FUSION FREE REPRESENTATIONS OF FINITE GROUPS

MARC J. LIPMAN

I. INTRODUCTION. Let G be a finite group. Let Q denote the field of rational numbers. If $\sigma \in G$, $\langle \sigma \rangle$ is the group generated by σ , $|\sigma|$ is the order of $\langle \sigma \rangle$, and if S and S' $\subset G$, S \sim S' means S and S' are conjugate subsets of G. It is well known that the following definitions are equivalent:

DEFINITION. *G* is a *Q*-group if every complex character of *G* is *Q*-valued.

DEFINITION. G has cyclic conjugacy if for every σ and $\tau \in G$, $\langle \sigma \rangle \sim \langle \tau \rangle$ iff $\sigma \sim \tau$. Equivalently, G has cyclic conjugacy if for every σ and $\tau \in G$ such that $\langle \sigma \rangle = \langle \tau \rangle$, then $\sigma \sim \tau$.

This paper presents two other criteria for Q-groups, one in terms of permutation representations, one in terms of rational representations. The essential concept is the "fusion free representation".

DEFINITION. Let $f: G \to H$ be a homomorphism of groups. f is *fusion* free if for every σ and $\tau \in G: \sigma \sim \tau$ in G iff $f(\sigma) \sim f(\tau)$ in H. This is denoted by $G \equiv H$. If f is fusion free then f is 1 - 1. Thus we consider G to be a subgroup of H, justifying the notation. A *fusion free representation* of G is any representation of G consisting of a fusion free homomorphism.

The main results of this paper are:

THEOREM 2.5. Let G be a finite group. G is a Q-group iff for some $n \ge 1$, $G \ge S_n$.

COROLLARY 4.3. Let G be a finite group. G is a Q-group iff for some $n \ge 1$, $G \subset GL(n, Q)$.

Let $\sigma \in S_n$. The "type" of σ is an *n*-tuple $(c_1, ..., c_n)$, where c_i is the number of cycles of length *i* in σ . For σ and $\tau \in S_n$, $\sigma \sim \tau$ iff σ and τ have the same type. Further, if $\langle \sigma \rangle = \langle \tau \rangle$ then σ and τ have the same cycle structure, that is, $\sigma \sim \tau$. Thus for all $n \ge 1$, S_n is a *Q*-group.

Let k be a field with char(k) $\nmid n!$. (n! is the order of S_n .) Choose an ordered basis for an n-dimensional vector space over k. Define the natural mapping nat: $S_n \to GL(n, k)$ by assigning to each $\sigma \in S_n$ the permutation matrix in GL(n, k) associated to σ . In Section III the following theorem is proved:

Received by the editors on March 7, 1978.

Copyright © 1980 Rocky Mountain Mathematics Consortium

THEOREM 3.4. Let k be a field with char(k) $\nmid n!$. Then, using the natural embedding, $S_n \equiv GL(n, k)$.

II. FUSION FREE PERMUTATION REPRESENTATIONS.

PROPOSITION 2.1. If $G \equiv S_n$, then G is a Q-group.

PROOF. Suppose $\langle \sigma \rangle = \langle \tau \rangle$ for σ and $\tau \in G$. Then $\sigma \sim \tau$ in S_n since S_n is a *Q*-group. $G \subset S_n$ implies $\sigma \sim \tau$ in *G*.

The goal for the remainder of this section is to prove the converse of Proposition 2.1. Let G be a Q-group. Let $\sigma_1, ..., \sigma_s$ be a full set of representatives for the conjugacy classes of G, ordered so that $|\sigma_i| \leq |\sigma_{i+1}|$ for i = 1, ..., s - 1.

Consider the characters $\alpha_i = 1_{\langle \sigma_i \rangle}^G$ for i = 1, ..., s. α_i is the character of G of the permutation representation $(G, G/\langle \sigma_i \rangle)$. That is, α_i is the character of the representation of G acting by left multiplication on the left cosets of $\langle \sigma_i \rangle$ in G.

PROPOSITION 2.2. Let G be a Q-group. With the above notation, if j > i then $\alpha_i(\sigma_j) = 0$.

PROOF. $\alpha_i(\sigma_j) \neq 0$ iff for some $\tau \in G$, $\sigma_j \tau \langle \sigma_i \rangle = \tau \langle \sigma_i \rangle$ iff $\sigma_j \sim \sigma_i^k$ for some integer k.

If j > i, $|\sigma_j| \ge |\sigma_i|$ and $\langle \sigma_j \rangle \not\sim \langle \sigma_i \rangle$ since G is a Q-group. Thus $\sigma_j \not\sim \sigma_i^k$ for any k. Thus $\alpha_i(\sigma_j) = 0$.

Note that $\alpha_i(\sigma_i) = [N_G(\langle \sigma_i \rangle): \langle \sigma_i \rangle] =$ the index of $\langle \sigma_i \rangle$ in its normalizer in $G \neq 0$.

THEOREM 2.3. Let G be a Q-group. Use the above notation. There exists a proper permutation character χ of G so that if $i \neq j$ then $\chi(\sigma_i) \neq \chi(\sigma_j)$.

PROOF. Let $\chi = \sum_{l=1}^{s} a_l \alpha_l$ with the a_l chosen as follows: Let $a_s = 1$. For j = s - 1, ..., 1 let $a_j = 1 + \sum_{k=j+1}^{s} a_k \alpha_k(\sigma_{j+1})$. Then for all i > j, $\sum_{k=j}^{s} a_k \alpha_k(\sigma_j) > \sum_{k=i}^{s} a_k \alpha_k(\sigma_i)$. By Proposition 2.2 $\chi(\sigma_i) = \sum_{k=i}^{s} a_k \alpha_k(\sigma_i)$, so that if $i > j \chi(\sigma_j) > \chi(\sigma_i)$.

THEOREM 2.4. Let G be a Q-group. For some $n \ge 1$, $G \subset S_n$.

PROOF. Choose χ as in Theorem 2.3. Let $n = \chi(1)$. Let $X: G \to S_n$ be the permutation representation afforded by χ . Then via $X, G \equiv S_n$.

PROPOSITION 2.1 and Theorem 2.4 immediately give

THEOREM 2.5. Let G be a finite group. G is a Q-group iff for some n > 1, G $\equiv S_n$.

III. FUSION FREE REPRESENTATION OF S_n . Let k be an algebraically

closed field with char(k) $\not\mid n!$ Consider the natural embedding nat: $S_n \rightarrow GL(n, k)$ described in Section I. Let $\sigma \in S_n$ and suppose σ has type $(c_1, ..., c_n)$. Considering σ as a permutation matrix in GL(n, k) define w_j to be the multiplicity of any primitive *j*th root of unity as an eigenvalue of σ .

LEMMA 3.1: w_j is well defined. For all $j = 1, ..., n w_j = c_j + c_{2j} + c_{3j} + ... = \sum_{i;j|i} c_i$.

PROOF. σ is similar to a permutation matrix that is the direct sum of matrices of cycles. Thus the characteristic polynomial of σ is the product of the characteristic polynomials of the cycles of σ . A cycle of length *i* has characteristic polynomial $X^i - 1$. If ζ is a primitive *j*th root of unity, then ζ is a root of $X^i - 1$ iff *j*|*i*. Further, if *j*|*i* then ζ is a root of $X^i - 1$ of multiplicity exactly 1. Hence w_j = the number of cycles of length a multiple of *j*, giving the result.

LEMMA 3.2. For all $j = 1, ..., n, c_j = \sum_{i \mid \mu(i) w_{ij}}$, where μ is the classical Möbius function.

PROOF. Möbius inversion on the partially ordered set of the integers with the dual division ordering: $i \leq j$ iff j|i. (See [1], p. 83.)

THEOREM 3.3. Using the natural embedding, $S_n \equiv GL(n, k)$.

PROOF. Choose σ and $\tau \in S_n$. If $\sigma \sim \tau$ in GL(*n*, *k*) then σ and τ have the same eigenvalue structure. By Lemma 3.2 this eigenvalue structure determines a unique type. Thus $\sigma \sim \tau$ in S_n .

THEOREM 3.4. Let k be any field with char(k) $\not| n!$ Using the natural embedding, $S_n \equiv GL(n, k)$.

PROOF. Let K be the algebraic closure of k. Then $S_n \equiv \operatorname{GL}(n, K)$ and $S_n \subseteq \operatorname{GL}(n, k) \subseteq \operatorname{GL}(n, K)$. If σ and $\tau \in S_n$ and $\sigma \sim \tau$ in $\operatorname{GL}(n, k)$, then $\sigma \sim \tau$ in $\operatorname{GL}(n, K)$. Thus $\sigma \sim \tau$ in S_n so $S_n \equiv \operatorname{GL}(n, k)$.

COROLLARY 3.5. Let G be a Q-group. Let k be a field with char(k) = 0. For some $n \ge 1$, $G \subset GL(n, k)$.

PROOF. For some $n \ge 1$, $G \equiv S_n$. Since char(k) = 0, $S_n \equiv GL(n, k)$. Thus $G \equiv GL(n, k)$.

IV. FUSION FREE RATIONAL REPRESENTATIONS. Denote the s^{th} cyclotomic polynomial over Q by $\varphi_s(X)$.

LEMMA 4.1. Let M and $N \in GL(n, Q)$ be matrices of finite order r. Suppose $\langle M \rangle = \langle N \rangle$. Then $M \sim N$.

PROOF. $N = M^a$ for some a with (a, r) = 1. M satisfies $X^r - 1 = \prod_{s|r} \varphi_s(X)$. Thus the minimal polynomial of M, $m(X) = \prod_{s|r} (\varphi_s(X))^{e_s}$,

where $e_s = 0$ or 1 for all s, since each $\varphi_s(X)$ is irreducible and all are distinct. The characteristic polynomial of M, c(X), can be written as the product of the $\varphi_s(X)$ appearing in m(X). That is:

$$c(X) = \prod_{(s|r)} (\varphi_s(X))^{f_s}, \ f_s \neq 0 \text{ iff } e_s = 1.$$

If ζ is an eigenvalue of M of multiplicity f, then ζ^a is an eigenvalue of $M^a = N$ of multiplicity at least f. Since ζ is a root of $\varphi_s(X)$ for some s|r and (a, r) = 1, it follows that ζ^a is a root of the same $\varphi_s(X)$. That is, if d(X) is the characteristic polynomial of N,

$$d(X) = \prod_{(s|r)} (\varphi_s(X))^{g_s}, g_s \ge f_s.$$

But degree (c(X)) = n = degree (d(X)), so c(X) = d(X).

Because m(X) is the product of distinct irreducibles, the rational canonical form of M is completely determined by the number of blocks due to each irreducible factor of m(X). That is, the numbers f_s , s|r, completely determine the class of M in GL(n, k). Since N also satisfies $X^r - 1$, etc., c(X) = d(X) gives $M \sim N$.

THEOREM 4.2. Let G be a finite group. If $G \equiv GL(n, Q)$, then G is a Q-group.

PROOF. For σ and $\tau \in G$, if $\langle \sigma \rangle = \langle \tau \rangle$ then by Lemma 4.1 $\sigma \sim \tau$ in GL(*n*, *Q*). Then $G \equiv GL(n, Q)$ gives $\sigma \sim \tau$ in *G*.

COROLLARY 4.3. Let G be a finite group. G is a Q-group iff for some $n \ge 1$, $G \equiv GL(n, Q)$.

PROOF. In Corollary 3.5 let k = Q. Then Corollary 3.5 and Theorem 4.2 give the result.

Reference

1. Berge, C. Principles of Combinatories, Academic Press, New York, (1971).

INDIANA UNIVERSITY-PURDUE UNIVERSITY, FORT WAYNE INDIANA