{array}\right.
$$

where

$$
\begin{equation*}
g(t, s)=\left[u_{2}(t) u_{1}(s)-u_{2}(s) u_{1}(t)\right] / W(s) \tag{2.8}
\end{equation*}
$$

is the Cauchy function for the operator L. If $\varphi(t)=\psi(t)+\pi k(t)$, then the assumptions and (2.2) imply that $u_{2}(t) \varphi(t) W^{-1}(t)$ is integrable at a and $u_{1}(t) \varphi(t) W^{-1}(t)$ is integrable at b. It follows from this observation and (2.7) that $D^{0} z(a)$ and $D^{0} z(b)$ exist and

$$
\begin{align*}
& D^{0} z(a)=p+\int_{a}^{c-\epsilon} u_{2}(s) W^{-1}(s) F^{*}\left(s, z(s+\epsilon), D^{1} z(s+\epsilon)\right) d s \tag{2.9}\\
& D^{0} z(b)=q+\int_{c+\epsilon}^{b} u_{1}(s) W^{-1}(s) F^{*}\left(s, z(s-\epsilon), D^{1} z(s-\epsilon)\right) d s \tag{2.10}
\end{align*}
$$

In what follows we will emphasize the dependence of $z(t)$ on its various parameters ϵ, p and q by using additional arguments, thus, $z(t) \equiv \boldsymbol{z}(t ; \epsilon, p, q)$.

For ϵ fixed define a mapping $T: R^{2} \rightarrow R^{2}$ by

$$
T(p, q)=(P, Q)
$$

where

$$
\begin{aligned}
& P=A-\int_{a}^{c-\epsilon} u_{2}(s) W^{-1}(s) F^{*}\left(s, z(s+\epsilon, p, q), D^{1} z(s+\epsilon, p, q)\right) d s \\
& Q=B-\int_{c+\epsilon}^{b} u_{1}(s) W^{-1}(s) F^{*}\left(s, z(s-\epsilon, p, q), D^{1} z(s-\epsilon, p, q)\right) d s
\end{aligned}
$$

Since

$$
\int_{a}^{c-\epsilon}\left|u_{2}(s) W^{-1}(s) F^{*}\left(s, z, D^{1} z\right)\right| d s \leqq \int_{a}^{c} u_{2}(s) W^{-1}(s) \varphi(s) d s<\infty
$$

and

$$
\int_{c+\varepsilon}^{b}\left|u_{1}(s) W^{-1}(s) F^{*}\left(s, z, D^{1} z\right)\right| d s \leqq \int_{c}^{b} u_{1}(s) W^{-1}(s) \varphi(s) d s<\infty
$$

$T R^{2}$ is bounded uniformly in $\epsilon, 0<\epsilon<\epsilon_{0}$. Thus, there exists a compact subset K of R^{2} independent of ϵ such that TK $\subset K$ for all $0<\epsilon$ $<\epsilon_{0}$. Since T is continuous, the Browder Fixed Point Theorem implies that for each $\epsilon, 0<\epsilon<\epsilon_{0}$, T has a fixed point $\left(p_{\epsilon}, q_{\epsilon}\right) \in K$.

Let $z_{\epsilon}(t) \leqq z\left(t ; p_{\epsilon}, q_{\epsilon}\right)$ and consider $\chi_{0}=\left\{D^{0} z_{\epsilon}(t): 0<\epsilon \leqq \epsilon_{0}\right\}$. On compact subsets of (a, b), χ_{0} is a uniformly bounded and equicontinuous set. Hence by the Ascoli-Arzela theorem and the compactness of K, there exists a sequence $\epsilon_{k} \downarrow 0$, such that

$$
\begin{aligned}
\left(p_{k}, q_{k}\right) & \equiv\left(p_{\epsilon_{k}}, q_{\epsilon_{k}}\right) \rightarrow\left(p_{*}, q_{*}\right) \in k \\
w_{k} & \equiv D^{0} z_{\epsilon_{k}} \rightarrow w_{*} \in C(a, b)
\end{aligned}
$$

and the convergence of w_{k} to w_{*} is uniform on compact subsets of (a, b). Furthermore, $w_{*}(a)=A$ and $w_{*}(b)=B$ since $w_{k}(a)=A$ and $w_{k}(b)=B$ for all values of k.

Let $z_{k} \equiv z_{\epsilon_{\dot{k}}}=u w_{k}$ and $z_{*}=u w_{*}$, and consider $X_{1}{ }^{*}=\left\{D^{1} z_{k}: k\right.$ $=1,2, \cdots\}$. From (2.7) we obtain

$$
(2.13) \quad D^{1} z_{k}(t)=\left\{\begin{array}{l}
q_{k}-p_{k}, \text { when } c-\epsilon_{k}<t<c+\epsilon_{k} \\
q_{k}-p_{k}+\int_{c+\epsilon_{k}}^{t} \frac{u(s)}{W(s)} F^{*}\left(s, z_{k}\left(s-\epsilon_{k}\right), D^{1} z_{k}\left(s-\epsilon_{k}\right)\right) d s \tag{2.13}\\
\quad \text { when } c+\epsilon_{k} \leqq t<b \\
q_{k}-p_{k}+\int_{c-\epsilon_{k}}^{t} \frac{u(s)}{W(s)} F^{*}\left(s, z_{k}\left(s+\epsilon_{k}\right), D^{1} z_{k}\left(s+\epsilon_{k}\right)\right) d s \\
\text { when } a<t \leqq c-\epsilon_{k} .
\end{array}\right.
$$

Hence, $\chi^{*}{ }_{1}$ is a uniformly bounded and equicontinuous set, and so the Ascoli-Arzela theorem implies there exists a subsequence, without loss of generality assume it to be $\left\{D^{1} z_{k}\right\}$, which converges uniformly on compact subsets of (a, b) to a function $z_{*}{ }^{1} \in C(a, b)$. So from (2.7) and (2.13), we obtain

$$
\begin{equation*}
z_{*}^{1}(t)=q_{*}-p_{*}+\int_{c}^{t} u(s) W^{-1}(s) F^{*}\left(s, z_{*}(s), z_{*}^{1}(s)\right) d s \tag{2.15}
\end{equation*}
$$

But (2.14) implies

$$
D^{1} z_{*}(t)=q_{*}-p_{*}+\int_{c}^{t} u(s) W^{-1}(s) F^{*}\left(s, z_{*}(s), z_{*}^{1}(s)\right) d s
$$

hence, $D^{1} z_{*}(t)=z_{*}{ }^{1}(t)$ from (2.15).
Furthermore,

$$
\begin{aligned}
& p_{*}=A-\int_{a}^{c} u_{2}(s) W^{-1}(s) F^{*}\left(s, z_{*}(s), D^{1} z_{*}(s)\right) d s, \\
& q_{*}=B-\int_{c}^{b} u_{1}(s) W^{-1}(s) F^{*}\left(s, z_{*}(s), D^{1} z_{*}(s)\right) d s,
\end{aligned}
$$

and hence by substituting into (2.14)-(2.15), we conclude that

$$
\begin{aligned}
u(t) z_{*}(t)= & A u_{1}(t)+B u_{2}(t) \\
& -u_{2}(t) \int_{t}^{b} u_{1}(s) W^{-1}(s) F^{*}\left(s, u(s) z_{*}(s), z_{*}^{1}(s)\right) d s \\
& -u_{1}(t) \int_{a}^{t} u_{2}(s) W^{-1}(s) F^{*}\left(s, u(s) z_{*}(s), z_{*}{ }^{1}(s)\right) d s \\
z_{*}(t)= & B-A+\int_{a}^{t} u_{2}(s) W^{-1}(s) F^{*}\left(s, u(s) z_{*}(s), z_{*}{ }^{1}(s)\right) d s \\
& -\int_{t}^{b} u_{1}(s) W^{-1}(s) F^{*}\left(s, u(s) z_{*}(s), z_{*}^{1}(s)\right) d s=D^{1}\left(u z_{*}\right) .
\end{aligned}
$$

Hence, $y=u z_{*}$ satisfies (2.6), and the first part of the proof is complete.

The second part of the proof consists of showing the solution y of (2.6) satisfies

$$
\begin{equation*}
\alpha(t) \leqq y(t) \leqq \beta(t), a<t<b ; \tag{2.18}
\end{equation*}
$$

hence, y is a solution of (1.4) since $F^{*}\left(t, y(t), D^{1} y(t)\right)$ then agrees with $f\left(t, y(t), y^{\prime}(t)\right)$ for $a<t<b$. Inequality (2.18) can be established by means of the following elementary maximal principle.

Lemma. If $y \in C\left(t_{0}, t_{1}\right), y(t)>0$ for $t_{0}<t<t_{1}$ and $D^{0} y\left(t_{0}\right)=0$ $=D^{0} y\left(t_{1}\right)$, then there exists $E \in\left(t_{0}, t_{1}\right)$ such that

$$
\begin{equation*}
D^{1} y(E)=0 \quad \text { and } \quad L y(E) \leqq 0 . \tag{2.19}
\end{equation*}
$$

Proof. Since $D^{0} y(t)=y(t) / u(t)>0$ in $\left(t_{0}, t_{1}\right)$ and $\lim _{t \rightarrow t_{2}} D^{0} y(t)$ $=0=\lim _{t \rightarrow t_{1}+} D^{0} y(t)$, there exists a point E in (t_{0}, t_{1}) at which $D^{0} y$ is maximal. At this point, it must be the case that $(y / u)^{\prime}(E)=0$ and $(y / u)^{\prime \prime}(E) \leqq 0$. But

$$
\begin{gathered}
D^{1} y(E)=\frac{u^{2}(E)}{W(E)}\left(\frac{y}{u}\right)^{\prime}(E)=0 \\
L y(E)=\left.\frac{W}{u} D \frac{u^{2}}{W} D \frac{y}{u}\right|^{E}=u(E)\left(\frac{y}{u}\right)^{\prime \prime}(E) \leqq 0 .
\end{gathered}
$$

To complete the proof of Theorem 1.1, assume $y(t)>\boldsymbol{\beta}(t)$ for some $t \in(a, b)$; the proof is similar if $y(t)<\alpha(t)$ for some t. Then there exists $\left[t_{1}, t_{2}\right] \subset[a, b]$ such that $z(t)=y(t)-\beta(t)>0$ for $t \in\left(t_{1}, t_{2}\right)$ and $D^{0} z\left(t_{1}\right)=0=D^{0} z\left(t_{2}\right)$, since $D^{0} y(a) \leqq D^{0} \beta(a)$ and $D^{0} y(b) \leqq$ $D^{0} \boldsymbol{\beta}(b)$. Hence, the Lemma implies there exists a point $E \in\left(t_{0}, t_{1}\right)$ $\subset(a, b)$ such that

$$
\begin{equation*}
D^{1} z(E)=0 \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
L z(E) \leqq 0 . \tag{2.21}
\end{equation*}
$$

But (2.20) implies $D^{1} y(E)=D^{1} \beta(E)$; hence,

$$
\begin{aligned}
L z(E) & =L y(E)-L \beta(E) \\
& \geqq F^{*}\left(E, y(E), D^{1} y(E)\right)-f\left(E, \beta(E), \beta^{\prime}(E)\right) \\
& =F\left(E, \beta(E), D^{1} \beta(E)\right)+k(E) \operatorname{Arctan} z(E)-f\left(E, \beta(E), \beta^{\prime}(E)\right) \\
& =k(E) \operatorname{Arctan} z(E)>0,
\end{aligned}
$$

which contradicts (2.21).
3. Proof of Theorem 1.2. Choose $a_{1}, a \leqq a_{1}<b$, sufficiently close to b so that $u_{2}(t)>0$ on ($\left.a_{1}, b\right)$ and

$$
\begin{equation*}
B+\int_{a_{1}}^{b} u_{1}(s) g\left(s, c u_{2}(s) / W(s) d s \leqq c,\right. \tag{3.1}
\end{equation*}
$$

where $W(t)$ is defined by (2.2).
We will show that for any A such that

$$
0 \leqq A \leqq c \lim _{t \rightarrow a_{1}+} u_{2}(t) / u_{1}(t),
$$

Theorem 1.1 implies the boundary value problem

$$
L y=f\left(t, y, y^{\prime}\right), \lim _{t \rightarrow a_{1}+} y(t) / u_{1}(t)=A, \lim _{t \rightarrow b^{-}} y(t) / u_{2}(t)=B,
$$

has a solution $y \in C^{2}(a, b)$, which will be sufficient to prove Theorem 1.2. Note that $u_{2}(t)$ is not in general a minimal solution of $L y=0$ at
a_{1}, which is required in Theorem 1.1. However, in the present context this will not be important for if $u_{2}(t)$ is not a minimal solution at a_{1}, then

$$
\bar{u}_{2}(t)=u_{2}(t)-u_{2}\left(a_{1}\right) u_{1}(t) / u_{1}\left(a_{1}\right)>0, a_{1}<t<b
$$

is such, and can be used in place of $u_{2}(t)$ since

$$
\begin{equation*}
\lim _{t \rightarrow b-} \frac{y(t)}{u_{2}(t)}=\lim _{t \rightarrow b-} \frac{y(t)}{\bar{u}_{2}(t)} \tag{3.2}
\end{equation*}
$$

Let $\alpha \equiv 0$ so that the boundary inequalities for α are automatically satisfied, because $A, B \geqq 0$, and

$$
L \alpha(t)=0 \geqq f(t, 0,0)=f\left(t, \alpha(t), \alpha^{\prime}(t)\right), a_{1}<t<b
$$

by assumption.
Let $\beta(t)=u_{2}(t) z(t)$, where

$$
\begin{array}{r}
z(t)=c-\int_{a_{1}}^{t}\left(\int_{s}^{t} u^{-2}(r) \exp \left(-\int^{r} h(\tau) d \tau\right) d r\right) \\
u_{2}(s) g\left(s, c u_{2}(s)\right) \exp \left(\int^{s} h(\tau) d \tau\right) d s
\end{array}
$$

so that

$$
z(t) \leqq z\left(a_{1}\right)=c, a_{1}<t<b
$$

Since minimal solutions are unique up to a constant factor,

$$
\begin{aligned}
u_{2}(t) \int_{t}^{b} u_{2} & -2(s) \exp \left(-\int^{s} h(\tau) d \tau\right) d s \\
& =c_{0} u_{1}(t)=\frac{u_{1}(t) \exp \left(-\int^{t} h(t) d \tau\right)}{W(t)}
\end{aligned}
$$

Thus, (3.1) implies

$$
z(t) \geqq z(b)=c-\int_{a_{1}}^{b} \frac{u_{1}(s) g\left(s, c u_{2}(s)\right)}{W(s)} d s \geqq B
$$

Hence,

$$
\beta(t)=u_{2}(t) z(t) \geqq 0 \equiv \alpha(t), a_{1}<t<b,
$$

and

$$
\lim _{t \rightarrow b-} \frac{\beta(t)}{u_{2}(t)}=z(b) \geqq B
$$

Finally, from the monotonicity of g and (1.5), we conclude that

$$
\begin{aligned}
L \beta(t) & =u_{2}(t) z^{\prime \prime}(t)+\left[2 u^{\prime}(t)+h(t) u_{2}(t)\right] z^{\prime}(t) \\
& =-g\left(t, c u_{2}(t)\right) \\
& \leqq-g\left(t, u_{2}(t) z(t)\right)=-g(t, \beta(t)) \\
& \leqq f\left(t, \beta(t), \beta^{\prime}(t)\right), a_{1}<t<b
\end{aligned}
$$

There remains to show the appropriate integrability conditions hold at b and a_{1}. If

$$
\psi(t)=\sup \{|f(t, y, z)|:|z|<\infty, 0 \leqq y \leqq u(t) z(t)\},
$$

then

$$
\psi(t) \leqq g\left(t, u_{2}(t) z(t)\right) \leqq g\left(t, c u_{2}(t)\right) .
$$

Since $u_{1}(t) g\left(t, c u_{2}(t) / W(t)\right.$ is integrable at b by assumption,

$$
u_{1}(t) \psi(t) \exp \left(-\int^{t} \quad h(\tau) d \tau\right)=c_{0} u_{1}(t) \psi(t) / W(t)
$$

is integrable at b. The appropriate integrability condition at a_{1} will also hold in the present context because of (3.1), that is (1.6).
The author wishes to thank Professor James Muldowney for helpful suggestions.

Bibliography

1. G. Ascoli, Sul comportaniento asintotico degli integrali delle equazioni differenziali di 2° ordine, Rend. Accad. Lincei, (6) 22 (1935), 234-242.
2. M. Bocher, On regular singular points of linear differential equations of the second order whose coefficients are not necessarily analytic, Trans. Amer. Math. Soc. 1 (1900), 40-52.
3. D. S. Cohen, The asymptotic behavior of a class of nonlinear differential equations, Proc. Amer. Math. Soc. 18 (1967), 607-609.
4. O. Dunkel, Regular singular points of a system of homogeneous linear differential equations of the first order, Proc. Amer. Acad. Arts Sci. 38 (190203), 341-370.
5. J. K. Hale and N. Onuchic, On the asymptotic behavior of solutions of a class of differential equations, Cont. Diff. Eqtns. 2 (1963), 61-75.
6. T. C. Lee and D. Willett, Second order singular boundary value problems, Siam J. Math. Analysis, to appear.
7. R. A. Moore and Z. Nehari, Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc. 93 (1959), 30-52.
8. U. Richard, Serie asintotiche per una classe di equazioni differenziali lineari non oscillanti del 2° ordine, Univ. e Politec Torino Rend. Sem. Mat. 23 (1963/64), 171-217.
9. W. F. Trench, Asymptotic behavior of solutions of perturbed disconjugate equations, J. Diff. Eqtns. 11 (1972), 661-671.
10. P. Waltman, On the asymptotic behavior of a nonlinear equation, Proc. Amer. Math. Soc. 15 (1964), 918-923.
11. D. Willett, Asymptotic behavior of disconjugate nth order differential equations, Canad. J. Math. 23 (1971), 293-314.
12. -, Oscillation on finite or infinite intervals of second order linear differential equations, Canad. Math. Bull. 14 (1971), 539-550.
13. -Classification of second order linear differential equations with respect to oscillation, Advanced in Math. 3 (1969), 594-623.
14. - On the oscillatory behavior of the solutions of second order linear diff. eqtns., Ann. Polonici Math. 21 (1968), 175-194.
15. - A necessary and sufficient condition for the oscillation of some linear second order diff. eqtns., Rocky Mt. J. Math. 1 (1970), 357-365.
16. P. K. Wong, Existence and asymptotic behavior of proper solutions of a class of second order nonlinear diff. eqtns., Pac. J. Math. 13 (1963), 737-760.

The University of Calgary, Department of Mathematics and Statistics, Calgary, Alberta, Canada
The University of Utah, Department of Mathematics, Salt Lake City, UTAH 84112

[^0]: Received by the editors on December 10, 1975, and in revised form on June 11, 1976.
 *Research supported by NRC Grants A5593 and A4069.

