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SHAPE FIBRATIONS, II
SIBE MARDESIC AND T. B. RUSHING*

Introduction. The homotopy lifting property (HLP) is not a very
useful notion when applied to maps p\E-+B between spaces with bad
local properties. For instance, if B contains no arc, then every map p
has the HLP with respect to any space X and is thus a fibration. The
approximate homotopy lifting property (AHLP), introduced by D. S.
Coram and P. F. Duvall, Jr. [3], is useful only when E and B are
ANR's. The authors therefore introduced in [12] a new class of maps
p : E —» B between metric compacta called shape fibrations. Shape fibr-
ations reduce to approximate fibrations in the case of ANR's and pre-
serve various nice properties of the latter even in this broader setting.

The present paper can be considered a continuation of [12]. We
therefore refer to that paper for more motivation and for some defini-
tions and results. In the present paper we first prove that for shape
fibrations, whose base space has trivial shape, the inclusion of each fi-
ber F = p~l(b) —»£ induces a shape equivalence (Theorem 1). This
yields several results of Coram and Duvall [3], including their result
that the fibers of approximate fibrations are FANR's. The second main
result is an exact sequence for the homotopy pro-groups (Theorem 3).
The Coram and Duvall exact sequence [3] is derived as a corollary.

The authors are grateful to several colleagues for useful conversa-
tions; in particular to H. M. Hastings, P. J. Hilton and J. Keesling for
discussions concerning Remark 5.

2. The homotopy lifting properties. We recall from [12] that a level
map p : E —> B between inverse sequences E = (Ei9 qiif), B = (Bi9 rH,)
of ANR's is a sequence of maps pi : Ei —* Bi such that pflw — r^Pi' for
i = i'. The level map p : E —*• B induces a map p : E = lim E —> B =
lim B called the limit of p.

DEFINITION 1. ([12]) We say that p has the HLP with respect to a
space X provided that each i admits a / ^ i (called lifting index) such
that for any maps fy,: X -^ Ejy Hj: X X / —» Bj with

(1) Pfl, = H*,
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there exists a homotopy Hi : X X I — » Ei with

(2) #io = <7iA

(3) pA = r«H,

If in addition one can achieve that H^x, t) is independent of t when-
ever Hy(x, f) is independent of t, then we say that p has the regular
HLP with respect to X.

In a similar way the AHLP is defined for a level map p : E — > B. One
requires that every i and c > 0 admit a / = i and a 5 > 0 such that
whenever the distance

(4) d(Pjh, Hjo) < 8,

then there is a Hi satisfying

(5) d(H i0,</y^)<e, and

(6) dfaff,, r« H,) < c.

For the regular AHLP one requires in addition that Hi be independent
of t if H. is.

In [12] shape fibrations were defined as maps p:E^>B induced by
level maps p : E — > B between ANR-sequences satisfying the AHLP.
There it was shown that if one p has the AHLP, then so does every
other level map which induces p. It was also proved that there exists a
level map p' : E' — > B which induces the same p, leaves B unchanged
and has the HLP.

In Section 3 we shall need the following simple fact:

PROPOSITION 1. If p : E — > B is a level map which has the HLP, then
p also has the regular HLP.

PROOF. There is no loss of generality in assuming that diam Bj ^ 1. If
/ is the lifting index for i and we are given hj : X — > Ej and
H^ . : X X / — * Bj with pfa = Hjo, then we define a map a : X X I — » I by
the formula

(7) a(*) = diam//.(*X/).

Let H/ : X X /-» Bf be given by

(8) ,
(. H/», !),«(») StS I.
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Notice that

(9) H/fe ta(x)) - Hfr t).

Since H/fc 0) = Hfa 0) = p^(x), there is a homotopy #/ : X X /-» £4

such that

(10) #;0 = 9y /,., and

(11) PA' = f«H/.

We now define //4 : X X /— » Ei by the formula

(12) Rfc t) = ///(*, ta(x)).

Notice that (10) implies

(13) Rfc 0) = #/(*, 0) = qu hj?).

Furthermore, by (11) and (9), we have

(14) Plflt(x, t) = rtf H/(x, ta(x)) = rM H/x, t).

Finally, if H^ac, f) does not depend on f, then a(x) — 0 and therefore
t) — fl/(3C, 0) does not depend on t.

REMARK 1. Similarly one can prove that a level map p : E — *B be-
tween ANR-sequences has the regular AHLP if it has the AHLP.

3. Shape fib rations with trivial base space. The main result of this
section is the following theorem (its consequences are discussed in Sec-
tion 4):

THEOREM 1. Let p : E— > B be a shape fibration between metric com-
pacta and let B have the shape of a point. If e G E, b — p(e) e B,
F = p"1(6), then the inclusion u : (F, e) -* (E, e) of the fiber F is a
pointed shape equivalence.

The proof proceeds in several steps.
(i) Since B has trivial shape, one can embed it in the Hilbert cube Q

in such a way that there is a decreasing sequence of neighborhoods B{

of B each being homeomorphic with Q ([18], Theorem 1). Let us also
embed E in Q and let p : Q — -> Q be an extension of p. Then one can
find a decreasing sequence of closed ANR-neighborhoods E{ of E such
that p(Ei) C B^ The maps pi = p\Ei determine thus a level map
p : E — * B between ANR-sequences inducing p. There is no loss of gen-
erality in assuming that p has the HLP (one can achieve this without
changing B). Furthermore, by Proposition 1 p also has the regular HLP.
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(ii) Let ei = q^e), b{ — r{(b\ where qi : E — > Eiy ri — B — »• B{ are the
natural projections. Let Fi = Pi"1^). Then qw(Fif) C F{ for f ^ i' and
the inverse limit of the compact sequence F = (Fi9 qiif \ F^) is
F = p-\b).

(iii) For each i choose a lifting index / = /(i) i? i and let k — k(i) be a
lifting index for /. One can assume that i ^ i' implies / ^ f and k ^ k.
Since Bk & Q, one can find a homotopy Gk : Bk X I—+Bk such that

(1) Gfc(t/, 0) = y, y G Bt,

(2) Gt(j,, 1) = bk, y G Bfc

(3) Gk(bk, s) = bk,st I.

Let hk = lBt :Ek-^Ek and let Hk : Ek X /— » Bfc be defined by

(4) Hfc(«; ») = G,(p,(4 s).
Notice that

(5) tffc0 = Pk = Pkhk,

(6) Hfcl = fcfc> and

(7) flt(^ s) = fofc, x e Fk, s e I.

By the regular HLP there exists a homotopy fij:Ek X / — » Ej such that

(8) Hio = qik

(9) pflt = rjkHk, and

(10) Rjp, s) = fifr 0) = qjk(X), x&Fk,s&I.

We now define a map fi\Ek-^ Ei by

(11) /*(*) = qtflff, I)-

By (9) and (6) one has

/10.
(12)

= rik ( f c ) = i>
and therefore f^x) e.Ft. Also notice that (10) implies that

(13)

so that ^ can be considered a map f{ : (Ek, ek) — > (Fi? ej.
(iv) Now we shall prove that for i ^ i' the following diagram com-

mutes up to pointed homotopy:
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k V

(14) /, I I /,
4, J,

Indeed, let the map <p:Ek, x ( / X O U / x l U O x J)— E, be given
by

(15) <p(*, «, 0) = qij,H,(X, s),

(16) <p(*, *, 1) = #/<7fck,(*), 4 and

(17) <p(x, 0, t) =

We shall define a map $ : Efc, x I X / — » ^ as follows. For (x, s, t) G
£t, X (/ X 0 U / X 1 U 0 X I) let

(18) tfx, s, t) = Pj<p(x, s, t).

Notice that

, 0) = Pfljj, fif(x, 1) = rjy Pj,fiy(K, 1)

= rik- Hk'(x> 1) = rik'(bk') = bj,

<t>(x, 1, 1) = pfaqM 1) = rik Hk(qkk,(x), 1)
(20)

= rjk(bk) = bi-

We define <f> on Efc, X 1 X / by

(21) - *(x; 1, t) = 6,

and thus obtain </> : Efc, X 9(1 X I)— > By. This is possible because of (19)
and (20).

Now notice that

(22) 4>(^,, s, t) = bp (s, t) e 9(7 X /),

because (10), (15), (16) and (17) imply

(23) <p(ek* s, 0) = (p(efc,, s, 1) = <p(ek» 0, t) = ejy

and one can then apply (18) and (21). Therefore, one can extend <j> to
ek, X / X / by

(24) <Mek» s> *) = bi> (s> t)GlXl.

Finally, since B^ ^> Q, one can extend <^> to a map <j> : Ek, X I X I — » By.
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Since (7 X /, I X 0 U7 X 1 U 0 X /) » (/ X /, / X 0), one can view
cp as a lifting of the initial stage of <f>. Therefore, there exists a homo-
topy <£ : Ek, X / X /— * Et such that

(25) fa s, t) = q^(x, s, t\ (s, t) G / X 0 U / X 1 U 0 X I,

(26) Pi$ = vJ>,

(27) ftek.9 s, t) = eiy (s, t) G I X I.

The last formula is a consequence of (24), (25), (23) and of the fact that
the regular HLP yields a lifted homotopy which leaves a point fixed,
whenever the original homotopy leaves the point fixed.

Also notice that by (26) and (21) one has

(28) Pifa 1, t) = vf>(*, 1, t) = biy

so that <j>(x, 1, t) G Fj. Therefore, the formula

(29) K(x, t) = fa 1, t)

defines a homotopy K : (Ek, X /, ek, X /) — * (Fi9 et) with the following
properties:

K(«; 0) = qiff(x, 1, 0) =
(oO)

(ol)

This establishes the commutativity of (14) up to pointed homotopy.
(v) Notice that F = (fi9 qiif \ Fr) is an inverse sequence of compacta

and, by (14), for i ^ if the diagram

(32)

commutes up to pointed homotopy. Therefore, by the continuity theo-
rem ([9], Theorem 6.1), there is a unique shape morphism f: (£, e)
—• (F, e) such that

(33) S(9i | F)f = S(fi9fc)f i = 1, 2, - . . ,

where S denotes the shape functor.
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We shall show now that f is the shape inverse of the shape morphism
u = S(u) induced by the inclusion map u : (F, e) — » (E, e\ i.e., that the
following equalities hold:

(34) fu = 1F

(35) u f= l^ .

(vi) Because of the uniqueness in the continuity theorem, in order to
establish (34), it suffices to show

(36) S(qi\F)hL=S(qi\F)lF,i = l, 2, • • -,

i.e.

(37) SfflqkU) = S(qi\F),t=l,2,--:

However, one can even show that

(38) fiqku=fiqk\F=qi\F,i = l,2, • • • .

Indeed, by (11) and (10), for x e F one has

(39) fiqk(x) = qtflfaW, 1) - qikqk(x) = </,(*).

(vii) Finally, in order to establish (35), it suffices to prove that

(40) StoJuf = S(qi)lE, i = 1, 2, . - . .

Notice that S(qi)u = 8(^)8(11) = 8(9,11) = S(ui)S(qi \ F), where
ui:Fi-^ Ei is the inclusion map. Consequently, by (33), (40) is equiva-
lent to

(41) S(ufaj = Sfoji i = 1, 2, . . . .

However, q^/f, is a pointed homotopy (Ek X I, ek X /)— > (E^ ej be-
cause, by (10), Rj(ek, s) = qjk(ek) = ey Furthermore, by (8),

(42) q^x, 0) = qik(x),

and by (11),

(43) qiflfr 1) = fa) = uJM,

so that

(44) uJt ̂  qik,

and therefore

(45) uj{qk ^ qif

which implies (41). This completes the proof of Theorem 1.
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REMARK 2. The analogous statement for *-fibrations ([12], Definition
5) and even for fibrations is false. Indeed, let B be any non-degenerate
metric continuum which contains no arc and has trivial shape (e.g., one
can take for B the pseudo-arc). Let b0 e B, E = B V B and let
p : E-+ B be the folding map. Then for b ^ b0 the fiber F = p~l(b) is
an 0-sphere and thus has a non- trivial shape. Nevertheless, the shape of
E = B V B is trivial (e.g., see [10], Corollary 4) and p is a fibration
(every homotopy into B is fixed). It follows that p is an example of a
fibration (*-fibration) which fails to be a shape fibration. (See Remark 5
in [12] for a direct proof that p fails to be a shape fibration.)

4. Some consequences of Theorem 1. The following corollary is an
easy consequence which partially answers a question from [12]:

COROLLARY 1. Let p : E— »• B be a shape fibration between metric com-
pacta. If the points b^ bl E B are contained in a subcontinuum B' C B
of trivial shape, then the fibers F0 = p~l(bQ) and Fl = p~1(^1) have the
same shape.

PROOF. Let E' = p~\B'\ p' = p\E': £'-» B'. It was shown in [12,
Proposition 4] that p' is also a shape fibration. Therefore, one can ap-
ply Theorem 1 and conclude that

Sh(F0, e0) = Sh(E, e0) and

Sh(Fl9 ej = Sh(E, e^

for any e0 G FQ, el G Fr Consequently, Sh(F0) =

REMARK 3. It follows immediately from Corollary 1 that
Sh(F0) = Sh(Fj) if bQ and fo1 belong to the same path component of B,
because one can join them by an arc A C B and S/i(A) = 0. Thus we
obtain an alternate proof for Theorem 3 of [12] in the case of shape
fibrations. However, one cannot obtain Theorem 3 of [12] for ^fibr-
ations in this way because of Remark 2 or alternately because of the
following example.

EXAMPLE 1. In Remark 2 of this paper and in Remark 5 of [12] we
mentioned a certain fibration (*-fib ration) which fails to be a shape
fibration. The following similar example is perhaps more instructive. It
was mentioned to us by Coram and Duvall as an example of a fibration
with fibers of different homotopy type. Let C be the sin 1/x curve (do-
main (0, 1]) and let A be the limit arc. Let B — C U A and let E =
C U (A X S1), where A X *0

 is identified with A for some fixed
x0 E S1. Finally, let p:E-+B be defined by p\C= identity and
p | A X Sj = TT where TT : A X S1 — > A is the first projection. It follows
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immediately from Corollary 1 that p\E—»B is not a shape fibration,
however, it is instructive to construct the "obvious" level map of ANR-
sequences which induces p and see that it fails to have the AHLP for
the space S1.

Another consequence of Theorem 1 is the pointed version of a result
of Coram and Duvall ([3], Corollary 2.5).

COROLLARY 2. Let p\E^>B be an approximate fibration between
compact ANR's. For every point e E E the fiber (F, e\ F = p~l(b),
b = p(e\ is a pointed FANR.

PROOF. Consider the map p X 1 : E x @ —* B X Q- It is readily seen
that p X 1 is an approximate fibration and therefore a shape fibration
([12], Corollary 1). By a recent result of R. D. Edwards (see [2]), B X Q
is a Q-manifold. Therefore, the point (b, 0) G B x Q admits a closed
neighborhood V homeomorphic with Q. The restriction of p X 1 to
V = (p X 1)-1(V) is a shape fibration ([12], Proposition 4) whose base
space has trivial shape. Therefore, by Theorem 1, the inclusion (F, e')
-»(V, e'\ where F = (p X l)"1 ,̂ 0), e' - (e, 0), is a pointed shape
equivalence. Since E x Q is also a Q-manifold, there is a closed ANR-
neighborhood U' of F' contained in V. Clearly, the inclusion (F, e') —>
([/', e'} is a pointed shape domination and therefore (f, e'} is a pointed
FANR (the unpointed argument like the one in [7], Theorem 6, applies
to the pointed case as well). Finally, notice that (F, e'} — (F, e} X 0.

REMARK 4. We have shown in ([12], Example 6) that the well-known
Taylor map p : E —* Q of a certain continuum E with non-trivial shape
onto Q fails to be a shape fibration in spite of the fact that p is cell-
like (i.e., all fibers have trivial shape). This is an immediate con-
sequence of Theorem 1 because Sh(F) — 0 and therefore different from
Sh(E) ¥= 0.

REMARK 5. The following question, suggested by the example of Re-
mark 4 and by Theorem 1, was put to the authors: If p : E—»• B is a
shape fibration and a cell-like map, is it a shape equivalence? The an-
swer is negative because of an example due to D. A. Edwards and H.
M. Hastings ([6], Example (5.5.10)).

Using the same Adams map [1]. which is at the basis of the Taylor
example, Edwards and Hastings have defined an inverse sequence E
with terms £4 being the direct products of a certain finite polyhedron
Y with i copies of the 2r-sphere S2r, where r is a certain integer. They
also consider a sequence B with Bi the direct product of i copies of S2r

and a level map p = (p4): E -^ B, where pi : Y x (S2r)j -* (S21)' is the
projection. Since each p{ is a fibration, p has the HLP and therefore in-
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duces a shape fibration p : E — +B. They show that p is cell-like but not
a shape equivalence.

5. The homotopy pro-groups of (E, F). The main result of this section
is the following theorem.

THEOREM 2. Let p : E — > B be a shape fibration between metric com-
pacta and let e G E, b = p(e\ F = p~l(b). Then p induces an isomorph-
ism of the homotopy pro-groups (e.g., see [11])

p* : pro-7rn(E, F, e) -+ pro-7rn(B, b).

The proof proceeds in several steps.
(i) Choose a level map p : E — > B between ^-manifold-sequences

which induces p. There is no loss of generality in assuming that p has
the HLP ([12], Theorem 2). Let ei = q{(e\ b{ = r^b). By induction on i
one can define for every i a lifting index / = j(i) > i and a closed
neighborhood Qi of bit homeomorphic with Q and such that

(1)

(2)

Furthermore one can choose closed ANR-neighborhoods Ci of Qi so
small that

(3) »•„,(<:,,) Clntft, «<«' ,

and therefore

(4)

Next, one chooses closed ANR-neighborhoods F4 of pi~
1(^i) so small

that

(5) F, C Pi-\Cj.

Notice that (3) implies

WM C Int Qi C & for i < i',

and therefore

^F,,) C Pl-i(ft) C F,.

Furthermore, (4) implies

(6) linXF^IF^F.

Also notice that pi : (E{, F{, e{] -> (B{, Cit b{] induces p{* : irn(Ei9 F{, e{)
— > 7rn(Bi9 Ci9 b{) and the homomorphisms p^ define the morphism of
pro-groups
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p* : pro-77n(E, F, e) — pro irn(B, C, fo).

(ii) In order to show that this is an isomorphism of pro-groups, it suf-
fices to produce for each i some k > i and a homomorphism

g :».(B*. Ck> bk)^"n(Ei> Fi>^i)

which makes the following diagram commutative:

(7) Pi* | g\ J pk*

\n(Bk, Ck, bk) .
rik*

We choose for k a lifting index with respect to / = j(i). Every ele-
ment a G Kn(Bk, Ck, bk) is given by a map

*:(I»,31» 7-1)-* (B*. Ck,bk),

where I"'1 = (dln~l) X / U (I71-1 X 1).
Let (p : r~l—^Ek be the constant map efc. Notice that

(8) Pfc9 = fefc = ^|r-1.

Since (7n, 771"1) « (/n, /n-1 X 0), one can view (p as a map
In~l X 0— >E f c and <f> as a homotopy I71"1 X I^>Bk with the initial
stage equal to pfcqp. Therefore, there is a map <j> : In — > £^ such that

(9) *|7»-1 =

(10) p^ -

By (3), rjk<j>(dln) C ^ and therefore

(11) <?(9^n) C pr

This means that ^ is a mapping (In, 8/n, T*1"1) — ̂ (£^ F^, ̂ ) and thus de-
termines an element [<j>] G Trn(Ejy FJ9 e^.

We now define g by

(12) gfo] - %•*[<?] - [% fl.

(iii) We first need to show that g is well-defined, i.e., independent of
the choice of <£ and </>. Assume that
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is another representative of a and that <£' satisfies (9) and (10) (with
replaced by cj>'). Then there exists a homotopy

H : (In X /, 3In X I, J"-1 X /)->(«» Ck, bk)

such that

H0 = (j>, HI = <$>'.

Let us consider the map

h:(In X 0) U (/" X 1) U (P-1 X /)->#,-

given by

(13) h 1 1* X 0 = 0

(14) h | 7n X 1 = <£', and

(15) h\r-lXl=e§.

Notice that (10) implies

(16) Pjh = rjk H | (7- X 0) U (In X 1) U (7*-1 X I).

Since / is a lifting index for i, one obtains a homotopy // : In X / — ̂
with the following properties:

(17) #o

(18) Hx

(19) flir^x/^ei, and

(20) Pifi = rikH.

Notice that H(9/B x /) C Cfc and therefore, by (3),
rjfcH(3P X I) C Q{. Consequently, by (20), pfifil" X I) C ^, which
implies

(21) H(3P X /) C p,-^) C F,.

In other words, fi is a map (Iw X /, 9/n X /, T"1 X /) -* (E^ Fi9

By (17) and (18) we conclude that indeed [%<£] = [9

(iv) We now prove that g is a homomorphism of groups. Let
a = a'a" and let a' = [</>'], a" = [</>"]. Then a is represented by the
map

given by
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(22)
f <f>'(x, 2s, t), 0 ^ s ^ 1/2,

•,*) = 1
I <#>"(*, 2* - 1, *), 1/2 ̂  5^ 1,

where x G 7n~2, £ G /.
Notice that $ and 0" induce <£', <£" : (7n, J*-1, T*-1) -^ (£,., F,,

such that the analogues of (9) and (10) hold. We now define

by

'(x, 25, t\ 0 ^ 5 ̂  1/2,
' ;'(23)

'(x, 2s - 1, t), 1/2 ^ s ^ 1,

where x G In~2, t G /. From (22) and (23), and from (9) and (10) ap-
plied to <£' and <£", one obtains (9) and (10) for </>, which proves that

(24)

However, by (23), [<£] = [<I'][^"] and therefore

= gW\ gW'} = g(«')g(«").
(v) Now we shall establish that

(25) Pi*g = rik*-

If a = [0], then

Pi*g(«) = [Pi9t>*] = tfi; P;̂ ] and fifc*(«) =

However, by (10), ryp^ = rifc<|), and one obtains (25).
(vi) Finally, let us establish that

(26) gp^ = qik*.

Let )8 G 7rn(Ek, Fk, ek) be given by a map

Then p^^/8) = [<f>], where <^ = pk<p.
Put ^ = 9Jfc<p and notice that <£ satisfies (9) and (10) because

Therefore,
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This concludes the proof of Theorem 2.

If we pass to the shape groups

7rn(E, F, e) = Hm(7rw(£i, Fiy et), </„,„,)

7rn(B, b) — Mm(nn(Bi9 b^, r^,*),

then Theorem 2 yields the following corollary.

COROLLARY 3. Let p : E —> B be a shape fibration between metric com-
pacta and let e E £, b = p(e\ F = p (b). Then p induces an isomorph-
ism of the shape groups.

This result generalizes ([3], Theorem 3.4).

6. The exact homotopy sequence of a shape fibration. For any com-
pact pair (£, F, e) the homotopy pro-groups form an exact sequence

• • • — pro-7rn(F, e) — pro-7rn(£, e) -»

pro-7rn(£, F, e) -+ pro-vr^^F, e) -+

of pro-groups (see [11], 5.2). If we combine this fact with Theorem 2,
we obtain

THEOREM 3. Let p : £ —» B be a shape fibration between metric com-
pacta, e E: E, b = p(e), F = p~l(b). Then the following sequence of
homotopy pro-groups is exact

- - - —» pro-7rn(F, e) -^ pro-7rn(£, e) ^
(2) 8 /F \pro-7rn(B, b) —> pro-7rn_1(^, e) —»

Here i* and p* are morphisms of pro-groups induced by the inclusion
map i: F—»•£ and by the map p : E —* B respectively, S is the composi-
tion of the inverse of the morphism of pro-groups induced by p : (£, F, e)
—* (B, b, b) (Theorem 2) and of the boundary morphism pro-7rn(£, F, e)
—> pro-?rn_1(F, e) induced by the boundary homomorphisms frn(Ei9 Fiy ej

REMARK 6. It is an immediate consequence of Theorem 3 that a cell-
like shape fibration p induces isomorphisms of homotopy pro-groups. In
fact this is true for any cell-like map ([4], Theorem 1.1). Bearing in
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mind the various Whitehead theorems for shape, this also suggests the
question settled in Remark 5.

We now show that Corollary 3.5 of [3] is a consequence of Theorem
3.

COROLLARY 4. (CORAM AND DUVALL). Let p : E — » B be an approximate
fibration between compact ANR s, and let e E E, b = p(e\ F = p~l(b).
Then the following sequence of groups is exact:

For the proof we need the following lemma.

LEMMA 1. Let (X, x) be a pointed FANR. Then the natural morphism
of the shape group nn(X, x) into the homotopy pro-group pro-7rn(X, x) is
an isomorphism of pro-groups.

PROOF OF LEMMA 1. A pointed FANR (X, x) is a pointed shape retract
of an ANR (Y, x) (the argument given in ([7], Theorem 6) applies to the
pointed case as well). Since the homotopy pro-groups of (Y, x) are iso-
m orphic to the corresponding homotopy groups, we conclude that the
homotopy pro-groups of (X, x) are dominated by groups. However, D.
A. Edwards and R. Geoghegan have shown that for a pro-group G,
which is dominated by a group, the natural projection from the inverse
limit G = lim G to G is an isomorphism of pro-groups ([5], Proposition
3.3). Therefore, 7rn(X, x) — » pro-7rn(X, x) is an isomorphism.

PROOF OF COROLLARY 4. The pro-groups pro-7rn(£, e) and pro-7rn(B, b)
are naturally isomorphic with the homotopy groups ?rn(£, e) and irn(B, b}
respectively because £ and B are ANR's. By Corollary 2, (F, e) is a
pointed FANR. Therefore, by Lemma 1 the homotopy pro-groups pro-
7rn(F, e} are naturally isomorphic with the shape groups nn(F, e). Con-
sequently, under the assumptions of Corollary 4, the exact sequence (2)
assumes the form (3).
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