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THE HAM SANDWICH THEOREM AND 
SOME RELATED RESULTS 

JAMES V. PETERS 

ABSTRACT. Using integral transforms, a new and elementary proof 
of the ham sandwich theorem is presented. The proof requires a 
corollary of the Borsuk-Ulam theorem. Conversely, it is shown 
that the ham sandwich theorem implies this corollary. In the 
course of establishing the converse implication, a weak L1 inversion 
theorem for the Radon transform is obtained. 

It is our purpose in this paper to establish an interrelation between two 
known results in topology and geometry. The technique of proof of our 
theorems involves the theory of integral transforms which is of consider­
able independent interest. 

Given a set E in «-dimensional Euclidean space Rw, we shall call any 
positive measure p. with support contained in E a mass density of E. A 
measure, p, not assumed to be necessarily positive, will be called a signed 
mass density. We shall assume throughout that the mass densities have 
zero absolute mass on any hyperplane of Rn. Given any measure p whose 
total mass on Rw satisfies 

(1) f dp(x) * 0, 

it is evident that a hyperplane defined by {x e Rw|<£, .v> = p] may be 
chosen which divides the mass of E into two equal parts. Indeed, given 
any £ G Rw, £ # 0, the mass of the set 

(2) E{\ {xeR»|<£,*> £ p] 

is a continuous monotonie function of/?. For each fixed £, the mass of the 
set described by (2) approaches either zero or the value of the integral in 
(1) as \p\ -> oo. Thus, the division of the mass of E, as defined by (1), into 
two equal parts is a simple consequence of the intermediate value theorem. 
Since no restriction has been made on the value of £, it is reasonable to 
conjecture that n sets Eh . . . , En with mass densities satisfying (1) can be 
simultaneously divided into two equal parts by a fixed hyperplane. Actu­
ally, a somewhat stronger assertion can be shown which we now state for 
later reference. 
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PROPOSITION 1 Consider n sets Ej(j = 1, . . . , « ) with signed mass densi­
ties fa, . . ., jLtn each having zero absolute mass on any hyperplane in Rw. If 
at least one of the fa, . . ., [in satisfies (1), then there exists a hyper plane 
{x e RMKf, x} = p} which simultaneously divides the mass of each set into 
two equal parts. 

Before obtaining a proof of Proposition 1 we note the special case where 
each set E;(j = 1, .. .,n) is of finite measure and djuj is the characteristic 
function of Ej. The fact that these sets can be simultaneously divided in 
two equal parts by a hyperplane is the statement of the ham sandwich 
theorem. The name is derived from the interpretation, in R3, of E1 and E2 

as slices of bread and E3 as a slice of ham ; the sandwich can be cut into 
two equal halves. 

Our proof of Proposition 1 will depend on a well-known result concern­
ing the variety, i.e., the set of common zeroes, of a collection of continuous 
functions defined on the unit sphere Sn of Rw+1. 

PROPOSITION 2. (cf. [3, p. 93]) Given n continuous functions ^(0) , . . . <f>n(6), 
defined on Sn, which satisfy the symmetry condition 

(3) 4>m = -H-o) 
forj = 1,2, . . . AT and 0 e Sn, 

there is a zero common to all the 0/s . 

We shall prove the following theorem. 

THEOREM 1. Proposition 2 implies Proposition 1. 

PROOF. We denote by H(q) the Heaviside function defined by v 

( 4 ) ^ = { O T ' < O 
[0 \i q ^ 0 

where q e R1. Given a signed mass density ju on Rn its Heaviside transform 
is defined by 

(5) fi(Ç,p)= f H(P - <Ç, xy)dp(x) 

where £ e Rw\{0}, p e R1. The domain of definition of fi is then extended 
to p = ± oo by taking the limit of fi(£9 p) as p approaches ± oo respec­
tively. We shall consider the Heaviside transform of each signed mass 
density / / / * ) . It follows immediately from (5) that each fifâ, p) is homo­
genous of degree zero on Rw+1, i.e., 

(6) fi(a£, ap) = fi(Ç, p), a > 0. 

Consequently, each /2/£, p) can be identified with a function on Sn. Next, 
we note that for ally = 1, .. ., n 
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(7) fitf,p) + /2/-£, -p) = f dßj{x). 
JR» 

Finally, we note that each fifa p) is continuous in £ and p. This verifi­
cation is left to the reader. We define ^y(f, p) to be the odd component of 
fifapX i.e., 

<j>fap) = (ll2)[fifap) - &{-£ , -p)]. 

It is evident from (7) that the even component of fi is equal to one half of 
the total mass of juj on RM. Thus 

(8) <j>fap) = fifap) - (1/2) f dMj{x). 

The functions <j>^ ...,$„ satisfy all the hypotheses of Proposition 2. If 
(f o> po) denotes the zero common to all the 0/s, then it follows from (8) 
thatfory = 1, . . . , « 

fij(Ço,Po) = (1/2) I dfxj{x). 

We cannot have \po\ = oo since this would imply that the total mass of ju;-
over Rn is zero for ally. This contradicts our hypothesis that at least one 
ixj satisfies (1). Consequently, the odd components <fij of fij vanish simul­
taneously at a finite value of p0. This concludes the proof. 

We now seek a converse to Theorem 1. Rather than showing that Prop­
osition 1 implies Proposition 2 as stated, we shall establish a statement 
equivalent to Proposition 2. 

PROPOSITION 2f. Let <f>i(0), . . . , <j>n(d) be infinitely differentiable functions 
defined on Sn which are constant on some neighborhood of the north pole of 
Sn. If in addition, each <j)j(d) satisfies the symmetry condition. 

M0)= -<f>j(-dlOeS», 

then there is a zero common to all the 0/s . 

It is evident that Proposition 2 implies Proposition T. Reversing the 
implication consists of showing that each continuous (j)j in Proposition 2 
is the uniform limit of a sequence of infinitely differentiable functions 
{<f>jm} a s m Proposition 2'. Indeed, once such an approximation is ob­
tained, then Propositions 2' guarantees the existence of a common zero of 
the 0/OT's for each m, and consequently, their limits the <f>/s. The method 
by which we obtain the approximation is, essentially, a routine convolu­
tion argument (cf. [2, p. 143]). We now proceed to establish Proposition 
2' on the basis of Proposition 1. As such, all <f>/s referred to in the sequel 
will be assumed to satisfy the hypotheses of Proposition 2'. This is phrased 
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in terms of the £, p coordinates as follows. Let 77 = (rji, .. ., 7]n) and q be 
coordinates on Sn where 

/ n \ - l / 2 / » \ - l / 2 

(9) ^ = &(i!is5 + />2) > 9 = p(zej + p2) • 

The hypotheses of Proposition 2' require that $ be infinitely differentiable 
in 7] and q as well as being constant for \q\ sufficiently close to 1. In terms 
of the £, p coordinates this implies that (j> is infinitely differentiable and 
constant for p sufficiently large and £ ^ 0 restricted to a compact subset 
of R». 

Suppose that each (j)j is the odd component of the Heaviside transform 
of some jUj. Then <f>j differs from fij by a constant which is numerically 
equal to half the total mass of /^. Surprisingly enough, we can obtain an 
inverse Heaviside transform to determine juj(x) from only a knowledge of 
0/£, p). To accomplish this, we differentiate the Heaviside transform, 
with respect to p, under the integral. This yields 

(10) WM = f 3*(/>-<^»w 
dp J R » 9/> ^ v 

JR« 

where ö(p — <£, x » denotes the Dirac mass concentrated on the hyper-
plane <f, x} = p. The function $ £ , /?) so obtained is the Radon trans­
form of the signed mass density ju (cf. [1, 5, 6]). If the Radon-Nikodym 
derivative of ju is identifiable with an infinitely differentiable, rapidly 
decreasing function/, i.e., d/u(x) = f(x)dx, then we may recover/from its 
Heaviside transform. For spaces of odd dimension R2Ä+1(& ^ 1), the 
inversion formula is 

(i i) f(*o) = ^ ^ 2 T J/ (2*+l)(f, <e, *o>Ma 
where /(2*+1)(f, <£, x 0 » denotes the (2k + l)-st partial derivative of / , 
with respect to /?, evaluated at /? = <£, x0>. The surface T7 is taken to be 
the unit sphere of R2*+i and co(£) is the induced differential form of volume 
on this surface. This is given by 

2£+l 

(12) <«(£) = £ ( - iy- i f y nc„. 

More generally, r may be chosen to be any manifold (or collection of 
manifolds) which is the boundary of a neighborhood of the origin (cf. [1]). 

The validity of (11) is an immediate consequence of the analogous 
result for the Radon transform and (10) (cf. [1, p. 11]). In obtaining a 
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converse to Theorem 1 we shall use (11) as follows. Suppose that /(£,/?) 
is a Heaviside transform with odd component 0(£, p). Then since 

(m a^/fe P) = 92*+W,/0 
v ; dp2k+1 dp2k+l ' 

we may recover f(x) from only a knowledge of the odd component of its 
Heaviside transform. 

A limitation of the above inversion formula is the assumption of odd 
dimensionality of Rw. We remark that a somewhat more complicated 
inversion formula may be obtained for Rn with n even. In the present 
discussion, however, it is more appropriate to extend the functions 
î> • • •> <l>2k o n S2k to a system of 2k + 1 functions on S2*+1. This is 

accomplished by defining 

^ / f 1, • • •, f 2*+l> P) = 0/£l> • • • » É2*. />) 

for y = 1, . . . , Ik and 

(14) 02*+i(£i> - - - * É2*+i> />) = |T|Tr expj -d - P2mll^-

where 

2*+l 

llf II2 = S # 

The exponential function defined above is taken to be zero for \p\ ^ ||£||. 
It is evident that the functions 01? . . . , <̂ 2*+i a r e infinitely differentiable, 
odd, and homogeneous of degree zero. Thus, they are identifiable with 
odd, infinitely differentiable functions on S2k+l. Further, a common zero 
of the 0/s , if it exists, is also a common zero of the (f>/s. Finally, it is not 
difficult to see that each <pj is constant for p sufficiently large and f / 0 
restricted to a compact subset of R 2 m . 

Our next result deals with the question of when an infinitely differ­
entiable, odd function on S2k+l is the odd component of a Heaviside 
transform. Initially, our attention will be restricted to the space of in­
finitely differentiable functions with compact support, denoted Q°(R2Arfl). 
We now characterize the space of functions on S2k+l which are odd 
components of Heaviside transforms of functions in Co°(R2*+1). It is 
easily verified that given f(x) e Co°(R2Ä+1) its Heaviside transform /(£, p) 
is infinitely differentiable in p and £ # 0. The compact support of f(x) 
implies that /(£, p) is constant for \p\ sufficiently large, and £ restricted to 
a compact set. The odd component of/(£,/?) is also infinitely differentiable 
and constant for \p\ sufficiently large. The latter statement follows im­
mediately by recalling that the even component of /(£, p) is a constant. The 
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following set of homogeneity conditions complete the characterization. 
For every non-negative integer m, 

°5) i i df(ipp) pmdp=r~j(^p)pmdp=Qm{° 
yields a polynomial in f which is homogeneous of degree m. We remark 
that this also includes the possibility that QJ£) = 0. It is easily verified 
that /(f, p) satisfies (15). Indeed, for the Radon transform / we have 

(16) r f(£9p)p">dp = f /(*)<£,*>»</*. 
J - o o J R2A + 1 

The right hand side of (16) yields a polynomial Qm(%) as described above. 
Since the even component of / is constant, we may replace / by its odd 
component in (15). 

To show that these conditions do, in fact, characterize the Heaviside 
transform, suppose that ç>(f, p) is an odd function, defined for £ e R2k+1\ 
{0}, p G R1 which is homogeneous of degree zero. If, in addition, ç?(f, p) 
is infinitely differentiate in/7 and £ ^ 0, constant for \p\ sufficiently large 
with £ restricted to a compact set, and (15) is valid for every integer 
m ^ 0, then d^jdp is the Radon transform of some f(x) e Q° (R 2 m ) . 
The proof of this last statement is an immediate consequence of the 
analogous characterization for the Radon transform as given in [5]. 

The hypotheses of Proposition 2' imply that each ^(£, p) satisfies all the 
above mentioned conditions with the exception of (15) for every integer 
m ^ 0. Indeed, d<fi/dp is infinitely differentiate in p and £ ^ 0 and has 
compact support (in p) for each £ restricted to a compact set. Applying 
the inversion theorem for square summable functions as obtained in [5], 
there exists a function f(x) e L2(R2k+1) such that d<f>/dp is the Radon 
transform off(x). Since the inversion formula given in (11) is valid for 
square summable functions, we may compute successive partial deriva­
tives of f(x) by differentiating the Radon transform under the integrals. 
Since /(£, p) has compact support with £ restricted so that ||£|| = 1, this 
is permissible, and we conclude that f(x) is infinitely differentiate. We 
cannot assert, however, that f{x) has compact support unless (15) is 
valid for every m ^ 0. 

While <j) need not satisfy (15) for every m ^ 0, it is valid for m = 0. 
To prove this, we recall the conditions which <f> satisfies when viewed as a 
function defined on S2k+l. These are: 

(i) (f>(j], q) is an infinitely differentiable odd function on S2A;+1. 
(ii) (̂97, q) is constant for \q\ sufficiently close to 1. 

It is implicit in the statement of (1) that the limit as q -• + 1 of (̂97, q) is 
well defined. Equivalently, ^J(£, 00) and ç>(£, - 00) are well defined, i.e., 
independent of £. Consequently, we may write 
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M,P)-M, -00) = r M^Adt 
J-oo at 

and, in the limit as p -» oo, 
(17) # £ , oo) - flf, - o o ) = J ^ ^ . 0 dt. 

The right hand side of (17) is ß0(£) a s previously defined. Since ^(f, oo) 
and 0(£, — oo) are numerical values independent off, ô0(£) is a polynomial 
homogeneous of degree zero, i.e., a constant. We summarize the remarks 
of the last two paragraphs as follows. 

LEMMA 1. Suppose that $(T], q) is a function defined on S2k+1 satisfying 
(i) and (ii). If in addition, (j) is an infinitely differentiable function of p and 
£ T̂  0, then dcfrjdp = / where f is the Radon transform of an infinitely 
differentiable, square summable function f(x). Further, 

/»oo w 

(18) I / (£ , p)dp = a constant. 
J —oo 

It is known that the above conditions on /(£, p) also imply that/(x) is 
a pseudofunction (cf. [6, p. 1258]). This means that the Fourier transform 
of f(x) is continuous and vanishes at infinity. We improve upon this by 
establishing that/(x) is integrable. i.e., f(x) e L1(R2*+1). By the Riemann-
Lebesgue Lemma, our result immediately implies that the Fourier trans­
form off(x) is continuous and vanishes at infinity. 

LEMMA 2. Suppose that /(£, p) is infinitely differentiable in p, and% ^ 0, 
and has compact support in p for £ restricted to a compact set. If, in addition, 
/(£,/?) satisfies (18), thenf(x) e L^R^+iy 

PROOF. Following [1, p. 17], we choose the surface F in the inversion 
formula to be the hyperplanes £2Ä+i = ± 1- This choice of F is permis­
sible since the integrand of (11) is homogeneous of degree zero. Con­
sequently, any surface which encloses the origin may be used in place of 
the unit sphere of R 2 m . A surface F is said to enclose the origin if for 
every £ # 0, a£ e F for some a > 0. Strictly speaking, the set of hyper-
planes £2yH-i = ± 1 do not enclose the origin in that any £ of the form 
£ = (£l9 . . . , £2£, 0) satisfies a£ <£ F for all a > 0. However, since this set 
of directions which is not enclosed by F is of measure zero in the space of 
homogeneous coordinates of the form (£1? . . . , £2*4-1), we may still 
evaluate the integral over the remaining set of directions. 

If F is so chosen, then a simple computation yields 

f(rxQ) = r-i l ^ p * - \rf™(pr-\ £2, • • •, &*, 1 ; p)dpdÇ2 . . . </£2* 
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where x0 = (1, 0, 0, . . . 0) and r is a real number. Since the integrand is an 
infinitely differentiable function of r~l, we can expand f{2k) in an asympto­
tic series in powers of r_1. Thus, 

°° r —/—l 
/(/-x0)~(-l)*(2,r)-2*i; - 1 T~ x 

y=o J -

Of course, the series approximates f(rx0) to any desired accuracy outside 
of any compact neighborhood K of the origin. Since f(rx0) is integrable 
on K, the proof hinges on showing that the first 2k + 1 terms of the series 
vanish. Indeed, suppose the asymptotic series of f(rxQ) begins with a 
constant multiple of r~2k~2. Then, since r~2k~2 is integrable on R2k+1\K9 so 
is f(rx0). We now show that 

(19) wJ™J{2k)(^p)pJdp = ° 
for 0 ^ 7 ^ 2k. For y ^ 2fe - 1 this follows immediately. Indeed, for 
y ^ 2k — 1 we have, by virtue of the compact support of / (£, p) for 
fixed £, 

r r2k-»&p)dp = 0. 
J —OO 

By successive integration by parts, this implies that the integral in (19) 
must also vanish. It is only for y = 2k that we require the validity of (18). 
It follows from (18) that 

Again, by successive integration by parts, we obtain (19) for y = 2k. To 
complete the proof we extend the above argument to all rotations of x0. 
Letting U denote a unitary matrix, this requires computing the asympto­
tic series for f(Ux0) as we did for/(x0). The computation is facilitated by 
applying a result obtained in [1, p. 6] which states that the Radon trans­
form of f(Ux) is given by /(C/"1?, p). The validity of (18) and (19) are 
invariant under U~l, the rotation inverse to U. Since U is arbitrary, the 
lemma is established. 

We have assembled all the details necessary to establish the converse of 
Theorem 1. 

THEOREM 2. Proposition 1 implies Proposition 2 or, equivalenti)?, Prop­
osition 2'. 

PROOF. Suppose that 01? (f>2, -••,(/>» a r e given to be infinitely differenti-
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able odd functions on Sn each of which are constant for \q\ sufficiently 
close to 1. Since these functions on Sn may be extended to a system of 
n + 1 functions on Sn+l via (14), it is sufficient to determine a common 
zero of the 0/s with n odd. 

Each <j>j{7], q) satisfies (i) and (ii). Rewriting <f>j in terms of the £, p 
coordinates we have, by virtue of Lemma 1, d<j>jjdp is the Radon trans­
form of an infinitely differentiable square summable function fj(x). By 
Lemma 2, fj(x) is, in fact, integrable. As previously noted, each fj(x) 
need not necessarily have compact support. We now invoke the hypothesis 
that (1) is satisfied for at least one fj(x). In terms of their Heaviside 
transforms this requires that at least one /y(£, p) does not vanish at p = 
± oo. Suppose to the contrary that /y(£, oo) = 0 for each /. Since this is 
equivalent to saying that each /y(£, p) is odd, we have 0y(£, p) — /,{£, p) 
for e a c h / Thus, all of the ç^'s must vanish at p = oo. In terms of the 
7], q coordinates on Sn, this asserts the existence of a common zero at 
q = ± 1. In this case Proposition 2' is trivially valid. Ruling out this case, 
we have established the validity of (1) for at least one/}(*). Applying the 
Ham Sandwich Theorem to the/y's we obtain 

0 = / ( £ o , / > o ) - 0 / 2 ) f fj(x)dx 

= (l/2)[//fo,Po) - / / - c o . -Po)] = 0,<£o,/>o) 

for some f o a n d /?o and all /. This concludes the proof and establishes the 
equivalence of Proposition 1 and 2. 

Several remarks are in order concerning the above results. First, it is 
worth noting that our methods give constructive solutions to what are 
usually presented as merely existence theorems. This is a decided advan­
tage in the use of integral transforms. Secondly, it is not difficult to show 
that Proposition 2 is equivalent to the statement that an odd continuous 
<j>: Sn -> Sn wraps around the origin. This means that any ray in Rn+l 

meets the range of $. The Borsuk-Ulam Theorem states that <j>, as defined 
above, wraps around the origin an odd number of times, i.e., any ray in 
Rw+1 meets the range of <j> an odd number of times (cf. [3, p. 93]). This 
number is called the winding number of <f> at the origin. Consequently, the 
Borsuk-Ulam Theorem is stronger than both Propositions 1 and 2 by an 
amount which is described in terms of winding numbers. This provides 
some perspective on the usual proofs of the Ham Sandwich Theorem 
which require the Borsuk-Ulam Theorem. 
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