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A SINGULAR NONLINEAR BOUNDARY VALUE PROBLEM 

J.C. KURTZ 

We consider the singular non-linear boundary value problem 

(l.i) y+lfy-y+f(y2)y= o, /e(0, cx>) 

(1.2) lim y(t) > 0, lim y(t) = 0, lim y(t) = 0, 
/ - 0 + *-oo t-*Q+ 

where 1 g 7* g 2. It is shown that for certain functions / , positive in 
(0, 00) and continuous in [0, 00), the equation (1.1) has solutions yn{t)> 
n = 0, 1, 2, . . . , which satisfy (1.2) and vanish at n distinct points in 
(0, 00). 

The problem is motivated by a model for stationary self-focusing of 
light beams given by Zakharov, Sobolev, and Synakh [12]; and others. 
After some simplification, their equation becomes 

(1.3) y + \y-y+f(y2)y = 0. 

Of particular interest is the case/fa) = s, in which case (1.3) becomes 

(1.4) y + .J.y-y+yS^O. 

Ryder [11] and Macki [6] have considered the equation 

x - x + xF(x2, t) = 0, 

which under the substitutions 

F(x\ t) = f{x?\t*\ y(t) = t-^x{t) 

becomes our equation (1.1) with 7- = 2. The range 1 ̂  y < 2 is not 
included, and our condition (III) on the nonlinearity is different from 
theirs, so that neither result is contained in the other even for y = 2. 
Nehari [10] has considered the equation 

(1.5) y + j y - y + y* = o, 

which is also included in (1.1) for y = 2. The thrust of this paper is to 

Received by the editors on May 8, 1979. 
Copyright © 1981 Rocky Mountain Mathematics Consortium 

227 



228 J. C. KURTZ 

give a unified treatment which will cover both (1.4) and (1.5). We will use 
many of the techniques of Nehari [8], but the primary new idea is to write 
(1.1) in self-adjoint form 

(1.6) - t-r(try')> + y = f(y2)y; t e (0, oo), 1 ^ r ^ 2 

and introduce "weighted norms". 
In all that follows we will assume that the function /satisfies 

(I) fe C[0, oo), 
(II) f(s) > Oifs > 0, 

(III) \f(s)\ ^ k\s\9 and 
(IV) 3ö > 0 such that s~ôf(s) is strictly increasing on (0, oo). 
We define g(s) = Jo/O?)^ a n d consider the variational problem 

i*oo 

(1.7) min J(y) = min I {y2 + y2 - g(y2)}trdt 
A A JO 

A = {y\yeDK0, oo), KO ^ 0, y(t) * 0, \\y\2 = \tf(y2)y2trdt), where 
||j/||2= Jo°(j2 + y2)t^dt, and D^O, oo) denotes the class of functions con
tinuous on (0, oo) with piecewise continuous derivatives. 

LEMMA 1.1. If y e 

(1.8) 

and 

(1.9) 

PROOF. 

D*(0, oo) and \\y\\ < 

sup t?y2(t) 
0<t<cv 

lim try2(t) 
*-0+ 

For the first part we have 

y\t) = - 2 f °° yydz ^ 2f-r j 

oo, then 

è \\y\\2 

= 0. 

•oo 

\yyWr* 

To prove (1.9), for a given e > 0, we choose s < T such that 0 < t < s 
implies \s

t\yy\zrdz < e/6. Fixing s, we then choose d with 0 < ö < s so 
that òry2{T) < e/3 and (dls)rjj\yy\zrdz < e/6. Then we have 

y2(t)^y2(T) + 2^\yy\dz, 

andforO < t ^ <5, 

^/(0 ^ W^) + 2J] IW>l̂ rfr + 2 ( y ) T l ^ l ^ * 
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LEMMA 1.2. If y G Dl(0, oo) and \\y\\ < oo, then 

(•oo 

(1.10) ^y2dtSC\\y\\2. 

PROOF. Let <p(t) e Cl(0, oo) be chosen so that 0 ^ <p(t) ^ 1 and <p(t) = 1 
for t G [0, 1], <p(t) = 0 for / G [2, oo). We set v = (py, so v = <py + #>y 
and |v| g \y\ + Qy|. Then we have 

(• oo /»J i^oo 

I y2dt = I / * + 1 y2dt 

By Theorem 330 of [4], 

/»oo /»oo /»2 
I \v\2dt^4\ t2\v\2dt = 4 I t2\v\2dt 
Jo Jo Jo 

^ 4-22-r i2\v\2trdt. 

It follows that 
(•oo /»oo /»oo 
1 | j | 2 ^ g 4-22-r 1 |v|2/r^ + I \y\ztrdt 
Jo Jo Jo 

(•oo (»00 
^ 4-22-r I (|y\ + C\y\)2trdt + \ \y\2trdt 

Jo Jo 
g C\\y\\2. 

LEMMA 1.3. 77ie collection {try(t)\y e Dl(0, oo), ||>>|| < M} is equicon-
tinuous on (0, oo). 

PROOF. If 0 < tx < t2 < oo, then 

Using (1.10) gives 

\qy(t2) - 'JX'i)l 
r//r+i _ #r+i\i/2 /t2r-i _ /2r-i\i/2 

* ^"{(Vrf-) + C (V^) . which proves the lemma. 
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LEMMA 1.4. If yeDl(0, oo), y(t) ^ 0, y(t) ^ 0, and \\y\\ < oo, then 
ffi(y2)y2trdt andfêg(y2)trdt both exist, andla > 0 such that ay e A. 

PROOF\Condition (IV) implies tha t / i s increasing, so 

g(y2) = {yZf(s)ds g y*f(y2). 

Jo 

Using (1.8), (III), and (1.10), we have 
{•oo /*oo 

g(yt)trdt ^ y2f{y2)trdt 
(1.11) J o J o 

v y /»oo 

^ C\\y\\*^y*dt ^ C\W < oo. 

We now define H(a) = [^y^fia^y^dtyWyW2. It is easily seen from (I) 
that H{a) is continuous for a > 0. and using (IV) we see that if 0 < a < 1, 

#(a) ^ ^ J V / W ^ = cr*ff(l). 

Correspondingly, a ^ 1 gives i/(a) ^ a25i/(l). Therefore #(a:) is strictly 
increasing, and there exists a unique a > 0 such that i/(a) = 1. A simple 
computation shows ay e A. 

We observe from the above that if y e A, then 

so that 

(1.12) I I J P ^ 1/C > 0. 

LEMMA 1.5. If X = mï{J(y)\y e A}, then ^ 0 , l{y„}&A such that 
J(y„) -> X, and \\ynf ^ C. 

PROOF. Suppose y e A. Using (IV) we have 

/•oo /»oo /*y2 

g(y2)trdt = I I ^ [^-^(5) ] r^ </* 
Jo Jo Jo 

Jo Jo 1 + o 
Then 

/•oo 

(1.13) / ( j ) = |b||2 - g(y2)trdt g 5(1 + Ö)-Hy\\2 > 0, 
Jo 

hence X ^ 0. Now we choose {;>„} E -4 such that J(yn) -> A. Using (1.13) 
we have 

(1.14) |bJ|2 ^ 5-i(l + W J O ^ C. 
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By Lemma 1.1 and Lemma 1.3 {tryn(t)} is uniformly bounded and 
equicontinuous on (0, oo), and it follows by the Arzela-Ascoli theorem 
that a subsequence of {yn(t)}y call it again {yn(t)}9 converges uniformly on 
compact subsets of (0, oo) to a function y e Qu, OO). 

We now turn our consideration to the equation 

(1.15) -{try')' + try = anKjftyjr 

where yn(t) is from above. We define 

/»oo 

(1-16) un(t) = a„Jo g(t, z)f(yl)y„dt 

(t'v 

where 

\t'vKv{t)z-vIJs)^r\ 0 < z S t 
\t-vIv(t)T-vKXz)Tr; T > t 

Taking for the moment ccn = 1 we have 

un{t) = t-»KXt)(pn(t) + t'v UOMO 

where 

MO = ^iT'IJtàRfàyntfd'u 

/•oo 

In the above, v = (f — l)/2, and 7V, ^ y are the modified Bessel functions 
of order v. 

LEMMA 1.6. The following estimates hold for M0> MO* uniformly with 
respect to n : 

(a) <pn(t) = o(e<) as t -> oo ; 
(b) 0B(/) = O(r-^-1/2e-0 ay f -> oo ; 
(c) ^(V) = 0(tl/2) as t -+0+;and 
(d) cßjt) = 0(*-») as / -+ 0 + . 
//Î addition, <pn(t) = <?(f1/2) as f -» 0 + for each n. 

PROOF. We first note that Iv(t) = O(^) and ^ ( 0 = 0(t~v) as / -> 0 + , 
whereas Iv(0 = O(f""1/2e0 and # v (0 = O(^-1/2^"0 as / -> oo. Using 
Holder's inequality, 

<pn{t) <L ( J 7 o ^ ^ 

+ c^r—1/2( J"/(^)V^)1/2(J^2 r^)1/2. 

By condition (III), (1.8), and (1.10) we have 
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/»co /»co /»co 

ÄyDhrdT è C\ yizrdz g C\\yn\A fndz 
(1.18) J ° J ° *° 

^ cyj* g c(l^i-)2/2(_o g e. 
Combining this with (1.17), and again using (1.8), we have <pn(t) g 77(7") + 
CelT~v~V2^ and (a) follows. Next we have the estimate 

/•co 

<]>„(t) è C^t-"-^e-^f(yl)y„zrdT 

a °° n \\/2/C°° \l/2 

/(yDhrdz) (]tJfrrdv) 

by virtue of (1.18),Forpart (c) we use (1.18) and Lemma 1.1 to get 

9n(t) ̂  c(JV(^)2rr^y/2(jV2Tr^y/2
 = 0(,i/2) 

for each n, and <pn(t) = 0(tl/2) uniformly with respect to n. Finally, 

a00 \ l / 2 / C°° M / 2 

* c<-{$yidTy\ 

and it follows that (jj„{t) = 0(/-") as long 1 ^ 7- < 2. If 7- = 2, we use 
(III) and (1.8) to obtain 

Ut) g C^y„rdT + C2 jVi 'V^fc 

Using (1.18) we get 

(1.19) ^M(0 é Cj^yldzj2 + C2. 

Because of Lemma 1.1 we know lim^^y^t) = 0, so we can write y%z) 
= -2^y„{,s)y„{s)ds, so that 

/•co /•co /•co 

1 ^ ( r ) r f r= - 2 1 I yn{s)yn(s)ds dz 
J t J t J T 

è 2^\yJ[s)yM\fdvds 
/•co 

^2t-^t\y„(s)y„(s)\s2ds 

^ t-i\\yj* Z Ct-K 
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Using this estimate and (1.19), we have <pn(t) = 0(t1/2) as t -> 0 + . 
Applying the estimates of Lemma 1.6 to 

«„(O = t-»Kv(t)<pn(t) + t-%(t)4>n(t) 

and 

*„(0 = -t-»Kv+i(t)<pn(t) + t-%+l{t)(jjn{t) 

gives w„(0 = o(/-r /2)and t/„(0 = o(t~r'2) as f -• oo, sothaUrwM(0«w(0 = 
o(l) as / -» oo, uniformly with respect to n. As f -» 0 + , we have «„(f) = 
#(/i/2-r/2)and «„(/) = o(r1/2-r), so that tru„(t)ùn(t) = ö(fi-r'2) = ö( i ) . 
This last estimate is uniform with respect to n except for the case 7- = 2. 

LEMMA 1.7. The function un(t), as defined in (1.16), is a solution o/(1.15), 
and for an appropriate choice of an we have uneA, J(un) g J(y„), and 
J(un) = J(yn) if and only ifun{t) = yn(t) in (0, 00). 

PROOF. Clearly our function un e C2(0, 00), un(t) ^ 0, un(t) ^ 0, and 
un satisfies (1.15). Setting X 0 = w»(0 m (1.15), multiplying both sides by 
un(t\ and integrating by parts gives 

H%T) = \\ul + ùDtrdt 
JO 

= an[
TKy2n)ynuntrdt + Trun(T)ùn(T). 

Jo 
We note that 

fQf(yl)ynUntrdt ^ (JV(^2^^)1/2(J%^/r^)1/2 

since u2
n(t) = 0(tl~r), and by (1.18). But 

J>sŒM'2Œ<2-r<-
and it follows that both $f()%)ynuntrdt and j^(w2 + ifytrdt are conver
gent. Now we use (III) and (1.18) to obtain 

fof(yl)ynUnt
rdt g cfylujrdt 

An inequality of Adams ([1], page 129) gives 
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fft&Tdt g ( r r fou"trdt + 4[TJu"ü«\trdt)[Tu»dt 

g c(£±± + 2)Hi{T) = VKT)Hi(T). 

Thus we have 

HUT) S anHn(T)v(T) + TruH(T)ùH(T)9 

or after completing the square, 

(HJLT) - ^P)2 ± *&?>- + Tun(T)ùn(T). 

Since the right hand side is bounded as T -> oo, we see that 
jo°(w» -hùl)trdt < oo. By Lemma 1.4 we may now choose an so that 
uneA. Multiplying both sides of (1.15) by yn (again y{t) = un(t)) and 
integrating by parts gives 

/»oo /*oo 

(u„y„ + ùj„)trdt = a , I f(yl)yfrrdt = a„\\y„\\2. 
Jo Jo 

Using Holder's inequality we obtain 

[a„£f(yl)y2„trdtj è \\u„\\Hy„P 

/•oo /*oo 

= AMt'dt f(ul)ultrdt 
Jo Jo 

and it follows that 

/•oo /*oo 

(1.20) al\ f(yï)fntrdt S ÄulHtrdt. 
Jo Jo 

But 

(f/(ul)ultrdtj = ||MJ|4 = a^J(yl)ynuntrdtJ 

/•oo /»oo 

^a^of(yl)yltrdt^of(yl)ultrdt. 

Combining (1.20) and (1.21) yields 
/•oo /•oo 

(1.22) J of(ul)ultrdt ^ J of(ylHtrdt. 

Since/is strictly increasing by (IV), g is strictly convex, so 

(1.23) \Tg{ul)trdt ^ {Tg(yl)trdt + i\ul - jftfofttrdt, 

Jo Jo Jo 

(2.21) 
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with equality if and only if un(t) = yn{t) on (0, T). Combining (1.22) and 
(1.24) gives 

/•oo /•oo 

J o {f(ulH - gmtrdt ^ J o {f(yl)yl - g(yl)}trdt, 

i.e., J(un) <; J(yn\ with J(un) = /(j>w) if and only if un(t) = yn(t) on (0, oo). 
We also observe at this point that because of (1.13) we have | |«J2 ^ 

ö~l(l + ö)J(un) g ô-\\ + ö)J(yn) ^ C. As before with {yn(t)}> we can 
use Lemma 1.1 and Lemma 1.3 to obtain a subsequence of {un(t)}, call 
it again {«„(/)}> s u c r i t r i a t UJJ) converges uniformly on compact subsets of 
(0, oo) to a function w0 e C(0, oo). 

LEMMA 1.8. The sequence an is bounded. 

PROOF. From (1.20) we have al è llwjp/lbj2- As in the proof of 
Lemma 1.5 we have ||wj|2 ^ ô~l(l + ô)J(un) ^ C, and form (1.12) we 
have \\ynP ^ C2, hence a\ g Q/C2 . 

LEMMA 1.9. limw^oo/(ww) = J(u0) = À > 0. 

PROOF. We first observe that {cpn(t)} and {(/>n(t)} &re uniformly conver
gent on compact subsets of (0, oo), since the same is true of {yn(t)}, and 
because of the estimates 

\[y%{f(y%y« - f{yl)ym}trdt\ 
I «7 0 I 

tk(^f(yWtrdty(^y-%Yyltrdty2 

+ {l]f(yl)ztrdtj^y-%fyltrdtj2 

- c (£ [ ' ~" / J 2 *) 1 / 2 = o(î?1/2) 

as r] -* 0 + and 

t-vKv{f(yl)yn-f(fm)ym}trdt\ 
UT I a°° \ l /2 

[t-^KJPdtJ = o(l) 
as J - * oo. It now follows that w„(f) -» w0(0 uniformly on compact 
subsets of (0, oo). 

Next we use Fatou's Lemma, (1.14) and (1.11) to get ||w0ll
2 ^ 

lim^oo inf||wj2 < oo and 
/•oo /»oo 

1 g(ul)trdt S lim inf I g(ul)trdt < oo. 
J 0 rt-oo J 0 
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Then 

I (ul + ufotrdt - \ (ul + ùl)trdt 
IJo Jo I 

I CT CT I I r ° ° I 

{ul + ultrdt - I (1/2 + «5)/rrf/ + I {ul + ü 9 / r Ä . 
Jo Jo I IJr I 

Multiplying (1.15) by wM (set J ( J ) = wM(0) and integrating by parts gives 
/•co poo 

(W2 + tiJj/rA = an\ f(yl)ynuntrdt + Trun{T)ùn{T), 
JT JT 

and 

r°° / f°° \i/2/ r°° \i/2 

Using (1.17), (1.8), and (1.11) yields 

f°° /r°° \i/2 

J Tf(yl)ynuntrdt ^ cr-r^J ^ ( j» 2^ ' ) ^ cr-r/2. 

Therefore 

| {ul + iig)^* - 1 {u2
n + t i 2 , ) ^ 

IJo Jo I 

^ CaMr-r/2 + Trun{T)ùn{T). 

If follows that 

I /»oo /»oo I 

I {ul + ii§)^A - I (u* + ùl)trdt\ 
Jo Jo I 

/•oo 

^ J («8 + ultrdt + Cr-r/2 + Tru0{T)ùQ{T). 
Letting r -> oo we have ||w0||

2 = limw_oo||un\\
2. Next we use (III) and (1.11) 

to see that 
(Vg{ul)trdt S c\\A

ntrdt ^ cVt2-rdt = 0{V
3~r) 

as 7] -> 0 + since ww(/) = 0{t1/2~r/2) uniformly with respect to n. Also, 
using (1.8), (1.14) and Lemma 1.7, 

/•co poo poo 

I g{u2)trdt ^ CT-r \ yfaßrdt ^ CT~r\ u2trdt ^ CT~r. 
JT JT JT 

It follows that 

/•oo /*oo 

lim g{ul)trdt = I g{ul)trdt, 
W-ooJO JO 

and hence J{un) -> /(w0) = /I. Finally, 
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J{un) à ö(l + 8)-HunP è C 

by (1.12), so that /(w0) = ^ > 0, and u0(t) & 0. It follows in similar fashion 
that 

/•oo /»oo 

lim f M)ultrdt = MWtrdt, 
«-00J0 JO 

so that u0eA, 

Next we consider the equation 

(1.23) -{tru'y + tru = a0"o/(w0)'r. 

Then, proceeding as before, u(t) = ao^g(t, z)f(u^)u^dx is a solution, 
where a0 has been chosen so that u e A. By Lemma 1.7 we must have 
J(u) Û J(UQ), and hence J{u) = /(wo), a n d w(0 = w0(0- Then w0(0 = 
<*ojo°£('> T)/(W§)W0^ satisfies (1.6). Since ||i/0|| < oo, w0(0 = 0(f-r /2) by 
(1.8), and lim<_4OOw0(0 = 0. Also, it is clear that u0e C2(0, oo). Next we 
observe that 

[T(ul + tìg)/r«/, = a 0 f 7 ( w o K ^ > + Tru0(T)ù0(T) 
Jo Jo 

so that ||w0||
2 = aofâf(ul)ultrdt, hence a0 = 1 since u0eA. It follows 

from the representation u0(t) = jo°#(A T)f(ul)u0dz and condition (II) that 
w0(O > 0 for t e (0, oo). 

If we now investigate the corresponding functions (p0(t) and ^ 0 (0 it is 
easy to show that 

t-»Kv{t)n(t) = 0(^-3r/2) = 0 ( 1 ) 

as / -> 0 -f, so that 

1 f °° 
lim w0(0 = 1 T-pKXT)f(ul)u0zrdz. 
t-*Q+ lvl KV + 1) Jo 

Putting this back into (p0(t) we find p0(0 = #( ' r + 1 ) , so t-vKv+1(t)(pQ(t) = 
o(l) and t-%+1(t)(/>0(t) = o(l) as / -+ 0 + , so that lim^0+w0(0 = 0. We 
have thus proved the following theorem. 

THEOREM 1.1. If f satisfies conditions (I)-(IV) and 1 ^ ^ 2, then 
there exists a solution of (1.6) for which y e C2(0, oo), y(t) > 0 for te 
(0,oo), lim^ooXO = 0, lim^o+XO > 0, andlim^o+ y(t) = 0. 

2. In this section it will be shown that equation (1.6) has, in addition to 
the positive solution guaranteed by Theorem 1.1, an infinite number of 
other solutions which may be obtained by solving the minimum problem 
(1.7) under increasingly restrictive constraints. The associated minimal 
values of (1.7) will be denoted by X\9 À2, . . . , where X\ = À is the number 
defined in Lemma 1.5, and 0 < Xx < X2 < ' "• 
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We first consider the problem 

(y(a) = y(b) = 0,0<a<b<oo 
(2.1) -t-r{tryy +y=f{y2)y\yy *)> ' " 

l7(ß) = X*) = 0, 0 = û < o ^ o o , 

where as usual 1 ^ 7 - ^ 2 . The variational techniques of §1 may be used 
on (2.1) simply by choosing the appropriate Green's function g(t, z) for 
the corresponding interval and boundary conditions. The result may be 
stated as the following theorem. 

THEOREM 2.1. Suppose f satisfies (I)-(IV), 1 ^ 7 - ^ 2 , and A = {y\ye 
DKa, b\ y(t) ^ 0, y(t) * 0, y(a) = y(b) = 0 (j(0 + ) = 0 if a = 0), 
tt(y2 + y*)trdt = l*Ay*)y*trdt}. IfJ(y) = Uy2 +Ì2- g(y2)}*rät, then 
the minimum problem mmAJ(y) = À(a, b) is solved by a solution of {2A). 
Moreover, y(t) > 0 in (a, b), A(a, b) > 0, and if a = 0, then l im^^XO > 0. 

We now proceed to show the existence of a discrete infinity of solutions 
{yn(t)} of (1.6) such that l i m ^ ^ O ) = 0, lim^0+jw(0 > 0, lim^o+AXO 
= 0, and yn(t) has exactly n distinct zeros in (0, 00). The procedure 
depends on the following lemma. 

LEMMA 2.1. IfÀ(a, b) denotes the minimum of J(y) for the interval [a, b]9 

then 
(a) ifa^a'^b'<b, then X(a9 b) S Mß\ b'). 
(b) X(a, b) -+ 00 as b — a -* 0 (as a -> 00 ifb = 00, as b -• 0 if a = 0). 
(c) X(a, b) is a continuous function of a andb (ofb if a = 0, of a ifb = 00). 

PROOF. Parts (a) and (c) follow precisely as in [9], so we consider only 
(b). If 0 < a < b < 00, we first observe that (1.8) can be proved exactly 
as in the proof of Lemma 1.1. Using (1.8) and (III) we have 

\\y\\2 ^ ciby*trdt ^ Ca-r[by*t*rdt ^ Ca~r(b - a)\\y\\K 
Ja Ja 

Since \\y\\ i=> 0, we have ||.y||2 ^ ar/c(b — a) and | | j | | 2 -+ 00 as b -* a. It 
follows from (1.13) that also X(a, b) -> 00 as b -> a. 

In the case 0 < a < b = 00 we see (III), (1.8) as before to get 

\\y\\2 S Cfl-r||^||2J y2trdt ^ Ca-r\\ 

so that || y ||2 -» 00, and hence also X(a, 00) -• 00 as a -> 00. 
Finally we suppose 0 = a < b < 00. Since y(b) = 0, we have 

(2.2) 
y\t) = (jV)2 g (b - oJ>* 

g (b - t)t-r("yhrdT g (b - t)t-r\\y\\2 
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Using (2.2) and (III) we obtain, with 0 < a < b, 

(2.3) f V + y2)trdt g C(b - a) f V + y2)trdt {"y*dt. 
Ja Ja Ja 

But 

[bjpdt S l[b\yy\(T: - a)d-c ^ 2al-r(b\yy\^dT 
Ja Ja Ja 

^ al~T [\y2 + y2)trdz9 

so (2.3) becomes 

f \ y 2 + y2)trdt S c(b - a)al~r( f\y* + y*)trdtj. 

We then have 

Setting a = 6/2 and letting b -* 0 shows that || j | | 2 -» oo for 1 fg 7- < 2. 
When f = 2, we have ||j>||2 ^ ca(b — 0). Setting 6„ = n~l and <zw = 
«_1(1 — /r-1), we find aj(bn — a j -> 00, hence | | j | | 2 -» 00 as b -+ 0 for 

To formulate the minimum problem defining ln we choose (n + 2) 
points tk such that 0 = tQ < tx < • • • < /„+1 = 00. In the interval 
lh-h hi w e consider the minimum problem 

mmAkJ(y) = min^l {y2 + y2 - g(j>2)}/^ 

where 

X'*) = y(h-i) = 0 (for £ = 0, y(0+) = 0), 

P (̂ 2 + ^ / r<fr = f * /0*)j*f r«ft } 

for 1 g H n + 1. Theorem 2.1 shows that it is sufficient to consider this 
minimum problem for functions yk{t) which in the intervals (fÄ_x, tk) are 
the solutions of (2.1), whose existence is guaranteed by Theorem 2J. 

It now follows by Lemma 2.1, as in [9], that the function 

»+i 

A(tl9 . . . ,/„) = 2 ^ 1 , 0 
» = 1 

attains its minimum for certain values 0 = tQ < tx < • • • < rw+1 = 00, 
and that X\ < X2 < * • • We now define y(t) on (0, 00) by setting y(t) = 
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yk(t) in [tk_l9 tk], where if necessary yk(t) is replaced by -y k(t) to assure 
that XO changes sign at each tk (1 ^ k ^ n). Then XO has precisely n 
zeros in (0, oo), and as in [9], it can easily be shown that 

lim XO = I™ XO ( 1 ^ ^ n). 

Hence XO is a solution of (1.6) on (0, oo). 
The results of this section may be summarized in the following theorem. 

THEOREM 2.2. Let rn denote the class of functions XO with the following 
properties: y e D^O, oo), y(tk) = 0 (1 ^ k ^ n, n ^ 1), wAere 0 = t0 

< ti < • • • < fw+1 = oo; for I <^ k ^ n + I 

P* 0* + y2)trdt = P* f{y*)y*trdt9 

where f satisfies (I)-(IV). Ifg(s) = fQf(u)du, the variational problem 

/•oo 

(2.4) min/OO = min J Q {72 + ^2 _ g ^ ) } * r<fc = ^ , j e rn 

has a solution yneCl(Q, 00), and the numbers Xn are strictly increasing. 
The function yn(t) has precisely n zeros in (0, 00) and satisfies the system 

- t-r(try'y + y = /Q*)j,, t e (0, 00) 

limXO = 0, lim X0 > 0, limXO = 0. 
/-oo t-0+ /-0+ 
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