
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 10, Number 4, Fall 1980 

OSCILLATION THEORY FOR GENERALIZED 
SECOND-ORDER DIFFERENTIAL EQUATIONS 
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ROGER T. LEWIS 

1. Introduction. We will consider the generalized vector-matrix differen­
tial system 

R{t)u\t) = v(0 

(1) ft 
v(t) = v(a) - I dM(t)u(t), t e [a, oo), 

where the «-dimensional vector-valued function u(t) is assumed to be ab­
solutely continuous on compact subintervals of [a, oo), and the real n x n 
matrices R and M satisfy 

R* = JR, M* = M, R(t) > 0 (positive definite) for all t e [a, oo), 

R and R~l are locally L°°, and M is locally of bounded variation. 

By A* we mean the transpose of the matrix A. The matrix-valued Rie-
mann-Stieltjes integral of (1) is a direct generalization of the scalar Rie-
mann-Stieltjes integral. The associated properties are direct consequences 
of the properties of the scalar integral (cf. Reid [14]). 

If there is a function Q(t) that is integrable on compact subintervals of 
[a, oo) such that 

M(t) = M(t0) + f ' Q(s) ds 
J to 

for some t0 e [a, oo), then (1) reduces to the vector-matrix differential 
equation 

(3) (Ru')' + Qu = 0. 

If we define for« = —1,0,1,2, . . . 
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[yn + (t - n) (yn+1 - yn), n < t < n + 1, 

R(t) = Cm n S t < n + 1, 

and 

(0, / < 0 

Mit) = < w 

where [£] denotes the greatest integer of t, then (1) reduces to the second 

order, vector-matrix difference equation 

(4) -Cnyn+1 - Cw_! yn-x + Bnyn = 0, n = 0, 1, 2, ... . 

In addition, the scalar generalized second order differential equations 
which appear in the works of Feller [4], Kac and Krein [10], and Sz.-Nagy 
[18] are special cases of (1). 

The oscillation theory associated with equation (3) is extensive, espe­
cially in the scalar case. We suggest that the reader consult [1, 2, 6, 7, 17, 
19] and the references contained therein. Equation (4) has also received 
some attention in the scalar case [5, 9], but very little has been done in 
general. 

The existence and uniqueness of solutions to equation (1) has been con­
sidered in a paper by Reid [14]. Additional results concerning the oscilla­
tion of (1) can be found in other papers of Reid [15,16]. 

Points ti and t2 are said to be (mutually) conjugate with respect to (1) if 
there is a solution (w; v) of (1) with u ^ 0 on (f1? t2) and u(t{) = 0 = u(t2). 
If the interval [a, b] contains two distinct points which are conjugate with 
respect to (1), then (1) is said to be oscillatory on [a, b]. Otherwise, (1) is 
nonoscillatory on [a, b]. For a noncompact interval [a, oo) (or (0, b]), 
0 ^ a < b ^ oo, (1) is said to be oscillatory at oo (at 0) if every neighbor­
hood of oo (0) contains two distinct points which are conjugate with 
respect to (1). Otherwise, (1) is said to be nonoscillatory at oo (0). 

The matrix equation associated with (1) is 

R(t) U'(t) = V(t) 

(5) ei 

V(t) = V(a) - I dM(t)U(t\ te [a, oo), 

where Uand Fare« x n matrix-valued functions. 

Solutions of (5) are said to be conjoined (or prepared) if 

U*(RU') - (RU')*U = 0. 
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By differentiation, it can be shown that the left side of the above equality 
must always be a constant. 

Some of our results will extend those of Etgen and Lewis [2], and will 
consequently involve the set of positive linear functions on the Banach 
algebra Mn of all n x n, real-valued matrix functions. A linear functional 
g: J(n -> (— oo, oo) is positive if g(B) ^ 0 whenever B is symmetric and 
positive semidefinite (B ^ 0). If g(B) = 0 for all B e Jtn, then g is said to 
be trivial. In the finite dimensional case (only), which we consider in this 
paper, it is known that for every nontrivial positive linear functional 
g: Jtn -» (—oo, oo) there are nonzero, ^-dimensional vectors vh ..., vk9 

Jc ^ n, such that for any B e J(n 

g(B) = £ (Bvi9 v,), 

where (Bvi9 vt) = vfBv{. Note that if B > 0, then g(B) > 0. The use of 
general positive functionals in establishing critieria for the oscillation of 
differential systems was first introduced by Etgen and Pawlowski [3]. 

Let stfn(a, b) = {u: u is an ^-dimensional absolutely continuous, vector-
valued function on [a, b] satisfying u(a) = 0 = u(b) and u' e L2(a, b)}. 
The next theorem can be found in a paper of Reid [14]. 

THEOREM 1.1. The following statements are equivalent. 
(i) Equation (1) is nonoscillatory on [a, b\. 

(ii) There is a nonsingular, conjoined solution of (5) on [a, b]. 
(iii) Ifu e stfn(a, b) andu ^ Oon [a, b], then 

V[(Ru\ u') dt - (dMu, u)] > 0. 

The comparison principle for (1) follows easily from Theorem 1.1. In 
the case of (3) the reader may consult Lewis [12]. 

2. A nonoscillation theorem. The scalar version of the next lemma can 
be found in [8] and, in the vector case, Lemma 1.1 of [12] is a consequence 
of this result. The proof is similar to that in [8]. The vector norm is 
the Euclidean norm, ||w|| = [Zl^iW?]172, and for any matrix^, \\A\\ = 
sup|(v4£, | ) | for any unit vector £, ||£|| = 1. 

LEMMA 2.1. Suppose w is a real continuously differentiable function on 
[a, b] with w' > 0. Ifu e sén(a, b) and w ^ O , then 

[b
W'\\uf dx < 4 v^m dx. 

Ja J a W 

In the'next theorem, the letter I will denote the n x n identity matrix. 
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THEOREM 2.1. Suppose there is a real continuously differentiable function 
w on [a, b] with w' > 0 such that 

and 

\\M(t)\\ ̂  KOI 

w (t) 

11/2 

then (I) is nonoscillatory on [a, b]. 

PROOF. If u e œ?n(a, b), u ^ 0, then 

[ u*dMu = u*Mu\ - f [(u')*Mu + u*Mu'] dt 
Ja \a J a 

which implies that 

I [bu*dMu U 2 J ' ||M'(OII MOII \\M{t)\\ dt 
\ J a I Ja 

- 2 f ! (Jxo)' / 2 ,|M'(0li ( v v ' ( ° 1 / 2 "M(0"dt 

- 2Lf! ^w$rW{tW dtTUb
a

wV) MtW dt 

^ f\u')*Ru' dt. 

Therefore, 

[\u')*Ru' dt - ibu*dMu > 0 
Ja Ja 

which, by Theorem 1.1, implies that (1) is nonoscillatory. 

For example, if we let w(t) = 5/4 t9 for some constant ö # 0, then (1) is 
nonoscillatory on [a, b], a > 0, provided 

||M(0|| û^-t8 and R(t) ^ ts+l I. 

In the case of equation (3), R(t) = I, and ö = - 1 , this reduces to the 
Hille criterion [7] : 

u" + Q(t)u = 0 is nonoscillatory at oo if 

1 /•oo 

1 ô(*> ds < — 
= 4 
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As another example of an application of Theorem 2.1, we let w(t) = ì e1. 
The scalar equation 

(etyj + qy = 0 

is nonoscillatory on [a, b] provided 

q(s) ds \i '
 1<U 

= 4 

3. Oscillation when dM ^ 0. We denote the maximum eigenvalue of 
A by vA and the minimum eigenvalue by [JLA. 

THEOREM 3.1. Suppose that R and M satisfy the following: 
(i) lim^oo fi \l

a R-\s)ds = oo, 
(ii) M(t2) ^ M(ti) when t2 > *i (i.e., M(t2) — M(t{) is positive semide­

finite), 
(ii\) for every tx ^ a, there is a t2 > tx such that M(t2) > M(^), and 
(iv) there is a positive continuously differentiable function k on [a, oo) such 

that 

oo. (6) Jim sup v^\k(s)dM(s) - ^ g | R(s) ds 

Then, (I) is oscillatory at oo. 

PROOF. Suppose that (1) is nonoscillatory at oo. Then there is a number 
b ^ a such that (1) is nonoscillatory on [b, c] for all c > b. Difine U as the 
conjoined solution of (5) such that U(b) = 0 and (RU')(b) = /. By the 
analysis of problem 4, p. 345, of Reid [17] adapted to (5), Uis nonsingular 
on (b, oo) (see also Theorem 3.1 of Reid [14]) and RU' is nonsingular on 
[b, oo). In addition, Reid shows in this analysis that W0 = U(RU')~X 

is positive definite on (b, oo). Since d(RU') = —dMU implies that 
d(RU') U~lk = -dMk, we have that for c > b, 

RU'U^kY - PRU'd(y-ik) = - P 
\c J c J c 

kdM 

or 

(7) RU'U-ikV - VkRU'\-U-WU-i + U~l~Ads= - P 

Since U being a conjoined solution implies that 

(U-l)*(U'*R) = RU'U~l, 

kdM. 

then 
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RU'U-WU-i - RU'U 

Thus, (7) becomes 

W^k 
le Je 

k C/'C/- i _ ^' A 
2& . 

* 
R 

4Jt» 

|W-i - ^ / 
* 
R t/'t/-1 - k' 

2k 
- / 

- ^ ) * 

r. = - kdM 

from which we can conclude that for all t ^ c 

S W*\c)k(c). i trkdM(s) - V^Rds 
4k 

However, this is a contradiction to (iv). 
Since 

ft? Rrl(s)ds ^ f WRWW'1 ds, 
Ja Ja 

then (i) holds when j^° Hi^)!!"1 ds = oo. In addition, (6) holds when 

Jfcfr)-1 jfc'(f)2||Ä(OII A < » r 
and lim^oo v \f

a k(s)dM(s) = oo. 

THEOREM 3.2. Suppose R = I, (1) w nonoscillatory at oo, #m/ M satisfies 
(ii) am/ (iii) of Theorem 3.1. 77ze/?, f/ze //ra/7 M(oo) ex/sta a« J 

0) 

and 

(Ü) 

lim sup v f [M(oo) - M(/)] <; 1 

lim inf ^ t[M(ao) - M(t)] ^ 1/4. 

PROOF. The proof of Hille [7, pp. 487-489] can be adapted with the 
following observations. As in the last proof, if U is a solution of (5) sa­
tisfying U(b) = 0 and (RU')(b) = / with U nonsingular on (b, oo), then 
(RU') is nonsingular on [b, oo). By Theorem 3.1, vM is bounded above 
which implies that M is bounded above. Consequently, M being non-
decreasing implies that M(oo) exists. The definition of nonoscillation 
given by Hille is different from the definition given in this paper; e.g., in 
the scalar case Hille's definition of a nonoscillatory solution y requires 
that y and y' be nonzero. However, the proof of Hille applies since our 
hypotheses require U' to be nonsingular. 
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4. Comparison with scalar equations. In this section, we establish a com­
parison theorem for (1) which has been previously proved for (3) by Etgen 
and Lewis [2] and recently extended to general even order differential 
equations by Lewis and Wright [13]. The proof, which is valid only in the 
finite dimensional case considered here, is a simplification of that given 
in the paper of Etgen and Lewis. This theorem allows us to apply the vast 
amount of already established criteria for the oscillation of scalar equa­
tions (n — 1) to the vector-matrix equation (3). 

THEOREM 4.1. If there is a nontrivial positive linear functional g on the 
set of real n x n matrices such that the scalar system 

g(R(t))yV) = w(t) 
(8) r, 

w(t) = w(a) - y(s)d[g(M(s))] 
J a 

is oscillatory on [a, b], then (I) is oscillatory on [a, b]. 

PROOF. Since (8) is oscillatory on [a, b], then by Theorem 1.1 there is 
a function fe stf\{a, b)9f & 0, such that 

J W ( 0 ) / ' ( 0 2 dt - f(tyd[g(M(t))}) ^ o. 

Since there are vectors vh ..., vk such that 

g(A) = £ (Av„ v,) 

for all n x n matrices A, the above inequality can be written as 

t P [(*/'".•'/""') dt - (dM(t)fVi,fv,)] ^ 0. 

This implies that for some j e {1, ..., k) and u — fvj, 

f [(Ru\ u') dt - (dM(t)u, u)] ^ 0. 

By Theorem 1.1, we now have that (I) must also be oscillatory on [a, b], 

In order to illustrate the scope of Theorem 4.1, we state two corollaries 
of the general oscillation theorems of section 5, as they apply to scalar 
systems, and we consider some typical examples. The scalar system, which 
is system (1) when n = 1, 

'(0/(0 = HO 

w(t) — w(a) — I y(s)dm{s) 
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is oscillatory at oo if either (A) or (B) below holds. 
(A) There is a positive C{1)[a, oo) function k such that 

£ k'(t)2 + Q&- dt < oo 

0 0 . 

= — oo. 

r(t) 
J a 

and 

lim I k(s)2dm(s) = 
t-*oo J a 

(B) There is a positive function k on [a, oo) such that 

P \r(s)k(s¥ ds - ( P fcY dmO) 
lim inf -A?i= „ ~ V ^ 

[ f . *<*> * ] 
For k = r - 1 , condition (B) reduces to 

- ('({'r-1)2 dm(s) 
(9) lim inf J «;«!,» / , = - oo 

with no monotonicity conditions required of m(s). 
For k(t) = tô/2, condition (A) reduces to the requirement that 

/•oo /»oo 

(10) I tô~2 r(t) dt < oo and I sôdm(s) = oo 

for some a > 0. As a consequence, we know that the scalar equation 

(*«/)' + ktßy = 0, 

with /: > 0, is oscillatory if ß > a — 2. For /3 = a — 2, the above 
equation is the Eular equation which is oscillatory if and only if k > 
(a — l)2/4. The oscillation criterion (10) for the difference equation (4) in 
the scalar case was proved in [9, Theorem 7]. 

If J°° r(x) -1 dx = oo, then by L'HospitaFs rule condition (9) will hold 
if m(t) -• oo as t -• oo. For the scalar equation 

m ( 0 = jt(i(s) ds, so that in this case condition (9) implies the Leighton-
Wintner criterion [11, 20] for oscillation. The Leighton-Wintner criterion 
for scalar difference equations has been established in [9] and [16]. Hence, 
condition (B) is a generalization of the Leighton-Wintner criterion that 
includes both differential and difference equations in one setting. 

The proof of Theorem 4.1 shows that (8) being oscillatory on [a, b] 
implies that there is a constant vector £ # 0 such that 
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woe, ö/(o = Mt) 
w(t)= w(a)-^y(s)d[(M(s)Ç,Ç)] 

is oscillatory on [a, b], and consequently, (1) is oscillatory on [a, b]. The 
paper of Lewis and Wright [13] shows that the analogous implications 
hold for the general even-order version of equation (3). 

Two simple choices of a positive functional, g, are g(A) = 2?=i ciaih 
Ci è 0 (c{ = 1 for each / yields the trace functional), and g(A) = (AC, £) 
where £ is a nonzero constant vector. For example, if we let £ =(l/\/~T) 
(1, 1)* and use the latter choice for g, then the scalar equation (8) cor­
responding to 

(11) u"(x) + 

becomes 

0 b(x) 
b(x) 0 _ 

u = 0 

y" + b(x)y = 0. 

Hence, by the above theorem, equation (11) is oscillatory at oo if J00 sô 

b(s) ds = oo for some ô < 1. 
By using the comparison principle for scalar equations, another scalar 

comparison equation may be derived for (3). By taking g{A) — (A%, f) 
for any A and some constant vector £, ||£|| = 1, and noting that g(R(t)) 
^ v(R(t)) and g(Q(t)) à Mô(0) , then we can conclude that 

(12) (K*(0)/) ' + M6(0)7 = 0 

being oscillatory on [a, b] implies that system (8) (hence (3)) is oscillatory 
on [a, b]. 

A similar comparison equation for the nonoscillation of (3) results by 
noting that u e stfn(a, b) implies that 

J*[/to', W) - (Qu, u))dt ^ JV*(0) ||"'||2 - KÔ(0) UHI2] dt 

^ £ M * ( O X / ' ) 2 -v(Q(t))p]dt 

where/(0 = \\u(t)\\ (\f'\ g ||w'||. Therefore, 

(13) M * ( 0 ) / ) ' + v(Q(y))y = o 

being nonoscillatory on [a, b] implies the nonoscillation of (3) on [a, b]. 
These two comparison results are mentioned by Glazman [6, p. 125] for 
the general even-order equations. 

As indicated above, using condition (9) and Theorem 4.1, it can be 
shown that if there is a positive functional g such that 
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limgf r R-l(s)ds) = limgf r dM(s)) = oo, 

then system (1) is oscillatory at oo, By taking, for some constant unit 
vector £, g(A) = (AC, £) for all A and observing that ^(R-1^)) ^ 
gCR-1^)), Theorem 2.1 of Reid [14] follows as a corollary to Theorem 4.1 
when Reid's matrix B(t) is nonsingular. 

The proof of Theorem 4.1 did not use the "Picone-type" identity used 
by Etgen and Lewis [2] in their proof of the special case applying to (3). 
Such an identity can be shown to hold for (1) and consequently, Theorem 
4.1 can be proved in this way. Using this type of proof, Theorem 4.1 can 
be shown to hold, as well as many of the other results of this paper, for 
equation (1) in the more general B*-algebra setting considered in [2]. 

5. General oscillation theorems. In this section we establish oscillation 
criteria whose corollaries include many of the previously established 
results for differential and difference equations. 

THEOREM 5.1. Suppose there exists a positive Ca)[a, oo] function k, a 
sequence {tn} with tn -» oo as n -• oo, and a sequence {gn} of uniformly 
bounded positive functional such that 

lun£[^(0){^(l-;>)}2^ 
(14) 

- d(gn(M(t)))(l - -Lj k{tf = — 0 0 . 

Then (I) is oscillatory at oo. 
PROOF. We will show that if b > a, there is an n such that 

gn(R(t))y' = z 
(15) 

dz = -d(gn(M(t)))y 

is oscillatory on [b, tn]. Hence, by Theorem 4.1 system (15) implies (1) is 
oscillatory at oo. If \\gn\\ ^ B for all «, then for tn > b 

< B^jRim^^ + moi 12 dt + Vb
a(M) • max \k(t)\2 

where Vb
a(M) denotes the total variation of M(t) on [a, b\. Given this 

upper bound, we see that the limit in (14) is independent of a\ hence, 
it holds for a replaced by b + 1. For tn > b 4- 1, let 
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Ut - b)(\ - b-4-±) k(b + 1), b^t^b+l 

1(1 - tltn)k(t), b+l£t£tn 

then 

^ « W O K O 2 * - d(g„(M(t)))y„(m 

(16) = ^ [ g X R O K W f - d[g„(M(t))]y„(m 

+ P" [gn(R{t))y'„{tf - d[gn(M(t))]yn(tn 
J bn 

Since the above integral from b to b + 1 is bounded independent of «, 
condition (14) implies that (16) is negative for sufficiently large n. Thus 
(15) is oscillatory on [b, tn] and the proof is complete. 

COROLLARY 5.1. Equation (1) is oscillatory at oo if there is a positive 
Ca)[a, oo] function k such that 

(i) J JIWOII \k\tf + ^ - ] * < oo 

(ii) lim sup v([ k{sf(\ - ^JclMis)) = oo. 

PROOF. By (ii) there is a sequence {tn} with l i n v ^ tn = oo such that 

v( I " k(s)2(\ — -—j rfM(5)j -> oo as n -> oo. 

Let £M be a unit eigenvector for 

K1> ) 20 - t)2</M(4 
Let g„(^) = (/f|„, ?„) for all A. Then 

IJ>^»U(i - ;>(OH^>OII[I*'(OI+Jf 
12 

and 

£V(g„(M(0))(l - /J^O)2 = ̂ .(J^(02(l - -~fdM(t)) 

file:///k/tf
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hence, conditions (i) and (ii) imply that (14) holds and the proof is com­
plete. 

In the scalar case, a weaker statement of Corollary 5.1 is to replace (ii) 
by 

(17) lim fl k(s)2dM(s) = 
f-oo J a 

oo 

since by two applications of L'Hospital's rule, (17) implies that condition 
(ii) holds. 

THEOREM 5.2. Suppose there exists a positive function k on [a, oo), a 
sequence {tn} with tn -> oo as n -> oo, and a sequence {gn} of uniformly 
bounded positive functionals such that 

P"[s,(*(*))*(jc)2<fc _ d(g„(M(x)))(['"k(s)ds)2] 
(18) lim - ^ i r-m ^ ^ LL= -co. 

Then (I) is oscillatory at oo. 

PROOF. AS in the proof of Theorem 5.1 it will suffice to show that for 
each b > a, there is an integer n such that (15) is oscillatory on [b, tn]. 

For each n let 

Cn = P" k(s)ds/\ k{s)ds 
J b+l I Jb 

and define 

<(x - b)Cn, xe[b,b+ 1) 

Zn(x) — \ *t i *t 

[1 k(s)ds/\ k(s)ds, xe[b + l,tn]. 

Let Coo = lim^oo CM, which will be some positive number. 
Now, 

(19) [n\gn{R{s))Z'n{s)2 ds - Zn(s)*d[g„(M(s))] 
J I? L 

= h(n) + /2(n) - h{n), 

where 

hin) = ^b'b
l[gn{R(s))Cl ds - Clis - b)*d[gn{M{s))}^ 

in) = ^[g„(R(W2(s)ds - (^'"k(u)duJdIgJiAf(s))]^ • [ £ "* (* )* h 

and 
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3(/i) = ^l[gn(R(sW(s)ds - ^k(u)duJd[gn(M(s))]\ - [^k(s)ds 

763 

2 

As « -» oo, 7i(«) and f3(n) remain bounded independent of«. 
Hence, there is some n such that (19) is negative and the proof is com­

plete. 

The proof of the next corollary is similar to the proof of Corollary 5.1. 

COROLLARY 5.2. Equation (1) is oscillatory at oo if there is a positive 
function k on [a, oo) such that 

lim inf 
t-*oo 

J P \R(s)k(s)2 ds - (Ck^duJ dM(s) 
= — 00. 

(20) 

(J>H2 

COROLLARY 5.3. Equation (1) is oscillatory at oo if 

(£II*( M ) I I - IJ M ) 2 

PROOF. Let k(t) = ||Ä(/)||_1 in Corollary 5.2 and note that as t -*• oo 

l|f'j?(a);fc(s)z<fc| 
II Jg L 

- = 00. 

* [£ m ds 
(Çmds) 

By observing that for any unit vector £ 

J P [ ^ ( s ) ^ ) 2 ds - ( P A;(w)^Y dM(s) 

= O(l). 

od) J«VJ, L 
M k(s)ds 

and taking the minimum over all such unit vectors £, it then follows from 
(20) that the hypothesis of Corollary 5.2 is satisfied. 

When j*°° ||/*(.?) | | -1 ds = oo and n = 1 (the scalar case), equation (20) 
may be replaced by 

(21) M(t) -> oo as t -> oo, 

since L'HospitaPs rule can be used to show that (21) implies equation (20). 
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THEOREM 5.3. Equation (1) is oscillatory at oo if 

(22) lim sup V { M ( 0 4- r + 1 ( / + 1 - j)2 dM(s) - [MR(s)ds\ = oo. 

PROOF. Let b > a. Choose {tn} such that v(Tn) -• oo as « -> oo where 

rw = M ( 0 4- f'M+1(^ 4- 1 - s)2 dM(s) - Çn+1R(s)ds. 
Jt„ Jt„ 

Let £„ be a unit eigenvector for vTn. For * „ > * + !, define wn(0 
= un(t) £n on [Z>, tn 4- 1] where 

f - Z>, 6 ^ * < b + 1 

1 b + \ S t < tn 

(tn + 1 - t) t n ^ t ^ t n + \ . 

Then 

J^ [tó*Ai#; - u* dMu%\ = J6 K*Ä(Of„A - (f - ô)2«rfM(0fJ 

- er [M(o - M(Ä + i)Kw 

^ ^l\\R(t)\\dt - V$+\M) + \\M(b + Dil 

- K^) < o 
for n sufficiently large (recall that Vjj+\M) denotes the total variation of M 
on [b, b 4- 1]). By Theorem 1.1, (1) is oscillatory on [b, tn 4- 1] for n suf­
ficiently large. Since b is arbitrary, (1) is oscillatory at oo. 

For u" 4- ß (0u = 0, (22) may be replaced by 

(23) l i m s u p d T Q(s)ds 4- f+1(f 4- 1 - s)2Q(s)ds 
t->co \_J a J t 

OO. 

It has been conjectured that v(fa Q{s)ds) -> oo as t -> oo is a sufficient 
condition for oscillation of u" 4- Q(t)u = 0. Clearly, it is sufficient if 
Jj+1||ô(j)||flb is bounded independent of t. Even in the scalar case, the 
condition 

lim sup K Q{s)ds 
;-»oo J a 

OO 
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is not sufficient for oscillation, cf. Willett [19, p. 607]. 
For the difference equation (4), equation (22) will hold if 

Hm inf J t (Bk - 2Ck_1)\ = - o o . 

Added in proof. For the scalar case of (1), a number of results on 
oscillation theory may be found in the thesis of A. Mingarelli, Volterra-
Stieltjes integral equations and generalized differential expressions, Uni­
versity of Toronto, 1979. For the differential equation (3), P. Hartman 
in Oscillation criteria for self-adjoint second-order differential systems 
and principal sectional curvatures, J. Diff. Eqs. 34 (1979), 326-338, has 
employed both linear and nonlinear functional to obtain oscillation 
criteria with applicaitons to differential geometry. Theorem 3.1 is a 
matrix analog of a theorem of Z. Opial (Ann. Pol. Mat. 6 (1959), p. 100) 
for scalar differential equations. 
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