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MEROMORPHIC STARLIKE FUNCTIONS
PAUL J. EENIGENBURGT and ALBERT E. LIVINGSTON

ABSTRACT. Let A*(p) the class of functions f(z) univalent and
meromorphic in 4 = {z| |z| < 1} with simple pole atz = p,0 < p
< 1, f(0) = 1 and which map 4 onto a domain whose complement is
starlike with respect to the origin. We discuss the coefficients of the
Taylor series f(z) = 1 + X5, a,z", |z| < p and the Laurent series
f(2) = Tp-_w b,z", p < |z|]< 1. We also obtain best possible
order estimates on L(r), the length of the image of {z:|z|= r} for
a function in A*(p). Estimates on the integral means of higher order
derivatives are also obtained and in the last section a question of
Holland [5] is answered.

1. Introduction. Let X(p) denote the class of functions f(z) which are
meromorphic and univalent in 4 = {z||z| < 1} with a simple pole at
z = p,0 < p < 1, and with f(0) = 1. If, further, there exists §,p < § < 1,
such that

zf'(2)
(L.1) Re [6) <0
and
1 (2 2f'(2) g9 _ _
(1.2) 2 ) Re ) do = —1

for § < |z| < 1 with z = re®, we say that f(z) is in /A(p). Functions in
A(p), which have been discussed in [10, 11], map 4 onto a domain whose
complement is starlike with respect to the origin. However, there exist
functions with pole at p having this mapping property which do not
satisfy (1.1) if p > 1/2. The function

_ p( 2y
FO == pa-m

maps 4 onto the complement of the interval [—4p/(1 — p)?, O] but does
not satisfy (1.1) if p > 1/2[10].
Let A*(p) denote the class of functions f(z) which have the representation
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1.3 = —p@
-9 O = =1 - p2)
where g(z) is in J'*, the class of normalized meromorphic starlike functions
with pole at the origin. The class 4*(p) contains /(p) as a dense subset [10].
The following theorem, although obvious, was never explicitly stated
in [10] or [11].

THEOREM 1. A function f in 3(p) is in A*(p) if and only if it maps 4 onto
a domain whose complement is starlike with respect to the origin.

Proor. If fe A*(p), it has the representation (1.3). Using the fact that
—pz/(z — p)(1 — pz) is real for |z| = 1, it is easily seen that f(z) has the
desired mapping property.

Conversely, suppose that f in X(p) maps 4 onto a domain whose
complement is starlike with respect to the origin. Letting a denote the
residue of fat z = p, it follows that

h(z) = 1;p2 f[lzippz}

belongs to 2'*. Defining g(z) by

g(z) = »(?——“%(p‘z‘—”—zlﬂz)
_ (z=pQ —p2) z—p
- —pz : lﬁvp2 h{l—pz}

and using the fact that (z — p)(1 — pz)/(—pz) is real for |z| = 1, we see
that g € 3*, and consequently f(z) has the representation (1.3).

We note that /A(p) is a proper subset of A*(p) if p > 1/2, while A(p) =
A*(p) if p < (3 — 24/2)2 [10].

2. Coefficient bounds. In this section we examine the coefficients in the
series representations of f(z) in A*(p), both the Taylor series 1 + }]52,a,z%,
|z] < p, and the Laurent series ;5 b,z p < |z| < 1. With regard to
the Taylor series let {4} and {u,} denote the coefficient sequences of
—p(l — 2)%/(z — p)(1 — pz)and —p(1 + 2)?/(z — p)(1 — pz), respective-
ly. It is easy to check that

/, = [ 1 - PMI_—_PE} fy = [LLP_} [L— Pﬁ]_
1 +p p" 1 —p p"

The second author proved a, = 7, for all n if fe A¥*(p) and is real on the
real axis [11]. He also pointed out that, under the same assumptions,
a, < u, follows from results of Goodman [3]. Furthermore, the inequality
la,] £ p,y 1 £ n < 6, follows from some work of Jenkins [6] for any
fe A*(p). We suspect that the inequalities
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42 =Rea, =< |a,| £ pp,nz1

hold generally for f'e A*(p). In support of this conjecture we now prove
that it holds for » = 1 and n = 2. We first require the following lemma
concerning &, the class of functions P(z) having positive real part in A,
P©O) = 1.

LeMMA 1. If P(2) = 1 + Xi52,c,z" belongs to #? and 0 < p < 1, then
(2.1) Re(c; + 2(p + p D)) 22 — 4(p + p 7).

Proor. The Herglotz representation of P gives a probability measure
4 such that

P(z) = jz L4 ze™ gy, 12 < 1.

1 — zeit
From this we obtain ¢, = 2j§”e—f”’d,u(t). Consequently,
2T
¢2 + 2p + p ey = 2 + 2Ap + pDe M)
Since p + p~! > 2, the function

g(t) = cos 2t + 2(p + p~lcos t

is decreasing on [0, z] and increasing on [z, 2z]. Thus,

Re(cz + 2(p + p)ey) = 2f "g(t)dptr)
2 28(n) =2 —4(p + p ).
THEOREM 2. If f(2) is in A*(p) and f(2) = 1 + X 3a,z7, |z| < p, then
4 =<Rea,=|a,| £ ppn=12

ProOF. From previous remarks we need only show that Re a, = 4,
n = 1, 2. Since f(z) is in A*(p), it has the representation (1.3) with g(z) in
2* Let Q(z) = —zg'(2)/g(z); then Q € 2 and it is easily seen that

f'(z) _  —p(l =28
(2.2) Zf(2§ = G = p( = p2) 02,z < 1.

If we let P(z) = 1/Q(z), then P € 2 and (2.2) can be rewritten as

2.3) f2) = —[-(Z-{’(—[')—)(:li_)z 7@ + @) P

Letting P(z) = | + Y%,c,2" z < |, expanding the right hand side of
(2.3) as a power series in |z| < p, and comparing coefficients, we obtain

24 a=ca+@@+phH
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and
2.5 20y =cy + (p+pVey + (p + pDay + p? + p2
Using (2.4), we can rewrite (2.5) as
(2.6) 2a5 = c3 + 2(p + p ey + (p + p + (P2 + p7P).
Since Re ¢; = —2, we obtain from (2.4) that
Rea; = =2 + (p + p)) = 4.

Using (2.1) we obtain from (2.6) that

2Rea; Z22—-4p+p )+ (p+p M2+ (p2+p?,

which gives

2 — 2
Reazg (_1__"'!7;(21—17)=/2

This completes the proof of Theorem 2.

We now discuss the coefficients of the Laurent series X532 ..b,z",
p < |z|] < 1. Libera and the second author pointed out in [10] that

|b,,|g7;7(i ’_“§>forn= 1 =2,

that these bounds are sharp, and that |b,| = O(n~V2) for n = 1. We
obtain the order estimate |b,| = O(n™!) and prove that this is best possible.

THEOREM 3. If f(2) is in A*(p) and f(z) = 132 _b,z", p < |z] < 1,
then |b,| = O(n™Y), n = 1. Furthermore, there exists fe A*(p) with
lim,_,,, sup n}b,| > 0.

PROOF. There exists geJ3* g(z) = z7! + 1122, 4,2, 0 < |z] < 1,
such that
2.7 D= P2 _s), |z| < 1.
@n @) = Gz 8@
Expanding the right hand side of (2.7) for p < |z| < 1 and comparing
coefficients we obtain

(2.8) b, =

o rlP A Py e Py Ay p A+ P + ]

Using the estimate |[4,] < 2(n + 1)1, n = 0, proven by Clunie [1], we
obtain from (2.8)
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16,

IIA

p n+12_—_k
- p[‘” M2 ey ey

__p n+1 k+1 k 2]7 1
1 - [p +2,§) 1p+n+21—p_

P | . 2 1 2p
[*1—;»2 [”“* nel T=pp * (n+2)(1—p)]

A

- p tl(] — 2 2p ]
=A== P iy )
Since p#* (1 — p) = (n + 1)1, 0 < p < 1, we obtain

1 p [p—2p2+3}
b, <
I”l—n+l(1—p)3<r>2f21 1 +p

3p 1

T U=pp® m+1°

Thus |b,| = O(n1).

To see that this order is best possible we note that Pommerenke
[17] has constructed F(z) = z71 + X}20A4,z” in 2* such that lim,_,.,
sup n [4,] > 0. For this F we define fe A*(p) by

2.9 (z = p( = p2)f(z) = —pzf(2).
From (2.9) we obtain forn = 0
n+1 (p+pl)b+bnl_A
and so it follows that we must also have lim,_,, sup n|b,| > 0.

3. Arclength. For bounded regular univalent starlike functions Keogh
[7] has shown that the arc length L(r) of the image of the circle |z| = r
under the mapping w = f(z) satisfies L(r) = O(—log(l1 — r)). Hayman
[4] then proved that O may not be replaced by 0. More recently Lewis [8]
gave an example of such a function satisfying lim,_,..inf L(r)/(—log(l — r))
> 0. It is our purpose to establish that as r — 1 the same results hold
for functions in A*(p). In particular we will show that L(r) =
O(Ir — pI7tlog 1/(1 — r)),r # p.

Miller [14] discussed a class of starlike meromorphic functions having
a different normalization than A*(p). He proved that

1 1
G.1) Lr) = 0( = pl 8 T = r)>’ rer

We point out that this estimate comes from an examination of his proof,
as the final result is stated incorrectly. For the class /*(p) we can eliminate
the |r — p|~! term within the logarithm in (3.1). We will make use of the
following results of Pommerenke [16]. For 0 < r < 1,
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2-#H1 (g — 1) 1
1

62 | __AA_I TGP = et #7
e 111 1 =1

T 8 1—-r’ pn=1

This implies the existence of a positive constant C,, so that
Cl — )=, > 1
53 I i !
’ 2z J -z |1 — reflr =
When 0 < g < 1 the integral is a bounded function of r,0 < r < 1.
In what follows C represents a constant independent of f(z) and r,
though it may change its value from line to line.

THEOREM 4. If f(2) is in A*(p), then

1 1
L(r) = 0<Ir—p| log i _r),r;ép.
PROOF. As observed in [10] the function

P = (ZZE) =D = p)

o / z
has positive real part in 4, with P(0) = pf’(0). Hence
() = P@ [ =f2)z = p)
G4 10 = L

From the representation (1.3) of f(z) there exists g(z) in 2'* so that

—f@)z—-p) _ _ pz
1 —pz — (I —pz)? £
Thus, for z = re,
—f(z)(z — p) pr (1 +r)

-3 P s e

<__ 4

= (1 -p?*
Also, from [10] we have
(3.6) rons LL22

Since P(z) is subordinate to

2iargp(0)
P(0) 1-}-2# ,
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it follows from Littlewood’s subordination theorem, (3.3), and (3.6) that

3.7 I" |P(rei®)|df < j T |PO)||1 + rei@-2arep(@)] &0

— |1——re|

lIA

2(1 + p)? j'

— |1 = re"’]
=< Clog ‘l—l-Ar'

Thus, if (I + p)/2 < |z| < 1, we obtain from (3.4), making use of (3.5)
and (3.7),

(3.8) j' _ |f/(rei®)|db < C 5 _ |P(rei®)|d0

C 1
e,

IIA

Also, for 0 < |z| = (1 + p)/2, |z| # p, we obtain

(3.9) [* 1renids s {7 et — pl-zap
Clir — pl.

We can combine (3.8) and (3.9) in the following way. If (1 + p)/2 < |z| <
1, then (r — p)~1is bounded away from zero. It follows from (3.8) that

(3.10) [ ireenian < &L cog 11

If 0< |zl = (1 + p)/2, z # p, then r1log(l/(1 — r)) 2 | and so (3.9)
yields

G.11) j' |f(rei®)|do <

IIA

C 1 1
= = ITlOgl—r'

Combining (3.10) and (3.11) we have

L(r) = j‘_ rIfre0idd < - <

1
Ilogl_r,r;ép.

This completes the proof of the theorem.

We now use the example of Lewis to prove that the order result of
Theorem 4 is best possible in the strongest possible sense. In particular,
we find f(z) in A*(p) such that

: [r — plL(r)
(3.12) ;gij “log (1 = 1) > 0.
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We first note by standard estimates that since every function in A*(p)
has a simple pole at z = p, we have

inf [r —p| L(r) >0
e<r<1
r#p

for every ¢ > 0.
Also,

L(r) - [z rLf'(rei®)\dO
i loa(T = 1) = M8 [ r22 + r33+ -]
= 2z|f'(0)| > O,

by Theorem 2. Thus, (3.12) will be verified after we complete the next
theorem.

THEOREM 5. There exists f(z) in A*(p) such that
llm inf L(r)/log ——lﬁ— > 0.

PROOF. Lewis [8] has constructed an analytic bounded starlike function
g(2), £'(0) = 1, such that

where C is a positive constant. Defining F(z) in J* by F(z) = g(z)~!, we

have zF'(z)/F(z) = —zg'(z)/g(z). Also, if M is a bound on [g(2)|, = € 4,
then |F(z)] 2 M1, z € 4. Consequently,

ML

Z logl

g (rei)

2(rei®) rdf =z C log ——

1 —

F’ (re"’)
F(ret)

1

lIV

57: |F'(res)|rdf

Finally, we define f(z) in A*(p) by f(z) = G(2)F(z) where G(z) = —pz/
(z — p)(1 — pz). The inequality
/'@ 2 |IGR)F'(2)] — |G'(2)F(2

gives
iminf_ Lo p Jr ol reirdd
lrl_l:l'} inf “Tog(l = 7) = (1 + p)? l,l_rf} inf —log(l — r)
,,,,, p__C
(1 +p) M

This completes the proof of the theorem.
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4. Integral means of derivatives. We begin this section by extending
Theorem 4 to obtain estimates on |7 | f'(re®)|*df, 2 > 0, where fe A*(p).
We note that the integral means of f(z) in A*(p) were discussed in [11]
and for f(z) in 3(p) in [12]. In the statement of the next theorem and in
its proof, C; signifies a constant depending on A but independent of
f(z) and r. Its value may change from line to line.

THEOREM 6. Let f(z) be in A*(p), then for r # p,

1
Cp = =

1 1

A>1

Clrlr—pIIOg’l—r , A=1
[ vreempan s 1
‘ 1
Ciplog ——— , A=1/2
1/2 108 |r _pl /
G , 0< A< 1)2

PrROOF. By Theorem 4, we may assume A # 1. Making use of (3.4)
(3.5), (3.7), (3.6) and (3.3) we obtain, for (1 + p)/2 < |z| < 1.

4 . T do
! AL A
4.1 J‘_ﬂ|f (re?)*df = C; j_” [T = redt
1
< {Cx =T A>1
C; ,0< A< 1,

and for 0 < [z| = (I + p)/2,
4.2) I’i L (re?®)*dO < C; ji . do

1
S

< |
= C1/210g|7;'p|’ A=1/2
o L0< A< 12

Combining (4.1) and (4.2) in the same manner as in §3, the conclusion of
the theorem is obtained.

We remark that the sharpness of the case A = | in Theorem 6 has
already been discussed. Also, since f(z) has a simple pole at z = p, it can
be seen that the factors involving [r — p| in Theorem 6 are actually neces-
sary for each function in A*(p). We will now prove that the exponent
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A— 1lon (1 — r)in the case A > 1 cannot be replaced by a smaller ex-
ponent. For this purpose we note that F(z) = (1 — 2)!(1 — p2)/z,0 =t £
1, is easily seen to be a member of 2*. Now, for 0 < § < A — 1, choose
tsothat 0 < ¢t < (A — 1 — 9)A71, and define fe A*(p) by

=P _FC
m)(bww—w)“
0=

Then, for z = re®,

| T pAl — tp + (t — 1)z|*d0
[" lr@pas = 7 L=k (=02

" do
CLnr:wFﬁ

1
0 = rypa=n-i-

I\

1\%

C

by (3.2). (Here, as before, C # 0 may change its value from line to line.)
Thus,

1

llm (1 —_ r)aj. 'f (Z)Iado b Cllm "(—__—r)m“_lfa = 00,

by our choice of ¢. This completes our argument.

We can now obtain estimates on the integral means of higher order
derivatives by using a method of Feng and Mac Gregor [2]. For this
purpose we need several lemmas, which are extensions of lemmas ap-
pearing in [13], to allow for a pole at z = p.

LEMMA 2. Let h(z) be analytic in 4, except at z = p, and satisfy the
inequality

A
—rylr—p

< -
) < 4 g ledl=r#p,

where A, a, and § are positive constants. Then there exists a positive constant

B so that

B
! < - =
Ih (Z)I = (l _ r)a.le — p|ﬂ+1 s lzl r# p-

PROOF. Let |z| =r,p<r<1,and let p = (p + r)/2, 0 = (1 + r)/2.
Then
h(w) j’ h(w)
W) = 2zi ' 271:1 (

(w z)2 w — z)z
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Thus,
’ 0A 1 (2 do
< L )
|h'(z)] £ (T=0)%0 = p)F 2% Jo [6e® — 2P
o4 1 (% do

+ — -~ .
(=0 —pF 2z Jo |pe? — z|?

Using Parseval’s identity to estimate the two integrals on the right side we
obtain

34 4
Wl < I o R
S (I ¢ ey ) Bl (R i )

_ 2a+12/3+1A5

— (1 =)l + r — 2p)B(1 + 3r)

2a+12ﬁ+1Ap
+ —_—
(r = pPQ2 —r — p)*(3r + p)
Qatpt2 4 Qatp+2 4
S =P = py T = pPL =

B
S =G = pPT

For|z| = r < p,weletp = (p + r)/2, write

R | h(w)
h(z) = 227 iy 0 — 22 dw

and proceed as before.
LEMMA 3. Let h(z) be analytic in 4, except p, and different from zero. If

@l A4
h(z) | = (I = r)elr — pl#”

where Ay, a, and j3 are positive constants, then there exist positive constants
A, depending on a and § so that

|z| = r # p,

h™(2) 4, -
(43) h(Z) = U“—__r)””—l[r — p|ﬁ+”_1’ O<a=1l, 0< ﬁ <1
and
hP@) | L L PER S >
9 WD) | = (1= ryey = g PELOZ]
forlzl = r # p.
PROOF. Let g(z) = h™(z)/h(z). Then

h(n+l)(z) o h(n)(z)h’(z)
o EOT e
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Assume (4.3) holds for some n. By Lemma 2 there exists B, so that

B
! < n =
Ig (Z)l = (1 _ r)a+"|r _ p[ﬁ+” D |Z| r ;é p.

Therefore,
A D) | B, n A A, )
I h(Z) I = (1 . r)a+nlr — p|ﬁ+n (1 —_ r)2a+n—l|’. — p|2ﬁ+n—1

An+1

= W= oy =g FI =T # P

This proves (4.3) by induction.
Assuming that (4.4) holds for some n, we obtain from Lemma 2 the
existence of a constant B, so that

B
' < n =
Ig (Z)l = (1 . r)”““lr _ p|”ﬁ+1 9 |Z| r # p
Therefore,
{h("'*‘l)(z) | < B” " AlAn
[ h@z) | T (1 = rymaFl)y = pprtl (I = )& Dafy — p|»+1iE

A, .
_ (n+1)a+1__ DR lz| = r # p.
1-r Ir = pl

IIA

This proves (4.4) by induction.

LeMMA 4. Let f(2) be in A*(p). Then there exists a positive constant A
such that

o) 4 e
) VA Gl Ry (e M

ProOOF. Since f(z) is in A*(p), we have

(p = 2)1 — p2)f'(2) _
7@ P@)

where Re P(z) > 0, ze 4, and P(0) = pf'(0) = pa;. Logarithmic dif-
ferentiation then yields

@ _P@, PR 1 p

f'@ P (p—2)00—-pz) p—z 1-pz’

An examination of this expression shows that (4.5) holds if both P(z) and
P'(2)/P(z) are order (1 — r)~! as r » 1. We may write P(z) = p Re g,
0(z) + ip Im a;, where Q € 2. Thus,

|P(2)| = p|al|<l tro 1) < 21 + p)z'

1—r 1 —r
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Also, Lemma 1 of [9] yields

P 2
P(z) [_ I —rz
THEOREM 7. Let f(z) be in A*(p). Then for n = 1,
C
](1 - r)nl—llrl_ p| DA A>1

¢,
O

PrOOF. Since the case n = 1 is proven in Theorem 6 we assume that
n = 2. Applying Lemma 4 to h(z) = f'(z) we have

| (2) A

@6 [ 1roeenpdn < 1 5

log T— , A=1

i) |2 e =p=n> ="
By Lemma 3

'f(n)(z)l A

|f(z) [_ (1 — r)n—l(’. _pln_ .
Thus

A 1r
j £ (re?)|Adf < (1= )(n—‘]/.?;l—rl — p|@D1 j_” |f*(re®)|*d0.

An application of Theorem 6 now gives (4.6), and the proof is complete.

We remark that it is possible to include in (4.6) estimates for the range
0 < A < 1. However, it is unlikely that our method would give the
correct exponent on (1 — r) for this case. We now show that for 1 = 1
the exponent nA — 1 on (1 — r) cannot be reduced. The extremal function
f(z) is the same as in Theorem 6, namely, f(z) = —p(l — 2)!/(z — p),
0 < t < 1. The next lemma shows that the integral means of f*(z) are
of the same order as those of g™ (z), where g(z) = (1 — 2).

LEMMA S. Let f(2) = (1 — 2)/(z — p)andg(z) = (z — p)f(z) = (1 — 2),
0 < t < 1. Then there exists a positive constant K depending on n and A
such that for 2 = 1 and ¢ sufficiently close to zero

@7 " iro@pdo 2 & §” 187 @pas,

where z = re and r(t) < r < 1.

PrOOF. Let A(z) = (z — p)~1; then f(z) = g(z)h(z). Using the formula

w(izy = 3 (Mg (2 b
fo@) = 5 (e @hre),
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we obtain
f(n)(z) — (_ 1)»,,!(] — Z)’(Z — p)—(n+l)
F BB = 1) (= kD = 2 — )k
k=1 .

(=g @P@)
t=1)...(t —n+ )z = pyr1°

where
Pz)= (1 — 2y + 3 it = 1) .. (¢ = k + 1)1 = 27Kz —p).
=

Thus, if (1 + p)/2 < |z| < 1, there is a positive constant C so that
If ™) =z CIP(2)llg™ ().

To prove (4.7) we need only prove the existence of a positive constant D
so that |P(z)| = D for ¢ sufficiently close to zero and |z| sufficiently close
to one. We note that P(1) =ttt — 1) ... (t — n + 1)(1 — p)» # 0.
Thus there exists a so that P(e®) # 0 if |§] < a. If |§] = «, there exists
rsothat |l — e®* = y > 0. Also, if |z] = 1,

IP(z) — (1 — 27| < ’;1%', bt — 1) ... (t — k + D21 + p)t.

Thus, there exists 9 > 0so thatfor0 < ¢t < gand |z] = 1,
[P(z) — (1 — 2)*| < 7/2.
Therefore if |0] = a, |z] = 1,and 0 < ¢t < 0, then
P@)l 2 |l —z|" = r/227/2 > 0.

Thus, P(z) # 0 for |z| = 1if 0 < ¢t < §. Therefore, for fixed 1,0 < t < ¢
there exists r(t) > 1 so that P(z) # 0 for r(¢t) < |z| < 1, and thus there
exists a positive constant C so that |P(z)| = C for r(z) < |z| = 1. This
completes the proof of (4.7).

Since sharpness of the exponent nA — 1 when n = 1 was discussed
earlier, we restrict our attention to n = 2. So, for fixed n = 2, 1 = 1 let
0 < nA — 1. Then choose t so that 0 < ¢t < min [l, n — (6 + 1)/A].
Proceeding as in the remarks after Theorem 6, we have that

lim(1 — ry j g™ (re)df = oo.
r—1 -

If we further restrict ¢ so that (4.7) holds, we obtain

lim(1 = ry j SO (re0)Adh = .
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5. An example. In this final section we settle a question of Holland [5]
concerning meromorphic starlike functions f(z) and the area of the
complement of f(J).

For F(z) in J* there exists a probability measure x on |z| = 1 such that

zF'(z) _ (" et +z
6.1 - = |7 St Zaun.

We also associate with F(z) the related starlike function g(z) = F(z)~!.
Let K denote the compact complement of F(4). Holland proved the
following theorem and asked whether the converse is true.

THEOREM 8. [5). If the area of K is zero, then
a) the area of g(d) is infinite, and
b) wis singular with respect to Lebesgue measure.

We now prove by example that the converse of Theorem 8§ is false. We
first observe that if g(4) is not dense in the plane then the area of K is
positive. Integration of 5.1 leads to the formula

(5.2) 2(z) = zexp j' ; log(l — e~2)-2dur).

We now choose u as follows.

Let g(x) be the usual Cantor function on [0, 1]; that is, to each point
X = . aa, ... (ternary) of the Cantor set we define o(x) = . byb, .. .,
where b, = a,/2. Then we extend ¢ to all of [0, 1] by defining ¢ in each of
the intervals complementary to the Cantor set to be the same as at the
endpoints. Then. for — # < § =< =, define

0=} )k

I—Ul—n§0<0
w@) = { 0,0=0

l 1/2,0< 0 £ 7,
w0 = (1/2)(v(0) + w(0)).

We first observe that g is singular with respect to Lebesgue measure since
this is true for each of v and w. Also, from (5.2) we obtain

(5.3) @) = 12 [—”(i)]”,

z

where

h(z) = z exp j” log(l — e~tz)~2dv(t).
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Keogh [7] discusses A(z) in another context and proves it to be a bounded
starlike function. We now use these facts to prove that g(4) has infinite
area but is not dense in the plane.

First we recall [15] that V(f) = lim,_, arg g(re?) exists for each 0;
furthermore we must have V(0) = 2z u(6) because of the way we have nor-
malized u: _f’i,,)u(t)dt = 0 and u(t) = (1/2)[u(t + 0) — p(t — 0)]. Since p
has a jump discontinuity at § = 0 of magnitude 1/2, ¥ has a jump discon-
tinuity there of magnitude z. Thus, g(4) contains a half plane and so the
area of g(4) is infinite.

We now prove that g(4) is not dense in the plane. Since h(z) is starlike,
h(z)/z is subordinate to 1/(1 — z)2. So there exists ¢(z), bounded and
analytic in 4 with @¢(0) = 0, such that [A(z)/z]V2 = (1 — ¢(z))~L. Since
h(z) is bounded, there exists > 0 such that |l — ¢(z)| > d, z € 4. Hence
there exists ¢ = ¢(d) > 0 such that

(5.3) larg[h(z)/z]1?| £ larg(l — ¢(2))| < 7/2 — ¢

for z € 4. Geometric considerations allow us to choose » > 0 such that if
|z — 1] <y, |z| <1, then larg z/(1 — z)| < /2 + ¢/2. Letting D =
{ze )|z — 1] < 7} it follows from (5.1), (5.2), and (5.3) that |arg g(2)| <
7w — ¢/2, z € D. Consequently g(D) omits an infinite wedge having central
angle ¢. Since g(4/D) is bounded, g(4) is not dense in the plane.
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