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MEROMORPHIC STARLIKE FUNCTIONS 

PAUL J. EENIGENBURGt and ALBERT E. LIVINGSTON 

ABSTRACT. Let A*(p) the class of functions f(z) univalent and 
meromorphic in A = [z\ \z\ < 1} with simple pole at z = p, 0 < p 
< l,/(0) = 1 and which map A onto a domain whose complement is 
starlike with respect to the origin. We discuss the coefficients of the 
Taylor series/(z) = 1 + ZJ»=i anz

n, \z\ < p and the Laurent series 
f(z) = !!»=-«> b„zn, p < \z\< 1. We also obtain best possible 
order estimates on L(r), the length of the image of {z: \z\ = r) for 
a function in A*(p). Estimates on the integral means of higher order 
derivatives are also obtained and in the last section a question of 
Holland [5] is answered. 

1. Introduction. Let 2(p) denote the class of functions f(z) which are 
meromorphic and univalent in A = {z\\z\ < 1} with a simple pole at 
z = p, 0 < p < 1, and with/(0) = 1. If, further, there exists <5, p < ô < 1, 
such that 

(1.1) R e ^ o ^ - < 0 

and 

(l-2) ^ÏÏ^W"9--1 

for ö < \z\ < 1 with z = reid, we say that/(z) is in A(p). Functions in 
A(p), which have been discussed in [10, 11], map A onto a domain whose 
complement is starlike with respect to the origin. However, there exist 
functions with pole at p having this mapping property which do not 
satisfy (1.1) if p > 1/2. The function 

F(Z) = -/>(! + zj_ 
nZ) (z-p)(l -pz) 

maps A onto the complement of the interval [-4/7/(1 - p)2, 0] but does 
not satisfy (1.1) if p > 1/2 [10]. 

Let A*(p) denote the class of functions/(z) which have the representation 
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(1.3) f(z) = -pzg(z) 
(z - p){\ - pz) 

where g(z) is in 21*, the class of normalized meromorphic starlike functions 
with pole at the origin. The class A*(p) contains A(p) as a dense subset [10]. 

The following theorem, although obvious, was never explicitly stated 
in [10] or [11]. 

THEOREM 1. A function f in 2{p) is in A*(p) if and only if it maps A onto 
a domain whose complement is starlike with respect to the origin. 

PROOF. If fe A*(p), it has the representation (1.3). Using the fact that 
—pz/(z — p)(\ — pz) is real for |z| = 1, it is easily seen that/(z) has the 
desired mapping property. 

Conversely, suppose that / in 2(p) maps A onto a domain whose 
complement is starlike with respect to the origin. Letting a denote the 
residue off at z = /?, it follows that 

1 h(z) = 
u 

belongs to 2*. Definingg(z) by 

PW - pz) 

f z + p 
1 + pz 

g(z) = £ 
-pz 

= (z - />)(* - PZ) 
-pz 

f(z) 

a 
1 - p2 1 — pz 

and using the fact that (z — p){\ — pz)/(—pz) is real for \z\ = 1, we see 
that g e S*, and consequently f(z) has the representation (1.3). 

We note that A(p) is a proper subset of A*(p) if/? > 1/2, while A(p) = 
A*(p)iîp< ( 3 - 2 V /T) 1 / 2 [10]. 

2. Coefficient bounds. In this section we examine the coefficients in the 
series representations of/(z) in A*(p), both the Taylor series 1 + ZI^=AzW» 
\z\ < p, and the Laurent series ZI^-oo&wzw, p < \z\ < 1. With regard to 
the Taylor series let {/J and {jun} denote the coefficient sequences of 
—p(\ — z)2/(z — p)(\ - pz) and — p{\ + z)2/(z — p)(l - pz), respective­
ly. It is easy to check that 

1 = Li +P\ 
r l - p?»' 
L pn . » ft» = 

r i +P] 

Li -pi 
r i - p2" ' 
L p" . 

The second author proved an ^ /„ for all n if fe A*(p) and is real on the 
real axis [11]. He also pointed out that, under the same assumptions, 
an = ßn follows from results of Goodman [3]. Furthermore, the inequality 
M = f1™ 1 ^ n ^ 6, follows from some work of Jenkins [6] for any 
fe A*(p). We suspect that the inequalities 



MEROMORPHIC STARLIKE FUNCTIONS 443 

Sn ^ Re an S \an\ £ fr, n ^ I 

hold generally for / e A*(p). In support of this conjecture we now prove 
that it holds for n = 1 and n = 2. We first require the following lemma 
concerning SP, the class of functions P(z) having positive real part in J , 
P(0) = 1. 

LEMMA 1. IfP(z) = 1 + L~=iVw èe/wigs to SP andO < p < 1, rAew 

(2.1) Re(c2 + 2(p + p - % ) ^ 2 - 4(/7 + p-*). 

PROOF. The Herglotz representation of P gives a probability measure 
fi such that 

/ , (z)=ri^ïw' | z |<i-
From this we obtain cn = 2f0

rüe~intdjLi(t). Consequently, 

c2 + 2(p + z?"1^! = 2 [2%{e~i2t + 2(/7 + p-^^dfidty 

Since /? -f /?_1 > 2, the function 

g(/) = cos 2t + 2(p + /?_1)cos r 

is decreasing on [0, TT] and increasing on [TC, 2%\ Thus, 

Re(c2 + 2(p + p- i^! ) = 2 j o g(t)dju(t) 

^ 2g(7ü) = 2-4(p +/7-1). 

THEOREM 2. Iff(z)isinA*(p)andf(z) = 1 + I]~=1tfMzw, |z| < /?, then 

sn ^ Re ÛM ^ |flj ^ n„n = 1, 2. 

PROOF. From previous remarks we need only show that Re an ^ /n, 
n = 1,2. Since/(z) is in /1*0), it has the representation (1.3) with g(z) in 
2*. Let ö(z) = -zg,(z)/g(z); then g e SP and it is easily seen that 

(2 2) z / ' ( z ) - ~p(l "" z 2 ) - 0(z) Izl < 1 
(2*2) f(z) - (z-p)(\ -pz) ^ ^ | z ' < '• 

If we let P(z) = l/g(z), then P e SP and (2.2) can be rewritten as 

(2.3) m = - [- ( z--^? / ,zy/(-) + *'(*)>(*). 

Letting P(z) = 1 + Z]JLiCwzw, z < 1, expanding the right hand side of 
(2.3) as a power series in \z\ < p, and comparing coefficients, we obtain 

(2.4) *! = <-!+(/>+ p-1) 
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and 

(2.5) 2a2 = c2 + (p + p-*)Cl + (p + / ^ M + />2 + /I"2. 

Using (2.4), we can rewrite (2.5) as 

(2.6) 2*2 = c2 + 2(p + /?-i)q + (/> + />-i)2 + (/* + p-2). 

Since Re q ^ — 2, we obtain from (2.4) that 

Re ax ^ - 2 + (p 4- p"1) = 4-

Using (2.1) we obtain from (2.6) that 

2 Re a2 ^ 2 - 4(p + p-i) + (p + p"1)2 + (/72 + p~2)9 

which gives 

This completes the proof of Theorem 2. 

We now discuss the coefficients of the Laurent series 2^^L-oobnz
n, 

p < \z\ < 1. Libera and the second author pointed out in [10] that 

l*»l̂  ̂ r({4y) f o r"= -1, -2 , . . . . , 
that these bounds are sharp, and that \b„\ = 0(n~l/2) for n ^ 1. We 
obtain the order estimate \bn\ = 0(n~l) and prove that this is best possible. 

THEOREM 3. If f(z) is in A*(p) and f(z) = J^^L-oobnz
n, p < \z\ < 1, 

then \bn\ = 0{n~l), n ^ 1. Furthermore, there exists ftA*(p) with 
lim^oo sup n\bn\ > 0. 

PROOF. There exists g e 2*9 g(z) = z"1 + £™=0 Anz», 0 < \z\ < 1, 
such that 

(2-7) ^Z) = ( z - ^ f - p z ) ^ 1*1 < !" 

Expanding the right hand side of (2.7) for p < \z\ < 1 and comparing 
coefficients we obtain 

(2.8) bn = 

~Y^2[pn+l + / ^ o + • • • + / M ^ + v4w + p^ w + 1 + p2An+2 + • • • ] . 

Using the estimate \An\ ^ 2(« + l ) - 1 , n ;> 0, proven by Clunie [1], we 
obtain from (2.8) 
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\bn\£ 

^ T 

i - p2 L 

p 

n»+l 

nW+1 

+ 22 
£=0 

1 
71 + 1 - fc 

+ 22 it + 1 

< 1 - / ? 2 
n»+l + 

;to « + 1 
2 

pk + 

i 

/>* + 

lp_ 

2p 
n + 2 

1 

1 
1 

P. 

n + 1 (1 - />)2 

n + 2 1 - p 

2p 
+ (« + 2X1 

2 

/>) J 

(1 - />2)(1 - />) L 

Since />"+1(l - />) è (n + l)"1, 0 < /> < 1, we obtain 

1 P 

+ 
2p 

(n + 1)(1 -p) n + 2 

l*J£ - n^ » + 1 (1 

( 1 - / 7 ) 3 „ + 1 
1 

max 
p - 2p2 + 3 

1 +P 

Thus \b„\ = Oin-1). 
To see that this order is best possible we note that Pommerenke 

[17] has constructed F(z) = zrl + T^Anz
n in I* such that lim^«, 

sup n \A^ > 0. For this F we define/e A*(p) by 

(2.9) (z - p)(i - pz)f(z) = -pzf(z). 

From (2.9) we obtain for n ^ 0 

bn+i - (P + />_1)6« + *„-i = ^« 

and so it follows that we must also have lim^oo sup n\bn\ > 0. 

3. Arclength. For bounded regular univalent starlike functions Keogh 
[7] has shown that the arc length L(r) of the image of the circle \z\ = r 
under the mapping w = f(z) satisfies L(r) = 0( — log(l — r)). Hayman 
[4] then proved that O may not be replaced by o. More recently Lewis [8] 
gave an example of such a function satisfying limr_,00inf L(r)/( — log(l — r)) 
> 0. It is our purpose to establish that as r -> 1 the same results hold 
for functions in A*(p). In particular we will show that L(r) = 
0(\r - />|-i log 1/(1 - r)), r * p. 

Miller [14] discussed a class of starlike meromorphic functions having 
a different normalization than A*(p). He proved that 

(3.1) L(r) = 0 ( y - L 
P\ 

log 1 
P\(\ Ti) r ^ p. 

We point out that this estimate comes from an examination of his proof, 
as the final result is stated incorrectly. For the class A*(p) we can eliminate 
the \r — p\~l term within the logarithm in (3.1). We will make use of the 
following results of Pommerenke [16]. For 0 < r < 1, 
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f 2-f+lr(/u - i) l 

(3.2) * Lf de 
2%ò-« |1 -re»Y 

[r((i/2W (1 - rY 

-Uog * 
% \ — r 

T. A« > ! 

^ = 1 . 

This implies the existence of a positive constant C„ so that 

(3.3) </0 
r c / i - r)-^i>, ^ > i 

2^ J - , |1 - "ré*\* = |d log -j-^y, ^ = 1. 

When 0 < /* < 1 the integral is a bounded function of r, 0 < r < 1. 
In what follows C represents a constant independent of f(z) and r, 

though it may change its value from line to line. 

THEOREM 4. Iff(z) is in A*(p), then 

PROOF. AS observed in [10] the function 

P{z) = (-gwyz-pH-pz) 
has positive real part in A, with P(0) = pf'(0). Hence 

(3.4) 

J y ' '- - n\2 
-f(z)(z - p) 

1 — pz (z - Py 

From the representation (1.3) of/(z) there exists g(z) in 2* so that 

pz -f(z)(z - p) _ 
1 — pz (1 — pz)2 

Thus, for z = rei0
9 

(3.5) -f(z)(z - p) 
1 — pz 

< pr 

g(zl 

(1 + r)2 
(1 - pr)2 

< 
4p 

(1 - pf ' 

Also, from [10] we have 

(3.6) 

Since P(z) is subordinate to 

|/'(0)| è ü±£l 

P(0) 
J 4. ze-2<arg/>(0) 

Y^~z 
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it follows from Littlewood's subordination theorem, (3.3), and (3.6) that 

(3.7) r I*«-)!,» < r ffl^^firfö 
j-n J-7Ü |1 — re I 

Thus, if (1 + p)\2 < \z\ < 1, we obtain from (3.4), making use of (3.5) 
and (3.7), 

(3.8) r \f\re^)\dd ^cV \P(re**)\dO 

. C , 1 
< log r 1 — r ' 

Also, for 0 < \z\ ^ (1 4- p)/2, \z\ ^ p, we obtain 

(3.9) P |/ ' (r^ |rffl ^ C r \re* - p\-2d6 

è C/\r - p\. 

We can combine (3.8) and (3.9) in the following way. If (1 4- p)/2 < \z\ < 
1, then (r — p)~l is bounded away from zero. It follows from (3.8) that 

(3.10) £j/'(^)^^-ry^7r^T^7-
If 0 < \z\ ^ (1 + p)/2, z # />, then r"1 log(l/(l - r ) ) ^ l and so (3.9) 
yields 

(3.11) $Jf(re<°)\d6 è ^ ± log - ^ 

Combining (3.10) and (3.11) we have 

This completes the proof of the theorem. 

We now use the example of Lewis to prove that the order result of 
Theorem 4 is best possible in the strongest possible sense. In particular, 
we find/(z) in A*(p) such that 

(3.12) inf K~f}Ur\ >0. 
r>i - l o g ( l - r) 
r*P 
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We first note by standard estimates that since every function in A*(p) 
has a simple pole at z = p, we have 

inf \r - p\ L(r) > 0 
£<r<l 

for every e > 0. 
Also, 

!™ -log( l - r) !™ [r + /-2/2 + r3/3 + • • •] 

= 2*|/ '(0)| > 0, 

by Theorem 2. Thus, (3.12) will be verified after we complete the next 
theorem. 

THEOREM 5. There exists f(z) in A*(p) such that 

lim inf L(r)/log - , - !— > 0. 
r->l Ì — r 

PROOF. Lewis [8] has constructed an analytic bounded starlike function 
g(z), g'(0) = 1, such that 

f* \g'(re<9) 
g(reie) 

rdd è d o g - i - 1 - - , 1 — r 

where C is a positive constant. Defining F(z) in 2* by F(z) = g(z)~x, we 
have zFf(z)/F(z) = —zg'(z)\g(z). Also, if M is a bound on |g(z)|, Z G J , 
then \F(z)\ ^ A/-1, z e l Consequently, 

f* \F'(reidi\rdd > — f* \f'(re'9) rdd 
I F(r£**) 

. C , 1 

= M l o g r-v 
Finally, we define f(z) in yl*(/?) by /(z) = G(z)F(z) where <7(z) = —pzj 

(z — /?)(1 — pz). The inequality 

| / ' (z) | ^ \G(z)F\z)\ - \G'(z)F(z)\ 

gives 

lim inf ^ i > —E-- lim inf ^ | F ' ( r e ' ^ 0 

"™ -log(l - r) = (1 + p)2 '™ m I - log( l - r) 

= (1 +p)2 M' 

This completes the proof of the theorem. 
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4. Integral means of derivatives. We begin this section by extending 
Theorem 4 to obtain estimates on fcjf'ire'^dd, A > 0, where fe A*(p). 
We note that the integral means of f(z) in A*{p) were discussed in [11] 
and for/(z) in 2(p) in [12]. In the statement of the next theorem and in 
its proof, Q signifies a constant depending on A but independent of 
f(z) and r. Its value may change from line to line. 

THEOREM 6. Letf(z) be in A*(p), then for r •£ p, 

1 
Cx \r - p\™-H\ -7)*-1 

Q 
l 

£ \f'{r<**)\*dO S Cx 

r\r P\ 
log 1 

1 - r 

- wi2A-r P\ 

Q/2 log 
k-.pl 

C; 

X > 

x = 

1/2 

; = 

o < 

l 

l 

< X 

1/2 

X< 

< 1 

1/2. 

PROOF. By Theorem 4, we may assume X ^ 1. Making use of (3.4) 
(3.5), (3.7), (3.6) and (3.3) we obtain, for (1 + p)j2 < |z| < 1. 

(4.1) j j / ' (^ ) l^0 fk e, J* dO 

and for 0 < \z\ é (1 + p)/2, 

(4.2) f* \f'(re»)\*d0 i Q f" 
J —It J —71 

de 
\rex id __ n\2X P\2 

- j i |2a-i />l : 

< 
-1/2 log 

P\ 

IQ 

, A > 1/2 

, A = 1/2 

, 0 < A < 1/2. 

Combining (4.1) and (4.2) in the same manner as in §3, the conclusion of 
the theorem is obtained. 

We remark that the sharpness of the case A = 1 in Theorem 6 has 
already been discussed. Also, since/(z) has a simple pole at z = p, it can 
be seen that the factors involving \r — p\ in Theorem 6 are actually neces­
sary for each function in A*(p). We will now prove that the exponent 

http://k-.pl
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X — 1 on (1 — r) in the case X > 1 cannot be replaced by a smaller ex­
ponent. For this purpose we note that F(z) = (1 — z)l{\ — pz)/z, 0 g t S 
1, is easily seen to be a member of 2'*. Now, for 0 < ö < X — 1, choose 
t so that 0 < t < (X- Ì - ö)X~\ and define fe A*(p) by 

Then, for z = re'*, 

r irtelo - r P'II - tp + o - Dzi^ 

>cT ^ 
= J - * |1 - re*»?-* 

>C l 
(1 - rya-o-i ' 

by (3.2). (Here, as before, C # 0 may change its value from line to line.) 
Thus, 

lim (1 - r)f^ \f\zWd > Clim ( 1 _ ^ - ^ = oo, 

by our choice of t. This completes our argument. 

We can now obtain estimates on the integral means of higher order 
derivatives by using a method of Feng and Mac Gregor [2]. For this 
purpose we need several lemmas, which are extensions of lemmas ap­
pearing in [13], to allow for a pole at z = p. 

LEMMA 2. Let h(z) be analytic in J , except at z = p, ana satisfy the 
inequality 

l ^ ) l^ ( 1 _ r ) 4_ p r N = ^ A 
where A, a, and ß are positive constants. Then there exists a positive constant 
B so that 

PROOF. Let \z\ = r, p < r < 1, and let p = (p 4- r)/2, ô = (1 4- r)/2. 

Then 

file:///f/zWd
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Thus, 

W(z)\ ^ 

+ 

5A 
(1 - d)"(d - pY 2% 

pA 
(i - pY{9 - pY 

C2« t 
Jo \öe* 

J _ C2" c 
2% J o \peie -12-

Using Parseval's identity to estimate the two integrals on the right side we 
obtain 

W(z)\ £ 
ÔA 

+ 
pA 

(1 - öY(ö - PY(S2 - r2) ^ (1 - pY(p - pY(r2 - p2) 

2«+i2ß+1AO 
"(I -~7>+i(l + r - 2pY(l + Jr) 

2«+n^Ap 
+ (r - pY+\2 - r - pYOr + ^) 

2«+i3+2y4 

+ 
2<*+ß+2A 

(1 - r)«+i(r - pY (r - pY+1(l - r)aP 

B 
(1 - rY+1(r - PY+1 ' 

For \z\ = r < p, we let p = (p + r)/2, write 

A ' ( Z ) = 1 f -, ^ . « f r , 
2-7CI J \w\=p =P Jw - z)2 

and proceed as before. 

LEMMA 3. Let h(z) be analytic in A, except p, and different from zero. If 

h\z) 
h(z) < 

(1 _ r ) « | r _ p\ß 
, \A = r ^ /?, 

w/*er? /41? a, and ß are positive constants, then there exist positive constants 
An depending on a and ß so that 

(4.3) 

and 

(4.4) 

h<-"\z) 
h(z) < (1 - rY+"~l\r - p\ß+> 

-_T, 0 < a ^ l , 0 < j 8 g l 

|A<">(z) 
h(z) (1 - r)»«|/- - p\"P w,ßZUaZl 

for \z\ = r =£ p. 

PROOF. Letg(z) = /!<»>(z)//i(z). Then 

h{z) -g(Z,+ h(zf '• 
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Assume (4.3) holds for some n. By Lemma 2 there exists Bn so that 

1^)1 * (1 - r)a+% _ p[ß+n. M - ' * />• 

Therefore, 

A(n+i)(z) 

/*(z) 
£„ , , M K*» 

(1 _ r)cc+n\r _ ^/3+n ^ (1 - r )2o+»- l | r _ ^ p + n - 1 

r , |Z| = Y # /?. ^»+1 
(1 - r)«+»|r - />|0+» : 

This proves (4.3) by induction. 
Assuming that (4.4) holds for some n, we obtain from Lemma 2 the 

existence of a constant Bn so that 

IS'(Z)I ^ ( 1 _ ry*\ _ pî -i » 1̂1 = r * P-

Therefore, 

h(n+l)(z) 

Kz) 
Bn + AxAn 

(1 _ r ) » a + l | r - p\nß+l ' (J _ r ) (»+l )a | r - p\in+l) ß 

, kl = /•*/>. ^n+1 
= (1 _ r)(n+l)a| r _p|(n+l)/8 

This proves (4.4) by induction. 

LEMMA 4. Let f(z) be in A*(p). Then there exists a positive constant A 
such that 

(4.5) f"(z) 
A*) \r - P\(l - r) -, z = retl 

PROOF. Since f(z) is in A*(p), we have 

(/? - z)(l - pz)f'(z) _ p( . 
/(*) " ( j 

where Re P(z) > 0, z e j , and P(0) = jp/'(0) = pax. Logarithmic dif­
ferentiation then yields 

rfr) = Z M + *»(*) . _ i . /> 
f\z) P(z) * (p - z)(l -pz) ^ p - z ^ l-pz' 

An examination of this expression shows that (4.5) holds if both P(z) and 
P'(z)IP(z) are order (1 - r)~l as r -+ 1. We may write P(z) = /? Re ^ 
Q(z) + //? Im «!, where Qe0>. Thus, 
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Also, Lemma 1 of [9] yields 

P'(z) 
P(z) 

THEOREM 7. Letf(z) be in A*(p). Then for n ^ 1, 

( Çx 
/ 1 . . \«5_1I. . 

(4.6) r \fM(re")\xdd è I 
(1 - r)^-l|r - p|(»+DA-i 

Ci 

A>1 

r¥=Y log 
1 

1 
-,A = 1. 

\r - pHl - r)» 

PROOF. Since the case n = 1 is proven in Theorem 6 we assume that 
n ^ 2. Applying Lemma 4 to A(z) = f'(z) we have 

By Lemma 3 

Thus 

h(z) 

fM(z) 

(r - p){\ - r) ' z = ret0 

A*) 
«»-I 

(1 - r)»-i|r - pi""1 

An application of Theorem 6 now gives (4.6), and the proof is complete. 

We remark that it is possible to include in (4.6) estimates for the range 
0 < X < 1. However, it is unlikely that our method would give the 
correct exponent on (1 — r) for this case. We now show that for X ^ 1 
the exponent nX — 1 on (1 — r) cannot be reduced. The extremal function 
f(z) is the same as in Theorem 6, namely, f(z) = — p{\ — z)%\(z — p), 
0 < t < 1. The next lemma shows that the integral means of/(w)(z) are 
of the same order as those of g(n)(z), where g(z) = (1 — z)'. 

LEMMA 5. Letf(z) = (1 - z)%z - p)andg{z) = (z - p)f(z) = (1 - z)<, 
0 < t < 1. Then there exists a positive constant K depending on n and X 
such that for X ^ 1 and t sufficiently close to zero 

(4.7) V \f{n\z)\idO ^KV \g^(z)\*dd, 
J —re J —it 

where z = re1'6 and r(t) < r < 1. 

PROOF. Let h(z) = (z — p)~l\ then/(z) = g(z)h(z). Using the formula 

/<">(z) = S ( ^ ) g ( " ( z ) Ä ^ « ( 2 ) , 
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we obtain 

/<">(z) = (-l)»»!(l -zy(z 

+ S ( - » * T T ' ( ' - i ) . . . ( t - k + lx i 
k=l K l 

= (-l)»g(»>(z)P(z) 
/ ( / - 1) . ' . . ( / - / ! + l)(z 

where 

P(z) = (1 - z)» + S -£[/(/ - 1) . . . ( / - * + 0(1 - zY'Kz -pY. 

Thus, if (1 + p)/2 < \z\ < 1, there is a positive constant C so that 

|/"»>(z)| ^ C\P(z)\\gM(z)\. 

To prove (4.7) we need only prove the existence of a positive constant D 
so that \P(z)\ ^ D for t sufficiently close to zero and |z| sufficiently close 
to one. We note that P(l) = t(t - 1) . . . (t - n + 1)(1 - pY # 0. 
Thus there exists a so that P{eid) # 0 if |0| < a. Tf |0| ^ a, there exists 
7- so that |1 - eiQ\n ^ r > 0. Also, if |z| = 1, 

|P(z) - (1 - zY\ ^ t 4r W - 1) ... (* - * + O^O + />)*• 

Thus, there exists <? > 0 so that for 0 < / < ö and \z\ = 1, 

\p(z) - (1 - z) i < r/2. 

Therefore if |0| ;> a, |z| = 1, and 0 < / < <5, then 

\p(z)\ ^ |i - z\* - r/2 ̂  r/2 > 0. 
Thus, P(z) # 0 for |z| = 1 if 0 < t < 5. Therefore, for fixed /, 0 < t < ö 
there exists r(t) > 1 so that P(z) ^ 0 for r(t) ^ \z\ ^ 1, and thus there 
exists a positive constant C so that \P(z)\ ^ C for r(t) ^ |z| ^ 1. This 
completes the proof of (4.7). 

Since sharpness of the exponent nX — 1 when n = 1 was discussed 
earlier, we restrict our attention to n ^ 2. So, for fixed n ^ 2, I ^ 1 let 
5 < «/I - 1. Then choose / so that 0 < t < min [1, n - (ô + 1)/A]. 
Proceeding as in the remarks after Theorem 6, we have that 

lim(l - ry r \g^(re<d)\*dd = 00. 

If we further restrict t so that (4.7) holds, we obtain 

lim(l - ry r |/<»>(re*)|*</0 = 00. 
r - l J -TT 

- zy-*(z - ^)-(»-*+!> 
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5. An example. In this final section we settle a question of Holland [5] 
concerning meromorphic starlike functions /(z) and the area of the 
complement off(A). 

For F(z) in 2* there exists a probability measure ju on \z\ = 1 such that 

^ n zF'(z) r eit + z A <*\ 

We also associate with F(z) the related starlike function g(z) = F{z)~l. 
Let K denote the compact complement of F(â). Holland proved the 
following theorem and asked whether the converse is true. 

THEOREM 8. [5]. If the area of K is zero, then 
a) the area ofg(J) is infinite, and 
b) /H is singular with respect to Lebesgue measure. 

We now prove by example that the converse of Theorem 8 is false. We 
first observe that if g(A) is not dense in the plane then the area of K is 
positive. Integration of 5.1 leads to the formula 

(5.2) g(z) = zexp J"* log(l - e-"z)-2dfi(t). 

We now choose ju as follows. 
Let a{x) be the usual Cantor function on [0, 1]; that is, to each point 

x = . axa2 . . . (ternary) of the Cantor set we define a(x) = . bib2 

where bn = an/2. Then we extend a to all of [0, 1] by defining a in each of 
the intervals complementary to the Cantor set to be the same as at the 
endpoints. Then, for - % ̂  6 ^ %, define 

w(d) 

r—1/2, -% ^ e < o 

= J o, e = o 
I 1/2, o < e ^ «, 

[Aß) = (l/2)(v(0) + w{6)). 

We first observe that /u is singular with respect to Lebesgue measure since 
this is true for each of v and w. Also, from (5.2) we obtain 

(5.3) g(z) = 
1 - z 

where 

h(z) 1/2 

h(z) = zexp J log(l - e-üz)-2dv{t). 
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Keogh [7] discusses h(z) in another context and proves it to be a bounded 
starlike function. We now use these facts to prove that g(A) has infinite 
area but is not dense in the plane. 

First we recall [15] that V(d) = lim,.^ arg g(reid) exists for each 0; 
furthermore we must have V(d) = 2%fi{G) because of the way we have nor­
malized ju: fc„/u(t)dt = 0 and ju(t) = (\/2)[ju(t + 0) - ju(t - 0)]. Since JLL 
has a jump discontinuity at 0 = 0 of magnitude 1/2, Khas a jump discon­
tinuity there of magnitude %. Thus, g(A) contains a half plane and so the 
area of g(A) is infinite. 

We now prove that g(A) is not dense in the plane. Since h(z) is starlike, 
h(z)/z is subordinate to 1/(1 - z)2. So there exists <f>(z), bounded and 
analytic in A with 0(0) = 0, such that [h(z)/z]1/2 = (1 - cp(z))-1. Since 
h(z) is bounded, there exists ô > 0 such that |1 - 0(z)| > d, z e A. Hence 
there exists e = e(ô) > 0 such that 

(5.3) |arg[/7(z)/z]i/2| ^ |arg(l - <j>(z))\ ^ TU/2 - e 

for z G A. Geometric considerations allow us to choose yj > 0 such that if 
\z - 1| < 7], \z\ < 1, then |arg z/(l - z)\ < %\2 + e/2. Letting D = 
{zeA\\z - 1| < r{] it follows from (5.1), (5.2), and (5.3) that |argg(z)| < 
% — e/29 z e D. Consequently g(D) omits an infinite wedge having central 
angle e. Since g(A/D) is bounded, g(A) is not dense in the plane. 
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