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THE QUADRATIC AND QUARTIC CHARACTER 
OF CERTAIN QUADRATIC UNITS. II 
PHILIP A. LEONARD AND KENNETH S. WILLIAMS* 

Let m be a square-free integer greater than 1, and let cm denote the 
fundamental unit of the real quadratic field Q(i/m). If k is an integer 
not divisible by the odd prime p and the Legendre symbol (k/p) has the 
value 1, we define the symbol (k/p)4 to be + 1 or — 1 according as k is 
or is not a fourth power modulo p. Now if (ra/p) = + 1 we can inter
pret cw as an integer modulo p and ask for the value of (tm/p). Because 
of the ambiguity in the choice of \fm taken modulo p we must make 
sure that (cm/p) is well defined. This is the case if em has norm + 1 
(written N(em) = 1) or if N(cm) = — 1 and p = 1 (mod 4). Whenever 
(cm/p) = 1 we can ask for the value of (cm/p)4. This latter symbol is 
well defined if N(em) = + 1 or if 2V(cJ = - 1 and p « 1 (mod 8). The 
evaluations of these symbols are generally given in terms of representa
tions of a power of p by certain positive-definite binary quadratic 
forms. This is convenient when considering applications to divisibility 
properties of recurrence sequences (see for example [14]). 

An early result in this direction was proved by Barrucand and Cohn 
[1] who showed, using the arithmetic of Q(T>J~—Ï, \/2), that if p = 1 
(mod 8) is prime, so that p — (? -\- 8cP, then 

(e2/p) = ( - l ) d . 

This gives a criterion for the splitting of p in the non-abelian number 
field Ç(v^T, V2, yfe). 

Using similar methods, the present authors [17] have evaluated ex
plicitly (ejp) (when N(eJ = - 1 ) and (cm/p)4 (when N(cJ = 4 - 1 ) for 
certain values of m, namely, those for which at least one of the imagi
nary bicyclic biquadratic fields 

(1) <?(V^, ^f:^n\ Q{\T^ ^fI^n\ or Q(yf3m9y/m), 

has class number one (21 fields in all, see [6]). In this paper we extend 
these results to an infinite class of values of m. Our results and con
jectures arise from those of the above fields (1) which have class num
ber not divisible by 4. 
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TABLE (part 1) 

NOTATION: h = h(m, — m), k = largest odd divisor of /i(m), 
/ — largest odd divisor of h( — m), * = conjectured 

CASE 

1.1 

1.2(i) 

1.2(ii) 

1.2(iii) 

1.3(i) 

1.3(ii) 

1.4(i) 

1.4(ii) 

1.5(i) 

1.5(H) 

1.6(i)* 

1.6(ii)* 

1.6(iii) 

1.7(i)* 

1.7(H)* 

1.7(iii)* 

1.7(iv)* 

1.7(v)* 

1.7(vi)* 

h 

l ( m o d 2 ) 

l (mod2) 

2(mod4) 

2(mod4) 

2(mod4) 

2(mod4) 

2(mod 4) 

[ 

h(m) 

l ( m o d 2 ) 

l (mod2) 

2(mod4) 

l (mod2) 

l (mod2) 

l (mod2) 

2(mod 4) 

h(-m) 

2(mod4) 

l (mod2) 

2(mod4) 

4(mod 8) 

2(mod4) 

4(mod 8) 

2(mod 4) 

MO 

- l 

+ i 

- l 

- l 

+ l 

+ l 

+ l 

m 

cl 

cl 

2q 

q 

2q 

w' 

— [ 

CHARACTERIZATION OF m 

q = 5(mod8) 

q = 3(mod 8) 

q = 7(mod 8) 

q = 5 (mod8) 

q = c2 + 8rf2 = l (mod 8) 

(d s l (mod2)) 

q = 3(mod 8) 

q = 3(mod8), q' = 3(mod4) 

q = 5(mod 8), q' = 3(mod 8) 

q = 5(mod 8), q = 7(mod 8) 
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CONGRUENTIAL CHARACTER 

OF PRIME p 

(V)-(;)-

£)-(!)-(!)-

(V)-(j)-(î)-
(V) - • • ( ; ) - ( ! )— 

(T-)-(Î)-

(V)-(ÎMÎ)-
(VMî)-(;)— 

G)-(î)-(f)-
GMîMï)— 
(^)-(;)-(î)-(ï)-
(^-•GM;)-©—i 
(v)-(î)-(;)-#-

(T)--o-(;)-(f)— 

PRIMITIVE QUADRATIC 

PARTITION OF pkf 

pkf _ t 2 + (^2 

p* ' = x2 •+• 16t/?/2 

4 / / ' = x2 + c/f/2 

(x = l (mod4)) 

p fc ' = x2 + 16^/J/2 

p fc ' _ x2 + 8(/;/2 

p*> = 8.V2 + qif 

pk( = x2 + f/r/2 

2 / / ' ' = x2 + qy2 

pkl = .x-2 + ttqy2 

pk( — x2 + 4qq'ij2 

^W _ 4V2 _|_ ^ ' , y 2 

;/"' = A2 4- itiqq'lj2 

pkl — qx2 + I6q'i/2 

pk( _ Y2 + Hiqq'y2 

4pk( — x2 + qq'xf-

(A = l(mo(I 4)) 

pkl — qx2 4- lfr/'?/2 

4 / / ' = (/.v2 4- q'ir 

(y = \(mo(l4)) 

CHARACTER OF 

FUNDAMENTAL UNIT 

$ = < - " • 

($.-<-" 

(î).--*-* 
( ^ - . - " 
(*).,.„ 
(7) •<-"•" 

( î ) -
( * ) -

(ï).-" 
( ï ) -
(^.,.„ 
W-(^-"" 
fê-
W.--' 
Cy).-
$ . - < - ' 

fr).-"*î'*" 
ft-).—" 
( ^ . , . „ * • * 
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TABLE (part 2) 

NOTATION: h = h(— m, — 2m), k = largest odd divisor of h( — m), 

/ = largest odd divisor of h( — 2m), * = conjectured 

NOTE: m and 2m give rise to the same field. 

CASE 

2.1(i) 

2.1(H) 

2.2 

2.3(i)* 

2.3(ii)* 

h 

l ( m o d 2 ) 

2(mod4) 

2(mod4) 

h{- m) 

l (mod2) 

2(mod4) 

l (mod2) 

h(- 2m) 

2(mod4) 

2(mod4) 

4(mod 8) 

MO 

- 1 

- 1 

- 1 

m 

q 

q 

q 

CHARACTERIZATION OF m 

q = 3(mod 8) 

q = 5(mod 8) 

q = 7(mod 16) 

TABLE (part 3) 
NOTATION: h — h(— 2m, m), k = largest odd divisor of h(m), 

/ = largest odd divisor of h( — 2m), * = conjectured 

CASE 

3.1 

3.2(i) 

3.2(ii) 

3.2(iii) 

3.3 

3.4(i) 

3.4(ii) 

3.5 

3.6(i)* 

3.6(ii) 

3.7(i)* 

3.7(ii)* 

3.7(iii)* 

h 

l (mod2) 

l ( m o d 2 ) 

2(mod4) 

2(mod4) 

2(mod4) 

2(mod4) 

2(mod 4) 

h( - 2m) 

2(mod 4) 

l (mod2) 

2(mod4) 

4(mod8) 

2(mod4) 

4(mod 8) 

2(mod 4) 

h(m) 

l (mod2) 

l (mod2) 

2(mod 4) 

l (mod2) 

l (mod2) 

l (mod2) 

2(mod4) 

X(tJ 

- 1 

+ 1 

- 1 

- 1 

+ 1 

+ 1 

+ 1 

m 

q 

2q 

2q 

q 

q 

qq' 

2qq' 

CHARACTERIZATION OF m 

q = 5(mod 8} 

q = 3(mod 8) 

9 = 7(mod8) 

q = 5(mod 8) 

q = t2 - 8s2 = l (mod 8) 

( r > 0 , r = 5, 7(mod8)) 

q = 3(mod 8) 

t/ = 3(mod 8), q' = 7(mod 8) 

q = 5(mod 8), q' = 3(mod 8) 

q = 5(mod 8) q' = 7(mod 8) 
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CONGRUENTAL CHARACTER 

OF PRIME p 

(•V)-G)-(;)-' 

(T)-0<1)-

( T ) - ( ! ) - ( ; ) - ' 

PRIMITIVE QUADRATIC 

PARTITION OF pkf 

pkl = x2 + 8qi/2 

pkl = a2 + \6qb2 

pkl = x2 + 8qif 

4pk( = a2 + qb2 

(a = l (mod4)) 
pkl = x2 + 8qy2 

= a2 + qb2 

pkl = x2 + 8qi,2 

= a2 + I6qb2 

pkf _ 2 v 2 _|_ (jy2 

= a2 + I6qb2 

CHARACTER OF 

FUNDAMENTAL UNIT 

(h-j = (_ l)u+b+ V 

(7) - |-"" s ' 

( 7 ) •'-"•*• 

$ - ( & - » 

(7)=©.-"*' 

CONGRUENTAL CHARACTER 

OF PRIME p 

(•V)-G)-(ï)-

(T")-( ; ) - (Î) -

(^)-(J)-(Ö-

( ^ ) - ( | ) - ( ! ) -

(^)-(î)-(;)-
( T ) - ( Î ) - ( Î ) - ( Ï ) -
(VM;)-©— 

(^)-(y-(;)-(î)-

PRIMITIVE QUADRATIC 

PARTITION OF pke 

pkt — x2 + 8qij2 

= c2 + 8cP 

pk( = x2 + 16f/t/2 

= c2 + 8cP 

4pke = x2 + qy2 

(x = l (mod4)) 

p k / = c2 + 8(P 

pkf = x2 + I6qy2 

pkf __ x2 _|_ ( ^ 2 

= c2 + 8rf2 

pfc/ = x2 + 8qy2 

= c2 + 8cP 

pkt _ 2^2 _|_ ^ 2 

= c2 + 8cP 

pkl = x2 + 8qy2 

= c2 + 8cP 

pkt = X2 + 8qq'y2 

= c2 + 8cP 

pk( = x2 + I6qq'y2 

pkf _ x2 _j_ Miqq'tf 

4pkf = x2 + qq'y2 

(x = 1 (mod 4)) 

CHARACTER OF 

FUNDAMENTAL UNIT 

( i ) = ( _ ! , . • < 

(1*U — ( _ i)y+d+ ~8~ 

( ^ < - ! > - -

( i ^ ) i = ( - i r T 

( i 2 s ) = ( - 1)»+" 

(T) = (- i r ' 
( f ) = < - ^ 
(where <j = C2 + 8/?2) 

(-fs-)4 = (- i r " + P T 

(^ = (f)i-1),+' 
( * ) = -> 

(^(tX-7-)i-"' 
\ P / 4 \ p / 4\p/ 4 

Mr®.®.'-'*"* 
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We begin by characterizing such fields (excluding the field Ç(y r^I , 
y/2)). Our starting point is a formula of Hergoltz [13]; if K ¥* Q(^/—ï, 
\/2) is an imaginary bicyclic biquadratic field with class number H, kv 

&2> &3 its three quadratic subfields with k3 real (^ having class number 
h j , then 

where for 0 and e fundamental units of K and k3 respectively we have 
NK/k (0) = exo. Then, using various divisibility results on class numbers 
of quadratic fields [1], [3], [4], [5], [7], [8], [10], [11], [12], together 
with certain elementary properties of the fundamental unit em [8], [18], 
we obtain (after some calculation) the first six columns of the table, 
where h(m) denotes the class number of Q( yfm) and h(m, n) the class 
number of Q(y/m, \fn). 

We have been able to obtain results on either the quadratic charac
ter or the quartic character of em in all of the cases listed in the table, 
except those marked with an asterisk, where we have only conjectures 
(see final three columns of table). We emphasize that all quadratic par
titions indicated in the table are primitive ones, that is, the values of 
the variables are coprirne, and the q and q' denote odd distinct primes. 

We illustrate the ideas involved by treating case 1.3 (ii). In this case 
q = 5 (mod 8) is prime and p is a prime satisfying ( —1/p) = 1, 
(2/p) = (q/p) = — 1. Then in Q(y/2q, yj —2q) we have the prime ideal 
factorizations (p) = PP'TY' and (2) = Ç4, where P, P', F , F are dis
tinct conjugate prime ideals and Ç is a prime ideal (see for example 
[21]). Here ' denotes conjugation with respect to \/Zq and with re
spect to V~I- Since Ç>(\/2g, yj—.2q) has class number 2kl, where 
k = (l/2)h(2q) and I = (l/2)h( — 2q) are odd, there is a unique ideal 
class C such that C has order 2 in the ideal class group. Moreover 
Q G C as Ç2 is principal while Ç is non-principal. As F2fcZ is principal, 
either Pkl is principal or Pkl is equivalent to Q and QPkl is principal. 
Suppose Pkl = (a). Then taking norms we have (pkl) = (aa'aaf\ which 
leads to pkl — x2 + 2qy2, which is impossible as q = 5 (mod 8). There
fore we have QPkl = (a), where a is an integer of Q(y/2q, y/—2q)9 so 
that [23] 

a = A + j - yßq + C^\ + y V=2q. 

where A, B, C, D are rational integers with B = D (mod 2). Then we 
have 
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and 

so that 

with 

aa = {(A2 + C2) + -9-(B2 + D2)] + (Aß + CD) ^ 

V = {(A2 + C2) - | - ( B 2 + D2)} + (AD - BC) ^f^~q 

pks — Sx2 + gt/2 = 2ti2 — qü2 

x = i - (A2 + C2 - -^(ß 2 + D2)), y = AD- BC, 

u = i - (A2 + C2 + -^(ß 2 + D2)) > 0, Ü = AB + CD. 

Note that the possibility — pkl = 2u2 — qv2 cannot occur as 
aa 'aa ' > 0. Moreover (x, y) — (u, v) = 1, for if (x, y) > 1 ((u, u) > 1 
can be treated similarly) we have p\x, p\y, so that p\4x + y\/ —2q = 
aa' giving (p) | (a)(ä'), FF'FF' | QZpkf[*f, that is F' | P or F', since F' is a 
prime ideal coprirne with Q9 contradicting that F, F', F, F' are distinct. 

Next from pkt = 2u2 — qv2 (u > 0) we have \[2q = 2M/Ü (mod p) so 
that 

(**")=( T + U ^ )= ( T + U2u/V ) 

' ,(i)(Vt«5L). 
Choosing, without loss of generality, v > 0, we have (v/p) — (p/v) — 
(pkl/v) = (2u2/i?) = (2/ü), as p = 1 (mod 4) and ki odd. 

Next we have 

) = ( 2 ) = (_£ 
/ \ Tt) + 2C/t* / V Fu + 

_ / 2u2 - qv2 \ 
~ \ Tv + 2Uu I 

I -2 \ / 2qv2 - Au2 

~\Tv + 2Uu I \ Ti? + 2(7w 

- ( - 2 ) . 
\ Tv + 2C/U / 
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as (2qv2 — 4u2)/r = 1 for each prime factor r of Tv + 2Uu. 
Hence we have 

V p / \ t ) / \ TU + 2Uu I 

Now as T = ± 3 (mod 8), (7 = 1 (mod 4), we have 

(*) = (?) (^î_) = («V _zï_) . 
\ p I \vl \3v + 2u/ \v/\ v + 6u I 

Consideration of cases gives 

Next as A and C are of opposite parity (since v is odd) we have 

u + 2x = A2 + C2 ^ 1 (mod4) 

and so 

( v ) = <-"' 
giving 

Some special cases of our results are due originally to Brandler [2] 
and Lehmer [15], [16]. For example case 1.4 was proved by Brandler 
for q — 17 and by Lehmer [15] for q — 17, 73, 97 and 193, see also 
Parry [19], while case 3.4 can be thought of as giving an explicit form 
of some results ([15], Theorems 2 and 3) of Lehmer. 

We note that by combining cases 1.1, 1.3 and 2.2 we obtain, for 
primes q = 5 (mod 8) the relation (c2q/p) = (€2/p)(€a/p), which is a spe
cial case of a remark of Barrucand (noted in [15]) on a result of Rédei 
([20], equation (30)), as well as a special case of a theorem of Furuta 
[9]. (See also a related paper of Williams [22]). Combining cases 1.2 
and 3.2 we obtain the following analogous result relating the biquadrat
ic characters of cq and e2q in case q = 3 (mod 4). 

THEOREM 1. Suppose q is a prime with q = 3 (mod 4). Let p be a 
prime such that ( -1 /p ) = (2/p) = (q/p) = 1. Then we have 
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( • S ù L ) = 

For primes g = 5 (mod 8), we may use the relationship (t2q/p) — 
(e2/p)(eQ/p) in conjunction with cases 1.1, 2.2, and 3.3 to establish an
other relationship, a direct proof of which would seem to require the 
arithmetic of the octic extension Ç(V<7> \/—ï> V^)-

THEOREM 2. Suppose q is a prime, q = 5 (mod 8). Let p be a prime 
with (-l/p) = (2/p) = (q/p) = 1 50 tfiöf 

pfc/ = x2 + qy2 = a2 + 89k2 = c2 + 8d2, 

t£>i£/i (x, y) = (a, fc) = (c, d) = 1. 77i£n if e /IÖÜ^ 

y + h + d - 0 (mod 2). 

The authors would like to thank Mr. Lee-Jeff Bell who did some 
computing in connection with the preparation of this paper. 
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