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FUSION FREE REPRESENTATIONS OF FINITE GROUPS

MARC J. LIPMAN

[. INTRODUCTION. Let G be a finite group. Let Q denote the field of
rational numbers. If g € G, {¢) is the group generated by o, |o| is the
order of (s>, and if Sand S’ = G, S ~ S’ means S and S’ are conjugate
subsets of G. It is well known that the following definitions are equivalent :

DEFINITION. G is a Q-group if every complex character of G is Q-valued.

DEFINITION. G has cyclic conjugacy if for every ¢ and z € G, (o) ~<{7)
iff & ~ 7. Equivalently, G has cyclic conjugacy if for every ¢ and 7€ G
such that (¢) = (7 ), then g ~<.

This paper presents two other criteria for Q-groups, one in terms of
permutation representations, one in terms of rational representations. The
essential concept is the “fusion free representation’.

DEFINITION. Let f: G — H be a homomorphism of groups. f is fusion
freeifforeverycandze G: o ~ tin Giff f(o) ~ f(z) in H. This is denoted
by G & H. If fis fusion free then fis | — 1. Thus we consider G to be a
subgroup of H, justifying the notation. A fusion free representation of G is
any representation of G consisting of a fusion free homomorphism.

The main results of this paper are:

THEOREM 2.5. Let G be a finite group. G is a Q-group iff for some n
GeS,.

v
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COROLLARY 4.3. Let G be afinite group. G is a Q-group iff for some n
G © GL(n, Q).

v
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Let g € S,. The “type” of ¢ is an n-tuple (¢y, ..., ¢,), where ¢, is the num-
ber of cycles of length i in ¢. Forg and € S,, ¢ ~ 7 iff ¢ and 7 have the
same type. Further, if {(¢)> = {7 ) then ¢ and 7 have the same cycle struc-
ture, thatis, ¢ ~ . Thus foralln = 1, S, isa Q-group.

Let k be a field with char(k) | n!. (n! is the order of S,.) Choose an
ordered basis for an n-dimensional vector space over k. Define the natural
mapping nat: S, — GL(n, k) by assigning to each ¢ € S, the permutation
matrix in GL(n, k) associated to ¢. In Section III the following theorem
is proved:
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THEOREM 3.4. Let k be a field with char(k) | n!. Then, using the natural
embedding, S, = GL(n, k).

II. FusioN FREE PERMUTATION REPRESENTATIONS.
PROPOSITION 2.1. If G & S, then G is a Q-group.

PRrOOF. Suppose () = (¢ for ¢ and 7€ G. Then ¢ ~ ¢ in S, since
S,isa Q-group. G € S, impliesg ~ 7inG.

The goal for the remainder of this section is to prove the converse of
Proposition 2.1. Let G be a Q-group. Let oy, ..., o, be a full set of repre-
sentatives for the conjugacy classes of G, ordered so that |o;| < |o;4]
fori=1,...,s — 1.

Consider the characters a; = 15, for i = 1, ..., 5. @; is the character
of G of the permutation representation (G, G/{g;»). That is, «; is the
character of the representation of G acting by left multiplication on the
left cosets of (¢, ) in G.

PROPOSITION 2.2. Let G be a Q-group. With the above notation, if j > i
then a;(c;) = 0.

PROOF. a;(c;) # 0iff for some 7 € G, ¢;7{0;> = t{0;)
iff 7; ~ ¢¥ for some integer k.
If j > i, |oj| 2 |o;] and {g;> # {o;) since G is a Q-group. Thus ¢; # o*
for any k. Thus a;(c;) = 0.

Note that a,(0;) = [Ns({o;>): {o,;>] = the index of {g;> in its nor-
malizer in G # 0.

THEOREM 2.3. Let G be a Q-group. Use the above notation. There exists
a proper permutation character y of G so that if i # j then y(o,;) # y(0;).

PROOF. Let y = 33§, a,o; with the g, chosen as follows: Let a, = 1.
Forj=s—1, .., 1leta;, =1+ i ;1 aqao;+1). Then forall i > j,
D= (o) > L= apu(oy). By Proposition 2.2 y(0,) = 3= aax(o)),
so that if i > j y(o;) > x(0;).

THEOREM 2.4. Let G be a Q-group. For somen 2 1,G & S,,.

PrROOF. Choose y as in Theorem 2.3. Let n = y(1). Let X: G —» S, be
the permutation representation afforded by y. Then via X, G € §S,,.

ProPOSITION 2.1 and Theorem 2.4 immediately give
THEOREM 2.5. Let G be a finite group. G is a Q-group iff for some n > 1,
GeS,.

III. FusioN FREE REPRESENTATION OF S,. Let k be an algebraically
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closed field with char(k) | n! Consider the natural embedding nat: S, —
GL(n, k) described in Section I. Let g€ S, and suppose ¢ has type
(¢, ..., ¢,). Considering ¢ as a permutation matrix in GL(n, k) define w;
to be the multiplicity of any primitive jh root of unity as an eigenvalue of ¢.

LEMMA 3.1: w; is well defined. Forallj =1, ...,nw; = ¢; + ¢3; + c3; +
o = Dijii Ci

PROOF. ¢ is similar to a permutation matrix that is the direct sum of
matrices of cycles. Thus the characteristic polynomial of ¢ is the product
of the characteristic polynomials of the cycles of ¢. A cycle of length ¢
has characteristic polynomial X7 — 1. If { is a primitive jth root of unity,
then { is a root of X7 — 1 iff j|i. Further, if j|i then { is a root of X7 — 1
of multiplicity exactly 1. Hence w; = the number of cycles of length a
multiple of j, giving the result.

LemMMA 3.2. For all j=1, ..., n, ¢; = X ;u(i)w,;, where p is the classical
M obius function.

PrROOF. Mébius inversion on the partially ordered set of the integers
with the dual division ordering: i < jiff j|i. (See [1], p. 83.)

THEOREM 3.3. Using the natural embedding, S, = GL(n, k).

Proor. Choose g and 7 € S,,. If ¢ ~ 7 in GL(n, k) then ¢ and 7 have the
same eigenvalue structure. By Lemma 3.2 this eigenvalue structure de-
termines a unique type. Thus ¢ ~ 7 in S,.

THEOREM 3.4. Let k be any field with char(k) f n! Using the natural
embedding, S, = Gl.(n, k).

PrROOF. Let K be the algebraic closure of k. Then S, € GL(n, K) and
S, € GL(n, k) = GL(n, K). If s and z € S, and ¢ ~ 7 in GL(n, k), then
o ~ tin GL(n, K). Thusg ~7in S, so S, € GL(n, k).

COROLLARY 3.5. Let G be a Q-group. Let k be a field with char(k) = 0.
For some n 2 |, G € GL(n, k).

PrOOF. For some n Z 1, G & S,. Since char(k) = 0, S, & GL(n, k).
Thus G = GL(n, k).

IV. FusioN FREE RATIONAL REPRESENTATIONS. Denote the sth cyclotomic
polynomial over Q by ¢ (X).

LEMMA 4.1. Let M and N € GL(n, Q) be matrices of finite order r. Sup-
pose (M) = (N>. Then M ~ N.

ProoF. N = M= for some a with (a, r) = 1. M satisfies X* — 1 =
[;,¢,(X). Thus the minimal polynomial of M, m(X) = II;,(¢,(X))s,
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where e, = 0 or | for all s, since each ¢ (X) is irreducible and all are
distinct. The characteristic polynomial of M, ¢(X), can be written as the
product of the ¢ (X) appearing in m(X). That is:

C(X) = H(s!r)(@s(X))fsa f; # 0 iff e, = L.

If £ is an eigenvalue of M of multiplicity f, then (¢ is an eigenvalue of
Me = N of multiplicity at least f. Since { is a root of p(X) for some s|r
and (g, r) = 1, it follows that {2 is a root of the same ¢ (X). That is, if
d(X) is the characteristic polynomial of N,

d(X) = H(slr)((os(X))gs, &s g /;
But degree (c(X)) = n = degree (d(X)), so ¢(X) = d(X).

Because m(X) is the product of distinct irreducibles, the rational canoni-
cal form of M is completely determined by the number of blocks due to
each irreducible factor of m(X). That is, the numbers f;, s|r, completely
determine the class of M in GL(n, k). Since N also satisfies X7 — 1, etc.,
c(X) = d(X)gives M ~ N.

THEOREM 4.2. Let G be a finite group. If G © GL(n, Q), then G is a Q-
group.

ProoF. For ¢ and 7€ G, if (¢) = {r) then by Lemma 4.1 ¢ ~ 7 in
GL(n, Q). Then G = GL(n, Q) gives ¢ ~ 7 in G.

COROLLARY 4.3. Let G be a finite group. G is a Q-group iff for somen = 1,
G & GL(n, Q).

ProOF. In Corollary 3.5 let kK = Q. Then Corollary 3.5 and Theorem
4.2 give the result.
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