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HARVESTING COMPETING POPULATIONS 

D. H. GRIFFEL 

This article is a brief report on work done by A. J. Reading in 
1975-76 as part of an undergraduate research project in the mathemat­
ics department of the University of Bristol. It is an extension of the 
work of Brauer and Sanchez [1] on population dynamics when one spe­
cies is harvested at a constant rate. 

We consider a system of two competing species, represented by the 
following deterministic differential equation system: 

dx/dt = x(X — ax — by) — E, 
(i) 

dy/dt = «/(/x — ex — dy) — F. 

Here x, y are the sizes or densities of the two populations, X, \x, a, b, c, 
d are positive constants representing the growth and competition 
coefficients, and E, F are non-negative constants representing the num­
ber of members of each population harvested (i.e., removed) per unit 
time. We assume that the harvesting does not change the values of the 
vital coefficients a, b, c, d, X, /x. 

If there is no harvesting, i.e., E — F = 0, then the two species can 
coexist in stable equilibrium only if 

(2) a\i - cX > 0 and dX - bfi > 0; 

we shall assume throughout that (2) is satisfied. The zero isoclines Zx, 
Zy in the phase plane (defined as the curves along which dx/dt, dy/dt 
respectively vanish) for the case E = F = 0 are as shown in Figure 1. 

If E > 0, Zx becomes a hyperbola whose asymptotes are the y-axis 
and the line (shown dotted in Fig. 2) corresponding to the unharvested 
Zx; similarly Zy becomes a hyperbola if the y population is harvested. 
If E, F are fairly small, the hyperbolae lie close to their asymptotes and 
intersect each other four times, as shown in Figure 2. Three of those 
intersections correspond to unstable equilibria, and one, marked S in 
Figure 2, gives a stable equilibrium point. 

A natural question to ask is the following: is it possible to use har­
vesting to maintain the populations at predetermined sizes? in other 
words, given x0, y0, do there exist E, F ^ 0 such that (*0, t/0) is a stable 
equilibrium point of (1)? This question is readily answered by first read-
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ing off the required values of £, F from (1), and then substituting them 
into the condition 

(3) (a - E/x0
2)(d - F/y0

2) > be 

for stability of the equilibrium point (XQ, y0) (obtained fom the usual 
linearised stability analysis). Thus one can find a region in the xy plane 
of population sizes which can be maintained in stable equilibrium by a 
suitable constant-rate harvesting policy; it turns out to be bounded by a 
hyperbola, and is easily drawn when values of a, b, c, d, \ /i are 
known. 

As the harvesting rate E is increased, the vertex of Zx in Figure 2 
moves downwards; if E > X2/4a no part of Zx lies in the first quadrant, 
and therefore dx/dt < 0 for all x, y and the x population is bound to 
die out. Similarly if F > \s?/4c the y population will die out. But if 
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Figure 1 
The unharvested phase plane. Zx, Zy are the isoclines for zero growth 
of x, y. 
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Figure 2 
The phase plane with fairly small harvesting. S is the stable two-species 
equilibrium point. 

E < X2/4a and F < \i2/Ac the behaviour is more complicated. 
If E, F lie in region I of the EF plane (see Fig. 3), corresponding to 

the conditions of Figure 2, then there are four two-species equilibria, 
one of which is stable. The cusp-shaped boundary of I in Figure 3 cor­
responds to values of E and F such that the hyperbolae Zx, Zy of Fig­
ure 2 touch, while intersecting at two other points. In region II Zx and 
Zy intersect twice, giving two equilibria, both of which are unstable, so 
that one species must die out. The smooth boundary of II corresponds 
to E, F such that Zx touches Zy without any other intersections; region 
III and region II both correspond to harvesting rates which result in 
the extinction of one of the populations; which one survives depends on 
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Figure 3 
The harvest-rate plane, divided into regions according to the number of 
equilibria of the system. 

the initial conditions. In region IV the y population is bound to die out, 
in region V the x population is bound to die out, and in region VI both 
populations die out. 

If it is assumed that when one population dies out then one continues 
to harvest the other at the same rate, then there are single-species equi­
libria in addition to those discussed above, at the points in the xy plane 
where Zx, Zy cut the axes. The one on each axis which is closer to the 
origin is unstable; the others are stable. It is a nice exercise to draw the 
regions of attraction of the stable equilibria, and see how they change 
and coalesce as E and F are varied. 

Although the pictures have been drawn, and calculations performed, 
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assuming the specific model (1), the behaviour will be essentially the 
same for any model of a similar character. Yodzis [5] has discussed 
more general models and their implications for species diversity and 
stability of complex ecosystems. 

Finally, it may be noted that the boundaries between regions I, II, 
and III resemble a plane section through the hyperbolic umbilic catas­
trophe set (see, e.g., [4]); in particular, the boundary of I is a cusp. We 
therefore expect the usual hysteresis or delay-jump behaviour when E 
and F are changed so that (E, F) passes across I. (see, e.g., [3]). How­
ever, catastrophe theory is not immediately applicable to this system, 
because the differential equations (1) are not derivable from a potential 
function; the proper mathematical setting for Figure 3 is the theory of 
bifurcations of vector fields [2]. 
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