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RINGS WITH INVOLUTION 
AS PARTIALLY ORDERED ABELIAN GROUPS 

DAVID HANDELMAN 

Let (S, *) be a ring with involution *. The involution is positive definite 
if, for all finite subsets {r,-} of S, £ w * = 0 implies all the r{ are zero. 
Then the set of self-adjoint elements of S, denoted Ss, possesses a natural 
partial ordering, with positive cone consisting of elements of the form 
Z l w * ; with this ordering, Ss is a directed partially ordered abelian group. 
Let Sb denote the set of bounded elements, that is, the set of elements s 
such that ss* is less than an integral multiple of 1 in this ordering. Then 
Sb is a *-subalgebra of S whenever S is an algebra over the rationals. We 
will be studying the objects Sb9 Ss, and (Sb)

s, from the point of view of 
their ordered structures. 

For instance, suppose S is a field, and * is the identity. Then S is 
formally real, and Sb must be Prüfer domain, all of whose residue fields 
are themselves formally real (and in fact, are embeddable in the reals). 
Viewing Sb as a partially ordered abelian group with order unit 1 (indeed, 
Sb is the convex subgroup of S generated by 1), Sb has the Riesz decom
position property, and its normalized extremal states are precisely the 
ring homomorphisms into the reals. There is a natural mapping from the 
collection of total orderings of S to the set of extremal states of Sb9 and 
this in turn maps to Spec Sb (the prime ideal space of Sb); when S is 
even a real algebra much more can be said. 

If either S is a field and * is not the identity, or S is a quaternionic 
division algebra with the natural involution, essentially the same prop
erties hold, with the appropriate modifications. A useful tool here is an 
involutory version of the Artin Schreier Theorem, about the existence of 
sufficiently many total orderings finer than the natural ordering. 

Studies are made of several specific bounded subrings. For instance, if 
S is the rational function field in one variable over the reals, then Sb is 
a Dedekind domain with class group of order 2, with spectrum the unit 
circle (in the point-open topology), and all of its maximal ideals are not 
principal. 

Expanding the scope of S somewhat, we next allow S to be a division 
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ring (or an artinian ring), and consider the possibility that S = Sb. It is 
shown that any real *-algebra with this property must be finite dimension
al; in particular, this applies to real division algebras (with positive 
definite involution) generated by their unitaries. Developing a recent 
result of Holland, we show that if 5 is a division ring, and Ss is monotone 
sigma-complete in its natural ordering, then again S must be one, two, or 
four-dimensional over the reals. These results rely heavily on ideas and 
results from the theory of C* algebras. 

Proceeding in other directions, we employ the notion of the bounded 
subring to determine necessary and sufficient conditions on prime PI 
rings so that their matrix rings are Baer * with respect to *-transpose. 

I would like to thank the referee of this paper for a very thorough and 
detailed examination of the contents. 
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1, Definitions and elementary properties. Unless specified otherwise, all 
involutions will be positive definite, that is, for all finite subsets {s{} of 
the ring S, 2 > ^ * = 0 implies all the s9 are zero. (When there is doubt 
as to whether an involution is positive definite, it will be referred to as an 
involutory antiautomorphism). 

Let (S, *) be a rational algebra with involution *. An element s of S 
is bounded if there exists a finite subset {*,-} of S, and a positive integer 
n so that 

(1) SS* + 2 V i * = « • 1. 
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The collection of all bounded elements is a rational *-subalgebra of S 
[18], or [2, p . 243], and it is easy to see that if S is a real or complex *-
algebra, so is Sb. 

It is clear that Sb contains all the unitary elements of S (elements u such 
tha t ww* = w*w = 1), more generally, all the partial isometries (elements 
w such that (ww*)2 = ww*), and thus includes all the projections (elements 
p such that p2 = p = /?*) of S. There is a very intimate relationship be
tween S and Sb, if for example, for all s in S, 1 4- s*s is invertible in S. 
This is a natural and weak condition—satisfied if nonzero divisors of 
S are invertible, and more generally still (viz. 1.12). 

LEMMA 1.1. Let (S, *) be a ring with involution. Suppose {Xj}jL:i is a 
subset of S, and 1 + 2 J * I * I * has an inverse in S. Then there exist elements 
{tji)™tl so that 

[(i + S w ) i 2 + EM* = i; 

further, all of (1 + I X * * * ) - 1 , xk*(l + Z I * * * / * ) - 1 ^ = 1, 2, . . . , m) 
belong to Sb. 

P R O O F . [18; Lemma 6]. Set a = J]*,-*,-*, and z = (1 + 2*«*»*)_ 1-
Pre- and post-multiply the identity 1 = (1 + a)2 — 2a — a2 by z. Then 
with Jy defined as follows, 

Tz*,- for j = 2/ — 1 or 2/ 
y (za fory = 2m 4- 1, 

the equation is satisfied. 

COROLLARY 1.2. (Pointed out to me by Sterling Berberian). Let (S, *) 
be a ring with involution such that 1 -h xx* is invertible (in S)for all x in S. 
Then Sb is a right and left order in S (that is, every element of S can be 
written as ab~x and b^a^ for some a, aÌ9 b, b± in Sb. 

PROOF. Write x = x(l+x*x)~l • (l+x*x) = (\+xx*) • (l+xx*ylx, 
and apply 1.1 ; the involution may be applied, to show Sb is a left order. 

(Some condition on S is required in order that Sb be an order in it, else 
the result is not true. For instance, if S — R[X], and * is the identity, then 
Sb = R.) 

The corollary is useful when S is von Neumann regular; the positive 
definiteness condition on the involution assures that all elements of the 
form 1 + 2*i**-* a r e n o t z e r o divisors. 

Given the (always positive definite) involution * on S, we can impose 
an involution # = *-transpose on MnS, the ring of « by « matrices over 
S. The positive definiteness of # follows immediately from that of *. 
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LEMMA 1.3. ([10] and [11]). For the ring with involution (S, *), for any 
positive integer n, (MnS)b = MnSb. 

PROOF. Let e{j denote the element of MnS with a one in the /, j entry, 
and zeroes elsewhere. Then the el7's are all partial isometries (with respect 
to #), so {Sb, e{j] a (MnS)b; thus MnSb c (MnS)b. 

On the other hand, if A belongs to (MnS)b, there exist B{ in MnS such 
that AA% + J^BtB^ = ml, for some positive integer m. Reading off 
the n equations from the diagonal entries of the left hand side, we see 
all the entries of A are bounded. 

The ring with involution, (S, *) is a Rickart *-ring, if for all s in S, 
the right annihilator of s is of the form pS for some projection p of S. 
If 1 + ss* is always invertible in S, then by [14; Theorem 26], for every 
idempotent e in S, there exists a projection p so that e S + pS; hence if 
S is a p . /?. ring (a ring in which principal right ideals are projective as 
S-modules), and 1 + ss* is always invertible in 5, then S is a Rickart 
*-ring. 

The ring, (S, *) is a Baer * ring, if the annihilator of any subset of S is 
of the form pS. 

LEMMA 1.4. Let (S, *) be a ring with positive definite involution. 
(a) If S is a Rickart *-ring {Baer * ring), so is Sb. 
(b) If(MnS, #) is a Rickart *-ring (Baer * ring), so is MnSb. 
(c) If S is semiher editar y, and for all X in MnS, I + XX % is invertible in 

MnS, then MmSb, MmSb are Rickart *-rings for all m ^ n, with respect to #. 

PROOF: (a). All the projections of 5 lie in Sb, and if the annihilator of 
s in S is pS, and s belongs to Sb, it is easy to see that the annihilator in 
Sb of 5 ispSb. 

(b). Follows immediately from (a) and 1.3. 
(c). As S is semihereditary, MnS is p. p., hence by [14; Theorem 26], 

MnS is a Rickart *-ring, with respect to #. If/? is a projection then pMnSp 
also a Rickart *-ring, and the result follows from (b). 

A reasonable conjecture, is that if 1 + 2*i*i* iS invertible for all finite 
subsets {xj} of S, and S is semihereditary, then (S, *) satisfies the con
ditions of 1.4(c). This is certainly true in the commutative case. 

Now we consider some order properties of (S, *) and (Sb, *). Recall 
that a partially ordered (abelian) group G is a group with a translation 
invariant partial order. We denote the positive cone (the set of elements 
greater than or equal to zero), G+. The partially ordered group G is 
directed if G = G+ — G+. An element u of G+ is called an order unit (also 
called a strong unit) if for all g in G, there exists a positive integer n so 
that — nu ^ g ^ nu. If A is a subset of G+, the convex subgroup generated 
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by A is {g e G\ there exist n{ in N, a{ in A such that - E/!,«,- ^ g ^ I > A } -
(It is easy to check that the so-defined set is a subgroup). If A = {«}, then 
a is automatically an order unit for the convex subgroup it generates. 

If (S, *) is a ring with involution, denote by Ss the set of symmetric 
elements, that is, elements such that x* = x. We call Ss the symmetric part 
of S. 

PROPOSITION 1.5. For a rational algebra with involution (S, *), the 
symmetric part of S is a directed partially ordered vector space (over the 
rationals) with positive cone 

(S*)+ = { Z > Ä * I K } a finite subset of S}. 

Further, (Sb)
s (denoted 5|) is the convex subgroup of Ss generated by 1 ; 

it thus has 1 as an order unit. The relative ordering on Ss
b induced by the 

inclusion Ss
b a Ss agrees with the ordering on Ss

b obtained by considering 
it as the symmetric part of a ring with involution. 

(We refer to the ordering described above as the natural ordering on Ss, 
or on Ss

b, or by abuse of language, on S or Sb). 

PROOF. It is clear that since * is positive definite, 

(50+n - ( ^ ) + = {0}; 

(Ss)+ is obviously closed under addition. If k is a positive integer, xx*/k = 
k(x/k)(x/k)* e(Ss)+; thus division by positive integers leaves (Ss)+ 

invariant. So (Ss)+ is a positive cone for a partially ordered rational vector 
space. 

To see that Ss is directed, suppose a = a*; then (1 + a/2)(l + a*/2) = 
(1 + a/2)2 belongs to (Ss)+, and a = (1 + a/2)2 - (1 + a2/4) belongs to 
(Ss)+ - (Ss)+. 

If s belongs to S|, according to the defining equation for Sb, there exist 
tt in S so that for some positive integer n, 

s2 + 2 V i * = n'l'> 

hence s2 ^ n. Also s = (1 + s/2)2 — (1 + s2/4), whence 

- 1 - /i/4 g - 1 - s2/4 ^ s ^ (1 + s/2)2 ^ m 

(for some positive integer m); the last inequality holds as 1 + s/2 belongs 
to Sb. Thus s belongs to the convex subgroup generated by 1. 

Conversely, if s = s* and —n^s^n, then there exist xi9 ys- in S so 
that s 4- 2*«*** = n and — s -h Sj'yj'y* = w- Adding these two equations, 
we see that all of the xi9 yj lie in Sb. As Sb is a ring, 5 belongs to it. 

Finally, suppose t lies in Ss
b and / belongs to (Ss)+. Then 7 = 2 > Ä * 

for some subset {s;} of 5, and t ^ n. Thus there exist x ; in S so that 
S ^ i * + J^XjXj* = «, whence {^} is a subset of Sô, and thus t lies in (5|)+. 
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LEMMA 1.6. Let (S, *) be a ring with positive definite involution, and 
suppose a is an element of(Ss)+ having an inverse in S. Then a"1 also lies in 
(S')+. 

PROOF. If a = S^*** then (a~1)* = arl and 

û-i = ö-iflö-i = Efc-^-X*"1*,-)* e (50+. 

For ^ in S ,̂ define the nonnegative real number | | j | | , as in [18] as follows: 

ll^l2 = inf{# e ö | ss* ^ # in the natural ordering}. 

Although only *-regular rings are considered in [18], the proofs there only 
require (for the purposes of (i) through (v) below) that * be positive 
definite, to obtain that the function || || : Sb -» R+ has many of the prop
erties of a C* algebra norm : 

(i)||0|| = 0 ; || 1|| = 1. 
(ii)||o6|| è NI-11*11, for«, ein 5,. 

(iii) \\a + b\\ ^ \\a\\ + \\b\\. 
(iv) \\aa*\\ = ||fl||2 = ||ö*||2. 
(v) libali = \q\ -\\a\\, if q is a rational. 

Further, if S is a real or complex *-algebra, (v) holds if q is allowed to vary 
over the reals or complexes respectively. It is not generally true that 
||a|| = 0 implies a = 0, so we refer to || || as a (the) seminorm. 

LEMMA 1.7. Let (S, *) be a ring with involution that is an algebra over 
the rational numbers. Suppose a = a* is an element of 5, and a2 ^ q2 

with q a positive rational. Then — q^a^q. 

PROOF. [18; Equation (7)]. We have 

a = q - -j-(a - q)2 - -^-{q2 - a2), 

so a rg q; applied to —a, we obtain —a^q,ora^i —q. 

One easily checks that for a in Sb (and S a rational algebra), ||#|| = 
r e R implies aa* ^ q for all rational q > r2. 

If A, B are square (but not necessarily of equal dimensions) matrices, 
then A ® B denotes the matrix direct sum. 

LEMMA 1.8. Let (S, *) be a rational algebra with positive definite involu
tion. For a in Shfor alln, we have 

\\a\\ = \\a © 0n_!|| = \\a ® a © • • • © a\\, 

where the norm on the latter two elements is the natural seminorm on 
M A (viz. 1.3). 

PROOF. Set E = 1 © 0n_h A = a® 0W_X, B = a®a®--®a in 
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MnSb. Obviously any equation of the form aa* 4- L Q Q * = q (q in Q, 
c{ in S) yields an equation BB% + S Q Q # = ^ in MnS, so ||Ö||2 ^ 
| |5| |2 . Since A = EBE and ||£|| = 1, | |5| |2 £ \\A\\2. Finally, if AA% 4-
S Q Q S = #/, then the (1, 1) entry of each of the matrices Q Q # is a 
positive element in S, and so aa* ^ #; hence ||^||2 ^ ||fl||2, completing 
the proof. 

PROPOSITION 1.9. Let (S, *) be a rational algebra with positive definite 
involution such that \\a\\ = 0 implies a = 0, where || || is the natural semi-
norm. Then the completion of Sb at || ||, SB, is a Banach *-algebra, and * 
extends to a positive definite involution on SB. Further, for all x in SB, 
\\xx*\\ = ||x||2 = ||x*||2, and(SB)b = SB; additionally, the natural seminorm 
on SB agrees with the extension of |j ||. Finally, if 1 4- 2*r*i* ^ invertible 
in Sbfor all finite subsets {xj of Sb, then SB satisfies the same condition. 

PROOF. The completion of Q.\ (inside Sb) is isometrically isomorphic 
to R . l , and its action on the completed ring SB obviously makes the 
latter into a real vector space. Since || || is subadditive on Sb and extends 
continuously to SB, it is a norm on the latter, and so SB becomes a Banach 
space in it. Since \\xy\\ g ||x||- ||.y|| on Sb, the same holds on SB; thus SB 

is a Banach algebra. 
If x is an element of SB and is written as the limit of a sequence {xj 

in Sb, from ||a|| = ||Ö*|| for all a in Sb, we deduce that {*,•*} converges, and 
declare the limit to be x*. It is routine to check that this extends * to an 
involutory anti-automorphism of SB and ||x||2 = ||x*||2 = \\xx \\ follows 
directly. Now we verify that * is positive definite on SB. 

Suppose {x/}y=i is a subset of SB, and J^XjXj* = 0. We may assume 
\\xj\\ < 1 for all j . For any positive e, we may find {yj} c Sb with 
\\xj —yj\\ < efàn- Then ||S^y^y*|| < e, whence from the definition of the 
natural norm, for each j , \\yj\\2 < HS-V/X ÎI < «s. Hence for each 7, \\xj\\ < 
2^/e for all e, so Xj = 0. 

Now we show (SB)b = SB and that the natural norm on SB, || | | j , 
agrees with || ||. We first observe that all the considerations of the 
previous paragraphs apply to M2SB (notice that if M|| = 0 for A in M2Sb, 
then reading off the (1, 1) and (2, 2) entries of AA% would yield that they 
have norm zero, so all the entries of A would be zero). Define / = [_} J] in 
M2SB, and a subring C = {bl 4- b'J\b, b' e SB}. As J2 = -I,C = SBI 4-
SBJ, and J is central in C, we see that C is (algebraically) isomorphic to 
SB ®RC If we norm C as a subalgebra of M2SB, C is a norm closed 
#-subalgebra (/# = —J), and the norm satisfies ||xx#|| = ||x||2 = \\x§\\2. 
Since C is a complex *-algebra, C is thus a C* algebra; hence Cb — C 
and there is only one such norm on C. In particular, the natural norm 
on C agrees with || ||. 

Let a be an element of C. If ||a||2 = r e R, there exists d in C such that 



344 D. HANDELMAN 

aa% 4- dd% = rl. If a = bl (b in SB), observing that the (1, 1) entry of 
dd% is positive, we deduce that aa§ ^ r; so (SB)b = SB and ||6|| ^ \\b\\i 
(by 1.8). 

On the other hand, if bb* + 2]w*i*i* = ^ e g with Z> in 5^ and *,• in Sß, 
set s = J^XiXi*. Then s = .s* and s belongs to Sb. We may find yt- in Sb 

with | |^ — JC,-|| < e/4qn. Then ||# — bb* — Sj^jvHI < e; since the 
restriction of || || to Sb is the natural norm, by 1.7 we have in Sb. 

-e è q - bb* - J^y^i* ^ e. 

Therefore, ||Z>||2 ^ q, and so for b in Sb9 \\b\\i ^ ||6||; thus on Sb9 the two 
norms agree. Since || \\x is dominated by || ||, the former is continuous 
with respect to the latter, and thus from the density of Sb in SB, the norms 
agree on SB. 

Finally, suppose 1 + S J ^ I * is invertible in Sb for all finite subsets 
{y{} of Sb. Consider {x{} in SB. Approximate each x{ by a sequence 
{x{j}j in Sb; for each j , there exists zj in S^ so that 

(1 + TtxHxH*)zJ = z ; 0 + E*«7*«7*) = L 

By 1.1, \\zj\\ S 1, and so 1 + Sx,*,* cannot bea topological divisor of 
zero ; thus it must be invertible. 

PROPOSITION 1.10. Let (S, *) be a rational algebra with positive definite 
involution. The collection of elements of Sb such that ||.?|| = 0 is a two-sided 
*-ideal ofSb, denoted J*(S). Suppose that all elements of S of the form 1 + 
J^XjXj* are invertible. Then 

(a) J*(S) is contained in the Jacobson radical of Sb, J(Sb) 
(b) * induces a positive definite involution on the quotient algebra Sb/J*(S); 

and 
(c) The natural seminorm on Sb induces a norm (\\x\\ = 0 implies x = 0) 

on Sb/J*(S) which agrees with the natural norm on the quotient algebra. 

(The inclusion J*(S) a J(Sb) may be strict; the example in 2.25 is a non-
trivial local domain (so J(Sb) is a proper maximal ideal), but its /* is zero). 

PROOF. By (i) through (iv) above, J*(S) is a two-sided *-ideal of Sb. 
(a) It suffices to show, for all s in J*(S), that 1 — s is invertible in Sb. 

Let r be a small positive rational number. We deduce from the positivity 
of (s — r)(s — r)* that r(s + s*) ^ ss* + r2, so s + s* ^ r~l ss* + r. 
Hence, 

(1 — s)(l — s)* = 1 — (s + s*) + ss* 

^ 1 - r + (1 - r-i)ss* 

^ 1 - 2r 

(the latter inequality holds since mss* ^ r for all positive integers m). 
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Thus if r is less than 1/2, applying the hypothesis to a positive rational 
multiple of a sum of the form 1 + £jt^-*, we see that (1 - s){\ - s)* 
is invertible in S, and therefore by 1.1, is invertible in Sb. Since s* also 
lies in J*(S), (1 — s)*(\ — s) is invertible as well, whence 1 — s has an 
inverse in S . 

(b) Suppose a = £SJSJ* belongs to J*(S), with s{ in Sb. Then a2 ^ a2 

for all positive rationals q; by 1.7 and the positivity of a, 0 ^ a 5̂  a. As 
SiSi* ̂  0 for each /, all the $,• belong to /*(£), so the anti-automorphism 
of Sb/J*(S) induced by * is positive definite. 

(c)The induced seminorm on the quotient algebra is defined by \\a + 
•M^)Hi = llall; t n i s is well-defined, since if a — b belongs to J*(S), 
then Hall ^ \\b\\ + ||a - 6|| = ||6||, and similarly ||a|| ^ ||6||. If ||a 4-
«MS)Hi is zero, then obviously a belongs to J*(S), so this seminorm is a 
norm, and the submultiplicative and subadditive properties are also in
herited by || || x. 

If || || 2 is the intrinsically defined seminorm on S = Sb/J*(S), from 
aa* ^ q implying aa* -h J*(S) ^ q -h J*(S), we obtain || \\t ^ || ||2. On 
the other hand, if aa* -h J*(S) g q -f /*(5), say aa* + 2***1* + ^ = <7 
(with s in /*(S)), then s = 5*, so s2 ^ 2~2w for all n, whence by 1.7, —5 ^ 
2-«; thus aa* ^ a - s ^ a + 2~n, so ||a||2 ^ q + 2~". Thus ||a + J*(S)\\l 
= Nil2 ^ q. 

COROLLARY 1.11. If(S, *) is real *-algebra with involution such that all 
elements of the form 1 + 2*i*i* a r ^ invertible, then J*(S) = J(Sb); that is, 
J*(S) equals the Jacobson radical of Sb. 

PROOF. Tf s belongs to J(Sb), then so does ss*, whence ss* — ris invertible 
for all nonzero real r. Completing Sb/J*(S) to a real C*-algebra, the image 
of ss* — r is invertible for all nonzero r, so the spectrum of ss* + J*(S) 
consists of 0 only. However, a positive element in a C* algebra with one 
point spectrum is that scalar, so ss* belongs to J*(S). Since the induced 
involution is positive definite, s belongs to J*(S). 

Although we will not be considering K0 (except in a brief discussion of a 
class of examples), it is worthwhile recording another consequence of the 
invertibility of all terms of the form 1 •+- 2*****-

LEMMA 1.12. Let (S, *) be a ring with involution, such that all terms of the 
form 1 4- 2*i*** are invertible in S. Then 

(a) If, for x in Sb, \\x — 11| < ^~2 — 1, then x is invertible in Sb. 
(b) If the image ofx in Sb/J*(S) is invertible in the norm completion, x is 

invertible in Sb (so ^/~2 — 1 in (a), may be replaced by 1). 
(c) The induced map on K0, K0(Sb) -+ K0(SB) (SB denotes the norm com

pletion ofSb/J*(S)) is an embedding. 

PROOF, (a). First suppose x = x* and \\x — \\ = q < I. Then there 
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exist d{ in Sb so that (x - l)2 -f 2 X 4 * = r,ra. rational less than 1. Hence 
2x = 1 - r + J^didi* 4- xx*. Multiplying by the appropriate rational, 
(1 — r)"1, we see x is invertible. For general x with \\x — 11| < \/^2 — 1, 
we see that both \\xx* — *1|| and ||x*x — 1|| are less than 1, so both xx* 
and x*x are invertible; thus x is invertible. 

(b). Pick y in Sb whose image in Sb/J*(S) approximates sufficiently close
ly the inverse of the image of x. Then both \\xy — 11| and ||>>x — 11| are 
small, so both xy and yx are invertible, whence x is invertible. 

(c). The map Sb -+ SB satisfies criteria (1), (2), (30 of [17; p. 204, 208], 
so [17; Theorem 3.1] applies. 

The map of 1.12 (c) need not be an isomorphism, even when S is a field 
and a real algebra. 

We previously commented that all elements of the form 1 + 2*r*V* 
are not zero divisors, so if all nonzero divisors are invertible (in S), all 
such sums are invertible in Sb. Another, somewhat different source of rings 
for which such sums are invertible, is the following proposition. 

PROPOSITION 1.13. Let (S, *) be a ring with involution. 
(a) If M2S is a Rickart *-ring with respect to % — ^-transpose, then 

1 + aa* is invertible in Sfar all a in S. 
(b) If M2nS is a Rickart *-ring with respect to # = ^-transpose, then 

1 + ^XjXi* in invertible in Sfar all subsets {xj ofln~l elements ofS. 

PROOF, (a). Set R = M2S, and define A in R as A = [J g]. Let P be 
the projection of R such that PR is the right annihilator of A. Setting 
B = [-f §], we have P = P%\ AP = 0, AB = 0, and therefore PB = 
B. Writing P = [c

e %], we have c = c* and d = d*. From AP = (0), 
we deduce (i) c = —ae, and from PB = B, we have (ii) e* = —(1 — c)a. 
Applying the involution to (ii) and substituting in it (i), we have c = 
aa*(\ — c), so adding 1 — c to both sides yields 1 = (1 + aa*)(l — c); 
applying the involution, we see that 1 — c is the inverse of 1 + aa*. 
(The same method also shows that d is the inverse of 1 + a*a.) 

(b). Define A in M2»-iS to be matrix whose top row is (xÌ9 x2, . . •)> and 
whose remaining rows consist of zeroes. Then / + AA% is invertible in 
M2n-\S because M2„S = M2M2„-iS, and the (1, 1) entry of the inverse of 
/ + AA% is the inverse of 1 + 2*,•*,•*. 

Let (G, u) be a partially ordered group with order unit u (our model is 
(ss

b, 1)). A state is an order-preserving group homomorphism/: G -> R to 
the additive group of the reals, so that/(w) = 1. This is often referred to 
as a normalized state, but we will not deal with unnormalized states. The 
collection of states is a compact subset of the space of functions from G 
to R, topologized via the point-open topology ([7] or [1], for further de
tails). Given two states/, g, and a real number r between 0 and 1, we may 
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form a third state, h = rf + (1 — r)g; h is a convex //«ear combination of 
/ a n d g. A state is extremal if it cannot be written as a convex linear com
bination of two distinct states. It is well-known, for example, that for t in 
G, sup{|/(OI I / a state of (G, u)} = sup{|/(OI I / an extremal state of 
(G, w)}, and it follows immediately from [7; 3.1 and 3.2], that if Ms a posi
tive element of G, then sup{/(f) |/ a state of (G, u)} = inf{n/m\ mt ^ 
nu,meN [) {0}, n eN}. Since we are always assuming S, and hence Sb, 
is a rational algebra, Ss

b is a rational vector space, so the infimum on the 
right (above) becomes (for t positive) inf{q e Q+| t ^ q). To see that this is 
the same as what we have previously defined as ||/||, we require a lemma. 

LEMMA 1.14. Let (S, *) be a ring with positive definite involution that is an 
algebra over the rationals. Let t be an elements ofSb such that t ^ 0. Then 

mi{q e Q\t g q}2 = inf{^2 e Q\t2 ^ A2}. 

PROOF. By 1.7, the left infimum is dominated by the right infimum. 
Write / = ^"afii*. Define A in MJSb to be the matrix whose first row is 
(«!, a2, . . . , an), and whose remaining rows are zero. Then AA% = t © 
0M_b which we shall call T. If t ^ q, then T ^ ql. In MnSb, \\AA%\\2 = 
Um2 = M{ÀeQ\T2 ^ ^/};by(iv), \\A\\* = \\T\\2. By definition, M||2 = 
infjtf e Q\T ^ ql}\ therefore 

(1) inf{a G Q\T ^ ql}2 = inf{A e Q\T2 ^ ÀI}. 

But cutting down by the projection E = en in MnSb preserves the order 
relations in (1), and ETE = t, so the desired equality holds. 

For (G, u) a partially ordered group with order unit w, let S(g, u) denote 
the collection of states of (G, u) topologized by the point-open topology, 
and with the obvious convex structure. Let Ker G = f]{kevf\feS(G,u)} 
— in otherwords, Ker G is the collection of elements of G that vanish at 
every state. On the quotient group G = G/Ker G, we can impose a partial 
ordering, namely x + Ker G belongs to G+ if and only if G+f](x + Ker G) 
is nonempty. One readily checks that G becomes a partially ordered 
group with this ordering, with order unit u + Ker G (simply observe that 
if x + Ker G e (G+)f|(-G+), then/(x) = 0 for all states/of (G, u)). 

LEMMA 1.15. Let (G, u) be a partially ordered group with order unit. Set 
Ker G = f]{kerf\fe S(G, u)}. Then G = G/Ker G has the structure of a 
partially ordered group with order unit u + ker G, and the mapping 

a:S(G,u) -* S(G,u 4- Ker G) 

f»flÄa + Ker G) = f(a) 

is a well-defined affine homeomorphism. 

PROOF. The argument above shows that (G+)f | (-G+) = 0 + Ker G, 
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and clearly G+ + G+ E G+; even more obvious is the fact that u + 
Ker G is an order unit. Certainly/: (G, u + Ker G) -» (R, 1) is a well-
defined group homomorphism, as /(Ker G) = {0}. If x + Ker G ^ 0, we 
may find h in Ker G with x + /* in G+, so/(x + Ker G) = /(*) = / ( * + A) 
^ 0. Thus / is a state, and that a is affine, continuous and one-to-one fol
lows by inspection. Given a state / of (G, u + Ker G), define t : G -> R, f(g) 
= f(g + Ker G). If g è 0, then g 4- Ker G ^ 0, so t is a state of (G, w), 
and a(f) = t. Hence a is onto, and as the state spaces are compact, the 
mapping is a homeomorphism. 

COROLLARY 1.16. Let (S, *) be a ring with positive definite involution such 
that all sums of the form 1 -b £XjXj* are inver tibie. Then there are natural 
affine homeomorphisms between the state spaces : 

s(s>, i) -> S(SI/MS)) <- s(sB9 i). 

PROOF. The invertibility hypothesis ensures that S is an algebra over the 
rational numbers. It follows from 1.14 and 1.7 that J*(S) plays the role in 
Ss

b of "Ker G" in 1.15; so the first two state spaces are affinely homeomor-
phic. Given a state / i n S(SB, 1), define/ on (Ss

b/J*(S)9 1 + MS)) simply 
by restriction. Then / -» / is continuous and affine. Since any state sends 
the unit ball (in the natural norm) to the interval [—1, 1], by 1.9 (for SB) 
states have norm 1, so are continuous. Since Sb/J*(S) is dense in SB, the 
assignment/-» / is one-to-one. Any state g of (Ss

b/J*(S), 1 + J*(S)) has 
norm 1, is thus || ||-continuous, and therefore extends to a continuous 
linear functional g of SS

B. If x lies in S£, there are a{ in SB such that x = 
2]#A*. We may approximate each a{ by a{j in SbIJ*(S), so x is a limit of 
positive elements SbIJ*(S), whence g(x) ^ 0. Thus g is a state, and g is 
mapped to g, so the map is onto, and from compactness, is a homeomor
phism. 

2. Fields. Throughout this section, E will denote a formally real field, 
and F will denote either a formally real field, or a quadratic extension of 
a formally real field such that the Galois automorphism is positive definite, 
and in the latter case, £ will be the fixed field. 

With the identity map, the formally real field E becomes a partially 
ordered abelian group (with positive cone, all sums of squares). We study 
the connections between states, total orderings, and Spec Eb9 as well as 
the corresponding results for the quadratic extensions F and Fb. We also 
consider, in some detail, a number of interesting examples of bounded 
subrings of fields and their possible pathologies. 

Our immediate aim is to establish an involutory version of the Artin-
Schreier Theorem. Recall that if E is a formally real field, an ordering on 
E is a partial order on the set E with positive cone P, satisfying: 
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(i) P + P E P 
(iï)Pf)(-P) = (0) 

(iü) P • P g P 
(iv) P contains all squares. 

The ordering is total if E = P (J ( -P). In particular, since £ i s formally 
real, the natural ordering corresponding to the identity involution (posi
tive cone : sums of squares) is an ordering in this sense, and is the unique 
minimal such. The Artin-Schreier Theorem states that every ordering is 
contained in a total ordering, or what amounts to the same thing, if e in 
E is positive in every total ordering, then e is a sum of squares. 

If (is *) is a field with positive definite involution, we define a ^-ordering 
of F to be an ordering on the fixed (under *) subfield E (necessarily for
mally real, from the positive definiteness of *) such that in addition, all 
elements of E of the form xx* (x in F) are positive. So all *-orderings 
contain the natural ordering, and again the natural ordering is the minimal 
•-ordering. The ^-ordering is total if the corresponding ordering is total. 
As a caveat, it is well for the reader to bear in mind that the natural 
ordering on E, as a formally real field, is in general strictly weaker than 
the ordering on E induced by the natural ordering on F; it is even possible 
to construct an example (2.16) where F = Fb, but Eb # E, Eb being the 
bounded subring with respect to the ordering induced by the identity 
involution. 

We wish to show, if a self-adjoint element of F (that is, an element of E) 
is not of the form 2 ^ , - * (*f- in F), then there exists a total *-ordering of 
F at which this element is negative. This is what is meant by an involutory 
version of the Artin-Schreier Theorem. 

Associated in an essentially unique manner with every total ordering 
on E is an embedding into a real closed algebraic extension field, such 
that every element of E that is positive has a square root in this extension. 
One sees very easily that to each total *-ordering of F, we may associate, 
uniquely, a *-preserving embedding of (F, *) into (C, *) where C is an 
algebraic closure of F9 and * on C is positive definite; further, C = R[i], 
where R is the real closure corresponding to the total ordering on F, and 
i2 = — 1, and /* = —/. It is straightforward to fill in the proof of the rest 
of the following proposition, so we omit its proof. 

PROPOSITION 2.1. Let (is *) be afield with {positive definite) involution, 
and pick d in E such that F = E[^/d]. There are natural bijections between 
the following three sets: 

(a) {total *-orderings on (F, *)} 
(b) {^-isomorphism classes of ^-preserving embeddings (F, *) -> (C, *), 

C an algebraic closure ofF, with * positive definite on C, and d* = —d) 
(c) {real closures of E in which d is a negative square}. 
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A norm is an element of the form xx* ; there will be no confusion with 
the Banach algebra type norm previously introduced. 

THEOREM 2.2. (Involutory version of Artin-Schreier). Let (F, *) be a 
field with (positive definite) involution, and E the fixed subfield. Then an 
element x of E is positive in every total *-ordering if and only if x is a sum 
of norms. 

Our proof is based on the "real" proof in [6, Theorem 8.4]. 

LEMMA 2.3. Let Q be the positive cone of a ^-ordering on F. For x in E 
define Px = {px + q | p, q e q). Then there is a *-ordering on F extending 
the Q-ordering in which x is positive if and only if 

(A) px n -px = (o). 

PROOF. The positive cone of the *-ordering must contain Px, so (A) 
is certainly necessary. On the other hand Px + Px E Px, Px * Px ü Px 

(the latter, since x belongs to E, and therefore x2 is a norm). Hence 
assuming (A) holds, Px is a positive cone for a *-ordering, and Q is 
contained in Px. 

LEMMA 2.4. Given a ^-ordering of F with positive cone Q, then for x in 
E, there exists a ^-ordering of F extending that from Q in which x is positive, 
if and only if for all p, q in Q, px + q = 0 implies p = q = 0. 

PROOF. Certainly, if x is positive in a finer ordering, necessity of the 
condition above is clear. On the other hand, if px + q ^ 0 for all nonzero, 
p, q, then Px f| —Px = {0} follows immediately. By 2.3, such an ex
tension-ordering exists. 

PROOF of 2.2. We first show that a maximal *-ordering of Fis total. Let 
Q be the corresponding positive cone, and suppose x lies in E but in 
neither Q nor — Q. If px + q = 0 and r( — x) + s = 0 for some p, q, 
r, s in Q, we obtain qr -f- ps = 0, whence qr = ps = 0, and this implies 
either p = q = 0orr = s = 0. By 2.4, Q may be extended so that at 
least one of x, —x becomes positive, but this contradicts the maximality 
of Q. Hence E = Q [} -Q. 

Now let P be the subset of E consisting of sums of the form £*****> 
with x{ in F. Then P is the positive cone for the natural *-ordering of F. 
If x lies in E but not in P, for p, q in P — {0}, p( — x) + q = 0 implies 
x = q/p, so by 1.5, x would lie in P; thus /?( — x) + q is never zero, so 
there exists a *-ordering with positive cone Q extending that of P in which 
— x is positive. Now a simple Zorn's Lemma argument applies to yield a 
total *-ordering containing Q in its positive cone. 

COROLLARY 2.5. Let (H, *) be a field with positive definite involution. 
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Then there exists an algebraic closure K of 77, and an extension of the 
involution to Kthat is positive definite. 

PROOF. Because * is positive definite, the natural *-ordering on H can 
be extended to a total *-ordering. Let R be the real closure of the fixed 
subfield on H corresponding to this *-ordering, and set K = R[i], with the 
usual automorphism. 

Let (F, *) be a field with (positive definite) involution. Call (F, *) 
totally ^-Archimedean if every total *-ordering on it is Archimedean, that 
is, if every *-algebraic closure of F (see 2.1(b)) is *-embeddable in the 
complex numbers, equipped with complex conjugation. In case * happens 
to be the identity, the property can also be referred to as totally Archi
medean (see §3 for an explanation of "Archimedean"). 

THEOREM 2.6. Let (F, *) be afield with a positive definite involution. The 
following are equivalent. 

(i) (F, *) is totally *-archimedean. 
(ii) F = Fb. 

(iii) For all r in F, there exists a positive integer n such that n — rr* is a 
sum of norms. 

(iv) For all r in F, for all total *-orderings, there exists a positive integer 
n {depending on r, and apparently on the ordering) so that n — rr* is positive 
at this total ^-ordering. 

PROOF, (i) => (iv). Any *-algebraic extension of (F, *) is obviously 
•-embedded in the complexes, so (iv) follows from 2.1. 

(iv) => (iii). Suppose for a fixed r in F, there is no bound on the «'s 
required; pick (Gj9 *) to be *-algebraic closures so that n(j) ^ y , withy 
varying over the positive integers. Form a nonprincipal ultraproduct 
(G, *) of the (Gj, *), and observe that the inclusion (F, *) -> (G, *) induces 
a total *-ordering of F in which n-rr* is not positive for any n (an easy 
consequence of Los' Theorem). Hence there must exist an integer n so 
that n — rr* is positive in all total *-orderings. By 2.2, n — rr* is a sum 
of norms. 

(iii) => (ii). Trivial. 
(ii) => (i). Let (G, *) be a *-algebraic closure of (F, *), and let H be the 

fixed field of * in G. Consider Hb, its ring of bounded elements (in its own 
natural ordering). Since H is real closed, every element is either a square 
or the negative of a square; thus the natural ordering on H is total. If 
H = Hb, then H is Archimedean, so is embeddable in the reals. To show 
H ^ Hb is impossible, we first show Hb is a valuation domain. 

Pick a, b in Hb. Then ab~l is either positive or the negative of a sum of 
squares; by multiplying if necessary by — 1, we may assume ab~l > 0. 
If ab~l g 1, then ab'1 G Hb, so a = b{ab~^\ and thus aHb g bHb. If 
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ab~l ^ 1, then ab~l > 1 as the ordering is total. This yields arxb < 1, 
whence bHb E aHb. 

Now select a in H. Since a is algebraic over F and Fh — F, a is integral 
over Hb (as Fb ü Hb). Any valuation domain is integrally closed in its 
field of fractions, so a e Hb, and thus H = Hb. 

The foregoing applies whether or not * is the identity. Examples of 
totally (*-) Archimedean fields include any field with involution that is 
algebraic over the rationals. The quaternionic versions of 2.2 and 2.6 
also work out readily, because the symmetric elements are all central 
and every element commutes with its adjoint (assuming the involution is 
the natural one, and that it is positive definite). 

Now let us decide what the states are on Fs
b, when F is a field. 

PROPOSITION 2.7. Let (F, *) be a commutative ring with positive definite 
involution, and suppose 1 + 2J ****** ^ invertible in F for all finite subsets 
{xj} of F. Then 

(a) a state of{Fs
b, 1) is extremal if and only it if is multiplicative, 

(b) the extremal states of(F§, 1) form a compact space X in the topology 
of pointwise convergence, 

(c) the natural mapping Fs
b -> C(X, R) is a ring homomorphism with dense 

image, and the kernel is J*(F) f| Fs, and 
(d) the norm closure of Fs

bjJ*{F) is isometric ally isomorphic to C(X, R). 

PROOF. Let S be the closure of Fb/J*(F) in the natural norm, and set 
T = Ss. One easily checks that Fs

b/J*(F) f] Fs is dense in T. By 1.16, the 
states of (T, 1) are the "same" as those of (F§, 1). Now 1.9 and 1.10 can 
be applied to S, and thence to T. In particular, S has zero radical, so it 
follows that J(T) = {0}. Then the Gelfand mapping 

<j>: T -* C(X, C) 

/ >-* t, t(x) = x(t), 

where X = {x: T -> C| nonzero ring homomorphisms} equipped with 
the point-open topology, is an embedding. Since 1 + t2 is invertible in 
Tfor all t in T, x(T) g R, so x(T) = R. Thus <f>(T) g C(X, R). As x(t2) = 
(x(t))2, all the elements of X are states. In particular, $ is order-preserving, 
whence ^ is continuous in the natural norms, and since <fi(T) is norm com
plete and separates the points of X, we must have <f>(T) = C(X, R) by the 
Stone-Weierstrass theorem. 

Suppose / ^ 0; then s = Vt lies in C(X, R), so there exists c in Tsuch 
that c = s. Thus c2 = t as <j> is one-to-one, so t lies in T+; hence ^ is an 
order-isomorphism. As the natural norm on C(X) agrees with the supre-
mum norm, <j> is an isometry. This proves (d). 
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The extremal states of C(X, R) are exactly the points of X, which are 
exactly the multiplicative states. Now 1.16 and 1.10 imply (a), (b), and (c). 

By 2.7(b), the state space is a Bauer simplex. In contrast, when there is 
some degree of noncommutativity (meaning, in the case of division rings, 
worse than quaternionic), the state space is almost never even a Choquet 
simplex (cf 3.6). 

PROPOSITION 2.8. Let (F, *) is afield with involution, and suppose F is 
totally (*-) Archimedean. Then the set of extremal states is a totally 
disconnected compact space in its point-open topology. 

PROOF. Let S denote the extremal state space of (F§, 1), and for a point 
x in S, let F be the intersection of all the closed and open neighbourhoods 
of x. Pick r in F§. The topology on S is the weakest with respect to which 
all functions f: S -• R defined by f(f) = f(r) are continuous. Hence 
f(V) = {v(r)|v e V) is a connected compact set, that is, a closed interval. 
If r(V) is not a single point, it must contain a rational, say q = v0(r) for 
some v0 in V. Then r — q lies in the kernel of v0; as v0 is multiplicative, the 
kernel is an ideal of Fb; but F = Fbby hypothesis, so we must have r = q. 
Hence, in all cases, f(V) consists of a single point. Since the set of such r's 
separate the points of 5, V itself must consist of a single point; thus 5 has 
a basis of closed and open sets; being compact, S is totally disconnected. 

The space of extremal states appears to have a tendency to be connected 
when Fb ^ F and F is a real algebra. We will now give an example where 
the extremal state space is the closed unit interval, and later on we will 
give an example where the extremal state space is homeomorphic to the 
unit circle. 

EXAMPLE 2.9. For this example consider a formally real field E such that 
(i) The extreme state space of (Eb, 1) is homeomorphic to [0, 1], and 
(ii) Eb is a principal ideal domain. 
(Several other properties of this example will also be mentioned later). 
Let E be the field of (equivalence classes of) real-valued functions each 

defined and real meromorphic on a neighbourhood of [0, 1], with addition 
and multiplication defined on the intersection of the domains ; it is readily 
checked that E actually is a field, and is formally real. 

Let D be the subring of E consisting of functions analytic on a neigh
bourhood of [0, 1]. I f / i s a meromorphic function bounded in our sense, 
it must be bounded in absolute value on [0, 1], hence is analytic on some 
neighbourhood of [0, 1]. Thus Eb E D. On the other hand, if/ is analytic 
on a neighbourhood of [0, 1], it must be bounded in some (possibly 
smaller) nieghbourhood, simply from the compactness of [0, 1]. Hence 
there is a neighbourhood of [0, 1] with q2 — f2 > r on this neighbour-
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hood, where q, r are positive rationals. It follows that q2 — f2 is an ex
ponential, hence is a square, so /belongs to Eb; thus Eb = D. (As some 
warning why we must go to neighbourhoods and consider strict positivity, 
observe that the function/(x) = x is positive over that will turn out to be 
the extremal state space, b u t / i s not positive in the natural ordering!) 

Any function in D can have only finitely many zeroes on [0, 1], and so, 
since D and all its relatives are well-known to be Bézout domains, in this 
case, D is actually a principal ideal domain, and it is very easy to see 
simultaneously that the maximal ideals correspond precisely to the points 
of [0, 1]. Now D is also a real algebra, so the extremal states correspond 
exactly to the maximal ideals, and the point-open topology on [0, 1] is 
precisely the usual topology. 

One can also show that if E is the field of fractions of either the ring of 
entire functions, or the ring of functions analytic in a neighbourhood of 
the reals, then the maximal ideal space of Eb is /3R. 

It is convenient to have available a criterion that decides whether a 
commutative domain (with involution) is the bounded subring of its field 
of quotients, or contains it. 

THEOREM 2.10. Let (D, *) be a commutative domain with positive definite 
involution, and let (K, *) be its field of quotients. Then Kb ü D if and only 
if (A) or, equivalenti}?, (B) hold. 
(A) (i) M = M* for all maximal ideals M ofD, 

(ii) the induced involutory anti-automorphism on DjM is positive 
definite, for all maximal ideals M, and 

(iii) D is a Prüfer domain. 
(B) (i) 1 + J^XjXj* is invertibie in D,for all subsets {x{} of D, and 

(ii) D is a Prüfer domain. 
In particular, Kb = D if and only if (A) holds and every element of D is 

bounded. 

PROOF. The conditions (A) and (B) are equivalent to MnD being a 
Baer * ring (with respect to # = *-transpose) for all n [9; Theorem 2.3], 
so they are equivalent to each other. If Kb a D, they by 1.3, MnD contains 
all the projections of MnK, so if must itself be Baer *, whence (again by 
[9; Theorem 2.3]), (A) holds. 

On the other hand, if (A) holds, MnD is a Baer * ring for all n, so by 
[9; Proposition 1.1], MnD contains all the projections of MnK. If x belongs 
to Kb, there exist {tt)f=i in K, and q in the rationals such that 

Define the matrix w in Mm+lK whose first row is (xjq, th t2, . . . ) , and 
whose remaining rows consist of zeroes. Define P in M2m^K by 
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1[ww% w 1 
P = —4 

2 |_w# w#wj 

Inasmuch as w # w = w and ivlfwl = w#, P is a projection, so all of 
its entries lie in D. Thus x belongs to D, whence Kb E D. 

The proof above of the converse also yields that if MnS is Baer * 
(Rickart *), and S is a *-subring of a ring T such that T is both right and 
left essential over the image S, then M„r is Baer * (Rickart *) if and only 
i fS , g T. 

Another property of fields, as distinguished from division rings, is that 
of Riesz decomposition, most easily stated in terms of its equivalent prop
erty, (Riesz) interpolation. A partially ordered group G satisfies the 
interpolation property, if whenever a, b, c, d9 are elements of G so that 
a^c, a^d, b^c, b^d (compactly expressed a, b ^ c9 d), then there 
exists an element e of G lying between, that is a^e^c,b^e^d 
(a, b ^ e §: c, d). Obviously, a convex subgroup of a group with the 
interpolation property satisfies the interpolation property itself, so if Ss 

has interpolation, so does Ss
b. The following result is due to my colleague, 

Professor H. Helfenstein. 

PROPOSITION 2.11. Let (F, *) be afield with involution. Then both Fs and 
(F§, 1) satisfy the interpolation property. 

PROOF. If a, b, c, d belong to Fs, and a, b ^ c, d, we may assume d = 0 
(subtract d from everything). If either a = c or b = c, or either a or b 
is zero, there is an obvious choice for e. Hence we may assume that not 
both a and b — c are zero. Since both are positive, a 4- b — c ^ 0. Set 
e = ab(a + b — c)~l. Observe that since all of a, b and a + b — c are 
greater than or equal zero, e ^ 0; since b ^ b + a — e, e ^ a, and 
similarly e ^ b. Since (a — c)(b — c) ^ 0, we deduce c2 — c(a + b) + 
tfè ^ 0, so ab ^ c(a + b — e), whenec e ^ c. As i7^ is a convex subgroup 
of F\ it also satisfies the interpolation property. 

(Of course, the proof works for any *-ordering on Fs that is invariant 
under the operation of taking inverses.) 

Let (F, *) possess a total *-ordering, and let (C, *) be the corresponding 
algebraic *-closure (cf 2.1(b)). Then Cb is a valuation domain, with unique 
maximal ideal J*(C) (viz. 2.6(h) => (i)) consisting of the elements c such 
that cc* is infinitesimal. Now A = CJJ*(C) is a field, and it its own 
bounded subring, and additionally the natural ordering is a total ordering. 
Hence As is a real closed subfield of the reals, and A is of course *-embed-
dable in (C, -) (- denotes complex conjugation). From the embedding 
Fb cz Cb, we obtain a prime ideal N of Fb, N = /*(C) fl Fb, and a *-
embedding FbjN -> C. This latter embedding induces an extremal state, 
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by restriction to the symmetric parts. So to each total *-ordering, we can 
associate a prime ideal (whose quotient ring is *-embeddable in the 
complexes), and an extremal state. Every such prime ideal yields a state, 
and perhaps more surprisingly, the map from total *-orderings to extremal 
states is onto. 

THEOREM 2.12. Let (F, *) be afield with a positive definite involution. 
(a) Letf: Fb-+ C be a *-homomorphism. Then M = kerf is a prime ideal, 

M = M*, and there exists a total ^ordering so that if(C, *) is the corres
ponding algebraic *-closure, M = J*(C) f| Fb, and the quotient map, 
composed with the imbedding into C 

FJM - cbu*(C) g c 

agrees withf. 
(b) Given a total ^-ordering, and corresponding algebraic *-closure 

(C, *), set M = J*(C) H Fb. Then M = M*, M is a prime ideal of Fb, and 
FbjM is *-embeddable in the complexes. 

(c) If F is a R-*-algebra, the set map obtained from (b) 

{total *-orderings of F} -> {prime ideals of Fb} 

maps onto the set of maximal ideals. 

PROOF, (a). Set E = Fs, and define the following subset of E. 

P = { S i A ^ l i , - e F\ a» d.eEf] Fb;f(at), f(dt) > 0 in R}. 

Obviously P + P E P, and all elements of the from xx* lie in P. Thus to 
show P is the positive cone for a *-ordering on F, it remains to establish 

Suppose not; then we may find nonzero elements of F, b{, cy-, and non
zero elements of E fi Fb whose values at / are greater than zero, a{, d(, 
Xj, yj so that 

(1) J^bib^aidj1 + TtCjCjtXjyj1 = 0. 

By multiplying through, we may assume in (1) that d{ — yj = 1 for all 
/,./, and that {b{, Cj} <t V. 

Let V be the localization of Fb at M. As Fb is a Prüfer domain, F is a 
valuation domain, with maximal ideal (M) = MV. Since/is a *-homo-
morphism, M = M*, so (M) = (M)*. Since V/(M) is a field of fractions 
of Fb\M, and the latter is positive definite, so is the field V/(M), and in 
addition/induces an embedding of VftM) in C. 

Since V is a valuation domain, there exists z in (M) so that {zbj, zcj} c 
V, {zb{, zcj} (£ (M). Multiplying (1) through by zz* and remembering 
that di; = 1 = yj, we obtain 
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2(zò,)(zòy)*tf, + 2>cy)(zcy)*x ; = 0. 

Applying / and the positive definiteness of the induced * on Vj(M), we 
obtain {zb{, zcj} c (M), a contradiction. 

Thus P is a bona fide positive cone for a *-ordering of F. Since/(1/«) = 
\\n for all integers n we have for all m in M f| £, for all positive integers n 
\\n ± m belongs to P. Hence, we obtain 

(2) -\/n ^ m ^ 1//Î 

at any *-ordering finer than that of P. Let Q be any total *-ordering 
containing P, and let (C, *) be the corresponding algebraic *-closure. By 
(2), M <= y*(C) H Fb\ on the other hand, if x belongs to Fb but not to Af, 
then xx* also does not (as x* does not, and M is prime), and so/(xx*) > 0. 
Hence there exists a positive integer n such that xx* — \\n is positive in 
the P-ordering, and thus in the g-ordering. Therefore xx* cannot lie in 
J*(C), so neither can x, whence M = J*(C) fl Fb. 

Since Cb/J*(C) is uniquely *-embeddable in the complexes, we obtain a 
composite mapping Fb ü Ch -• Cb/J*(C) E C, with kernel M. Now the 
ordering induced on D = F /̂Af by either Q or P is total since/(D5) E R 
(where / : D -> C is the map induced by / ) . Let G denote the field of 
fractions of D. Then/, being an embedding, extends to an embedding, also 
called/: G -* C, as does the composite mapping; call its induced mapping 
/0. The *-orderings induced on D (and hence on G) b y / a n d by Q (équi
valent^ by the composite mapping, hence by/0) agree and are total. Since 
both / and / 0 are order-preserving, they are states sending 1 to 1 ; but a 
totally ordered group can have just one normalized state. Thus f0 = / , 
and so the composite map agrees with/on Fb. 

(b). This follows from the discussion immediately preceding. 
(c). All the prime images of Fb that are *-embeddable in C must 

contain a copy of the reals, so must be either the reals or the complexes, 
hence must be fields and the corresponding ideals are maximal. Ontoness 
follows from (a). 

COROLLARY 2.13. Let (F, *) be afield with a positive definite involution, 
and suppose (F, *) possesses no infinitesimals in the natural ordering (that 
is, J*(F) = (0)). Then J(Fb) = (0) if any of the following conditions hold. 

(a) All nonzero prime ideals are maximal (as occurs if Fb is a union of 
Dedekind domains), and F has no Archimedean total *-orderings. 

(b) F is a real algebra. 
(c) If M is a prime ideal ofFb such that Fb\M *-embeds in the complexes, 

then M is maximal. 

PROOF. Conditions (a) and (b) each imply (c), so assume (c) holds. 
Given a nonzero element x of Fb, there exists a total *-ordering at which 
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xx* is not infinitesimal. Let M be the prime ideal corresponding to this 
total *-ordering, by (b) of the previous result. Then xx* does not belong 
to M ; as FJM embeds in the complexes, by hypothesis M is maximal, and 
x does not lie in M, whence x does not belong to J{Fb). 

(Example 2.15 demonstrates why the hypothesis on no Archimedean 
orderings is necessary.) 

To summarize Theorem 2.12 and its consequences, there are set maps, 

(total *-orderingsi K (extremal state 1 L 

t o f f M s p a c e o f ( m ) f ^ S p e C F ' -

The middle set is a compact HausdorfT space in the point-open topology 
(equivalently, the relative product topology, the topology of pointwise 
convergence). The latter set is compact in the Zariski topology. The map 
L is readily seen to be continuous. The element (0) of Spec Fb is precisely 
the image under LK of the Archimedean total * -orderings (as readily 
follows from 2.12(a)), if such exist. With this exception, the range of L 
tries to be Max Spec Fh\ H. Schültung observed, if F = Q(x, y), the 
image of L is not Max Spec Fb U {(0)}. Of course, if M is a maximal ideal 
of Fb9 Fb/M is a totally *-Archimedean field, so its symmetric part admits 
an extremal state, inducing an extremal state on Fb; thus Max Spec Fb 

is always in the image of L. 
The mapping K is always onto, by 2.12(a). Neither K nor L need be 

one-to-one. For L, the easiest example of this behaviour occurs with any 
formally real totally Archimedean field with more than one ordering, 
Q[A/~2~], being the simplest possibility. 

For an example with K not one-to-one, begin with E, a real closed 
subfield of the reals (E = R is admissible), and form the ring of Laurent 
power series in one variable 

oo 

{TfliAOi e E, n e Z}, 

denoted G = E((x)), and consider the ring of formal power series, D = 
£[[x]]. Since we obviously have D[x~l] = G, G is the field of fractions of 
D, and we will now show Gb = D (computed with respect to the identity 
involution). 

Clearly Dj{x) = E is formally real, and since D is a local principal 
ideal domain, by 2.10, Gb E D. Now to show something, say r = 
xm(a0 +2X*9> (m ^ 0, a{ e E, a0 # 0), is a square in Z>, it suffices to 
show m is even and a0 is positive, i.e., a square in E. Thus al + 1 — r2 

is always asquare, so, since E is Archimedean, r is bounded by any 
positive integer bounding ag + 1. Hence D g Gh whence equality holds. 

(If E is merely real closed, one would expect that Gb = Eb[[x]] ; unfor-
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tunately, if / is an order in a field K, it does not follow that J[[x]] is an 
order in K((x)).) 

Now the element x itself is neither a sum of squares nor a negative sum 
of squares, so G possesses more than one total ordering. On the other 
hand, \jn ± x is a square for all positive integers «, so x belongs to J*(G), 
and thus J*(G) = (x) = J(D). Hence all states annihilate (x), so induce 
states on the quotient field E\ being real closed, E admits only one state. 
Hence K is rather far from being one-to-one. We also have an example 
with many distinct total orderings, all having the same set of infinitesimals 
(the ideal (x)), and the same induced ordering on the residue field. 

EXAMPLE 2.14. For this example we will study E(x)b. Here E is a real 
closed subfield of the reals, and x is an indeterminate. It turns out that 
E(x)b is fairly easy to describe, has extremal state space the one point 
compactification of the reals, is a Dedekind domain with class group of 
order 2, and none of its maximal ideals are principal but they correspond 
to the points of E and a point at infinity in a natural way. 

Define a subring D or E(x), D = {f/g\f, g e E[x], deg / :g deg g, g has no 
linear factors}. It is clear that D is a ring, and an ^-algebra, in fact D is 
precisely the set of elements of E(x) that are positive at all the valuations 
corresponding to linear polynomials and the infinite valuation. The ele
ments of the form 

b, c ^ 0, a, b, e e E, are units in D, and because every polynomial in 
E[x] is a product of linear and irreducible quadratic polynomials, it follows 
that every element of D is a product of a unit with elements of the forms 

f*ï T. 1 . ri . x - a . TTT . (x - b)(x - c) 

Now every unit is a product of elements of the form (**), and (**)-1 and 
it is easy to check that all of the elements of the form (*) or (**) are 
bounded (view them as continuous functions on the real line, observe they 
are bounded as functions by rational numbers, and show the difference 
is a sum of squares in D; alternately, one can use 1.1 and its proof to 
obtain that I, II0 belong to E(x)b, and Ua = II0 — al, and III^ c and the 
units in (**) are Zs-linear combinations of I and IIJ . Thus D E E{x)b. 

On the other hand, suppose a = f/g is a quotient of relatively prime 
polynomials, and a is bounded. If d e g / > deg g, then a has a polynomial 
part, and so cannot be bounded as a function on the reals, let along in our 
sense. If g(e) = 0 for some e in E, then a is obviously not bounded on any 
neighbourhood of e (in the reals), so cannot be bounded in the natural 
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ordering. Thus E(x)b E A so equality holds; in particular, D is a Prüfer 
domain (2.10). 

It follows easily from the factorization of elements of (*) that D is 
Noetherian, so is a Dedekind domain. Let M be a maximal ideal of D. 
As M is generated by products of the elements of (*), being maximal, M 
can be generated by elements of (*) themselves. We first note that any 
ideal containing I and III,, c (any choice for b, c) is improper. 

Define a certain set of ideals, as follows : 

M0 = (I, II0), Ma = (IIa, IIIff,_J, aeE. 

We will show these are proper ideals, then that these are maximal and 
distinct, and finally that these are all the maximal ideals of D. If M0 were 
not proper we could find polynomials/, g{ with dcgft- ^ deg g{ (/ = 1, 2) 
such that 

1 . A_ , x . A= ]-
\ + X2 gi 1 + X2

 g2 

that is, fxg2 + xf2gi = (1 + x2)gig2. But the degree on the right hand side 
is greater by 2 than deggi + degg2> which is in turn at most one less than 
the degree of the left side, a contradiction. If Ma were not proper, there 
would exist polynomials/^, g{ so that g^a) ^ 0 and 

x - a . h_ + x2 - a2 . A = i 
1 + x2 gx 1 + x2 g2 

so (x — d)fxg2 -h (x2 — a2)f2gi = (1 + x2)gig2. But the left side vanishes 
at a, while the right side does not. 

To see that M^ is maximal, observe that (I, II0) = (I, II0) for any a in 
E9 so adding any element of (*) to M^ will either leave it unchanged, or 
blow it up to being improper, since (I, I I I^ ) is always improper. Since 
(lla, ilb) contains I, adjoining I or llb(b ^ a) to Ma makes it improper, 
and from the identity 

III,,, - IIIa,_fl + (b 4- c)Ua = (a- b)(a - c)l 

the only elements l\\bì c we can adjoin to Ma that do not make it improper 
are those with either a = b, or a = c\ we may assume a — b. But from 

I I I , i C - I I I , f _ f l = -(fl + c)II„ 

lllac already belongs to Ma. Thus Ma is maximal. 
Next we observe that the following relations hold : 

(***) (I) = Ml; (II,) = M^M^ (III,,,) = MbMc. 

Because unique factorization of ideals holds in D, no element in (*) is 
contained in any maximal ideal other than the ATs, so these must be the 
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only maximal ideals. That these ideals are all distinct is an immediate 
consequence of some of the relations established above. So the assignment 
Ms -> se E U 00 is a bijection from the set of maximal ideals. 

We deduce from (***) that the class group consists of at most two ele
ments, and to show it has exactly two elements, it suffices to prove Mœ is 
not principal. We do this by showing, if r belongs to D, and rs = I, rt = 
II0 are solvable in Z), then r is invertible. 

Suppose r is not invertible; write r = a/b, s = fjgi, t = f2/g2 with the 
usual conditions on the numerators and denominators. We have 

(1) ah ' (1 + *2) = bgl 

(2) af2 - (1 + *2) = bg2x. 

Since neither b nor gx has real roots, neither do a nor/ i . Thus deg a and 
deg/i are even, and since 

deg a + deg fx + 2 = deg b 4- deg gx 

but deg a is strictly less than deg b (as r is not invertible) and deg fx ^ 
deg gl9 we deduce that deg a = deg b — 2. Thus we can write a/b as 
w-l/(l + x2), where u is a unit in D. Putting this in (2), we obtain 
uf2lg2 = x> a contradiction since x is not bounded. 

Now one can check that D is E [I, II0] a quadratic integral extension of 
the polynomial ring E[l], so the residue fields of D must be ^-algebraic, 
but also by 2.10(h), must be formally real; so all the residue fields are 
just the natural images of E. 

Now let us study the total orderings and extremal states. As E is a 
subfield of R, the Archimedean total orderings (if any) of E(x) correspond 
to the points of R — E (the ^-transcendentals in R). To each non-Archi
medean total ordering, we associate the maximal ideal M as in 2.12(b); 
this is the kernel of a unique extremal state, as D decomposes as an 
is-vector space, D = E © M. So the extremal states of (Z>, 1) correspond 
to the points of R U °o, the faithful ones identified with the points of 
R — E. If h is any bounded rational function in one real variable, one 
sees immediately that both lim^«,/^/) and lim^_ooA(0 exist and are 
equal. Hence any such function h extends to the one point compactifi
cation of the reals (if z is the point at infinity, define h{z) to be the limit as 
t approaches infinity). It is routine to check that the point-open topology 
on R U °o (viewed as extremal states of D) is just the usual one-point 
compactification, so the extremal state space is homeomorphic to the 
circle; in particular, it is connected, in contrast to the result of 2.8. 

To obtain disconnected extremal state spaces from a formally real 
field that is a real algebra over the reals, form the field of fractions of the 
quadratic extension R[x, y]/(y2 — / ) , where/is a square-free polynomial 
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in x; if we call this field E, the extremal state space of Eb consists of dis
joint circles, corresponding to the zeroes on the real line (the regions 
where / is positive correspond to the primes in Eb f| R(x), and these 
split; the primes corresponding to the zeroes off remain inert). 

The extremal state space, or what amounts to the maximal ideal space, 
of the bounded subring of E = R(x, y), the rational function field of two 
variables, is however extremely rich. Not all bounded rational functions 
are continuous even on the (real) plane, but their discontinuities are always 
at finite sets (for example xy/(x2 + y2) is bounded, and is continuous 
everywhere except at the origin and oo). The points on the plane, there
fore, do not correspond to multiplicative states. However, we may as
sociate to each point p in S2 = R2 U °°> a huge collection of states, as 
follows. 

Let (x(t), y(t)) be a path through the point /?, such that the coordinate 
functions are real analytic, (x(0), y(0)) = p, and 0 is the only point in 
some neighbourhood of 0 where the path runs through p (i.e., the path 
locally hits p just once). Then iff is a bounded rational function of two 
variables, f(x(t), y(t)) is a bounded meromorphic function of one real 
variable and it is easy to check this is actually analytic in the neighbour
hood of 0. Thus we may define the extremal state tPt P depending on p 
and the path P through p, 

tp,P(f) = Umf(x(t\y(t)). 

If F is a polynomial in two variables, whose zero set is a non-trivial curve 
containing /?, then each branch of its zero set has a locally analytic para-
metrization. If G, F are two distinct irreducible polynomials that define 
(real) curves containing /?, then the bounded rational function f(x, y) = 
(F2 — G2)/(F2 + G2) distinguishes the states corresponding to branches of 
F from those of G. However, it is not clear that two distinct analytically 
parametrized paths can be distinguished by bounded rational functions. 
Discussions with M.D. Choi revealed that there were extremal states of 
R(x, y)b not arising out of paths. 

After this article had been accepted for publication, there appeared a 
paper by Heinz-Warner Schulung {Über die Erzeugendenanzahl Invertier
barer Ideale in Prüferringen, Comm. in Algebra 7(13), 1331-1349) in 
which R(x, y)b is shown to be a Prüfer domain with a 3-generated ideal 
that is not 2-generated—destroying a long-held conjecture. 

Note that in the case that more than one transcendence degree occurs 
in the affine field E, the bounded subring Eb is not necessarily Noetherian, 
so that even though R(x, y)b lies between a Noetherian finitely generated 
domain and its field of fractions, it is not Noetherian. 

LEMMA 2.14A. Let E be a formally real field, that is an algebra over the 
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real numbers, and let X denote the extremal state space of Eb. If Eb is 
Noetherian, then for each r in R, for each e in Eb, the set Vne = {x e X \ 
e{x) — r) must be finite. 

PROOF. If Eb were Noetherian, it would be a Dedekind domain, hence 
every element of Eb would be contained in only finitely many maximal 
ideals. However, because Eb is a real algebra, ker x is a maximal ideal for 
every point x of X, and Kr> e is just the set of maximal ideals containing 
the element r — e of En, so must be finite. 

It appears likely that if E is a formally real affine (finitely generated, as 
a field) field over the reals, and Eb is Noetherian, then E is finite-dimension
al over a purely transcendental extension in one variable over the reals, 
i.e., there exists X in E such that [E: R(X)] is finite. 

EXAMPLE 2.15. This example will show a formally real field E such that 
J(Eb) # (0), but J*(E) = (0) (cf. 1.7); in fact Eb is local, and E has an 
Archimedean ordering. 

Let K denote the real closure of the rationals, and let G be the rational 
function field in one variable over K, G = K(x). Let a: G -» R be the 
homomorphism assigning x to a fixed transcendental, say e. Let b: G -• 
K((x)) be the inclusion, assigning x to x. View G as a subring of the direct 
product, R x K((x)), via the map c = (a, b). Let E be a maximal subfield 
of R x K((x)), containing the image of c, with respect to being algebraic 
over c(G)—this requires a simple Zorn's Lemma argument. If an element 
t of E is a square in both R and K((x)) (E obviously embeds in both fields), 
then t must be a square in E: write t = (r, s); if z2 = r, y2 = s, for z in R 
and y in K((x)), set v = (z, y). If t is not a square in E, then £[v] is a field 
and a quadratic extension contradicting the maximality of E. Since there 
is an obvious embedding of E in the reals, E has an Archimedean ordering, 
so in particular, J*(E) = (0). 

Next, 9 — a(x)2 and 9 — è(x)2 are squares in their respective fields, so 
c(x) lies in Eb. We will show that every ideal of Eb is generated by c(xn) 
for some n. Pick v in Eb — {0} ; then, if P2 is the projection onto K((x)) 
restricted to E, p2(v) is bounded, so lies in K[[x]], as we have seen in the 
computation just prior to 2.14. So we may write p2(v) = xmu, u a unit in 
K[[x]]. Set w = vx~m in E (we will drop the c ( - ) ) . If px is the restricted 
projection to the reals, we see that there exists an integer M so that 
M — Pi(w2) and M — P\(w~2) are both squares in the reals. Now, if we 
write p2(w) = u0 + 2]W**S t n e n wo ^ 0, and p2(w~l) = UQ1 + J^u{xK So 
if TV is any integer greater than both u\ and w^2, then N — p2(w

2) and 
N — p2(w~2) are both squares. Hence, if P = Max (M, N), P — w2 and 
P — w~2 are both squares in E, whence both w and w~l lie in 2sé. Hence 
v = wxm and xw = vw_1, with all the terms in Eb, whence vEb = xmEb. 
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It easily follows that all ideals of Eb are of the form (xw), whence Eb is a 
local principal ideal domain, with maximal ideal (x). 

The process of forming the "intersection" of the two fields R and K((x)) 
as above, can be generalized, and used to localize (in a sense) at finite 
sets of total orderings. For instance, if {R J J=1 is a collection of inequiva-
lent real closures of a formally real field G, one can enlarge G to a field H9 

so that His algebraic over G, and the inclusions of G in Rt can be extended 
to H (so the total orderings are extended), and an element h is a square if 
and only if its image in every Rt- is a square (in other words, the n total 
orderings on H determine the natural ordering). I have not been able to 
establish that these are the only total orderings on H, but this seems 
plausible. 

EXAMPLE 2.16. This example will show a formally real field E and a 
quadratic extension E such that the Galois involution is positive definite, 
but the paradoxical properties Eb ^ EandFb = F hold. 

We first require a lemma describing when the Galois automorphism is 
positive definite. The proof is quite elementary, so we omit it. 

LEMMA 2.17. Let E be a formally real field, and d a non-square in E. 
(a) The Galois automorphism on F — E [\/d] is positive definite if and 

only ifd is not a sum of squares in E. 
(b) The field F = E[^d] is formally real if and only if —d is not a sum 

of squares in E. 

Let E be the formally real example of 2.15. Consider the element 
z — \jx2 — 1 of E. Then z is negative in the real embedding, and is a 
square in K((x)) (x2z = 1 — x2) ; in particular z is not a square in E, and 
we may from the quadratic extension F = E[y], where y2 = z. By 2.17, 
the Galois automorphism is positive definite. Since y* = —y, we have 

yy* + (l/x)*(l/x) = 1. 

Thus l/x lies in Fb. Since trivially, Eb is contained in Fb, we have E = 
Eb[\lx] E Fb, whence F = E(y] c Fb. so F = Fb. 

3. Division Rings. Let (D9 *) be a division ring with (positive definite) 
involution. We first show that only rarely can D be generated by its 
unitaries if it is an algebra over the reals, and we construct a division 
algebra that is not generated over its centre by its unitaries. This answers 
a question of Maurice Chacron, but Professor Cohn has constructed 
examples of characteristic 2 division algebras with * (necessarily not 
positive definite) in which 1 is the only unitary [4]. We next consider one 
of the order properties of Ds that holds if D is commutative, Riesz decom
position ; if Ds satisfies this in the noncommutative case, D is usually at 
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worst quaternionic over its centre. Finally, we enlarge a recent theorem of 
Holland [12, Theorem 2], on monotone sigma-complete division rings. 
Explicitly, we show that if Ds is monotone sigma-complete (in its natural 
ordering), then D is one of the reals, complexes, or real quaternions. 

The proof of the first result (Corollary 3.5) is so elementary in view of the 
results of § 1 that we go into a more general class of rings. 

A ring R with involutory anti-automorphism *, is ^-regular if it is von 
Neumann regular, and satisfies the condition that xx* = 0 implies x = 0 
(the latter is a much weakened form of positive definiteness) ; equivalently, 
for all r in R, there exists a projection p such that rR = pR. 

PROPOSITION 3.1. [18; Lemma 5, Theorem 1], Let (R, *) be a ring with 
{positive definite) involution. 

(a) Ifp is nonzero projection ofRb, then \\p\\ = 1. 
(b) IfRb is ^regular, then J*(R) = (0). 

Recall that an element d is normal if dd* = d*d. 

PROPOSITION 3.2. Let (R, *) be a ring with involution, and suppose Rb 

is ^-regular. 
(a) If Rb is a complex *-algebra, then for all d in Rb, the subset of the 

complexes, spec d, defined by 

spec d = {b e C| d — b is not invertible in Rb} 

is not empty. If additionally, d is normal, then spec d is finite, and there 
exists a finite orthogonal set of projections {p{} in Rb such that Y!xiPi — 1» 
and d — Tti°iPifor some complex numbers, b{. 

(b) IfRb is a real algebra, the same results apply for symmetric elements d. 

PROOF. By 3.1, || || is a norm, so Rb can be completed to a Banach 
algebra E (1.9). Any element of a regular ring is either invertible or a zero 
divisor, so spec d equals the usual spectrum, as computed as an element 
of E, denoted spec# d. 

(a). Here E is a complex Banach algebra, so spec# d is nonempty, estab
lishing the first statement. For the normal element d, define the *-sub-
algebra T of Rb to be the bicommutant (in Rb) of {d, d*} (Tis the collection 
of elements of Rb commuting with all those elements in Rb that commute 
with d and d*). By [11; Lemma 8.2], Tis *-regular, and Tis obviously 
commutative, and consists of normal elements. It is immediate that spec t 
= specr t for all t in T. We may write dT = (1 — p)Tïov some projection 
p of T. If a is a nonzero element of spec d, then T(d — a) = T(\ — q) 
for some nonzero projection q = q(a) of T (nonzero since d — a cannot 
be invertible in T, and Tis *-regular). Since a is not zero, pT f| qT = (0), 
so pq = qp = 0. Let d' denote the relative inverse of d (that is, the element 
d' such that d'dd' = d', dd'd = d, dd' = 1 - p; [13; Lemma 4]). Then 
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(d + p){d' + p) = 1, whence 0 does not lie in spec (d + p). But for 
nonzero a in spec d9 we see that a also lies in spec (d + /?), for (d + p)q = 
dq = aq, so d + p — a is a. zero-divisor. Thus 0 e Spec d — Spec(d + p) 
and spec d — {0} <= spec(d + /?), so as spectra are always compact, 0 
is never a limit point in spec d. Applying this to d — b for any b in spec d, 
we see that spec d contains no limit points, so must be finite (being com
pact). 

Let spec d = {al9 a2, . . . , f lw}, and q{ = q(at) be projections in T 
corresponding to the ah in the sense that T(d — at) = T(\ — qt), so 
dq{ = a{q{. As above, we see that {qt) is an orthogonal set, and d(^q{) = 
J^a^i. We thus need only show £#* = 1-

Set q = 2i<27- If d(\ — q) = 0, then 1 - q will be contained in which
ever (if any) of the qt that correspond to the element 0 of spec d, a con
tradiction unless q = 1. Suppose that t = d{\ - q) is not zero. Then t 
belongs to (1 - q)Rb{\ — q), but it is routine to check that this equals 
((1 — q)R(l — q))b; it follows that s p e c Q . ^ is nonempty. If rT ^ 
(1 — q)T, say tT = eT, e a projection, then 1 — q — e is a nonzero pro
jection, and d{\ — q — e) = 0, so 1 — q — e would be contained in one 
of the qi9 again a contradiction, since 1 — q — e is orthogonal to q. Thus 
tT = (1 — q)T, whence 0 is not in speca_q)Tt. Replacing t by t — b{\ — q) 
for any complex number b, we see that the same process shows b is not in 
sPecü-<?)r^ whence the latter is empty, a contradiction. Thus d{\ — q) = 0, 
so q = 1. 

(b). In a real C* algebra (as E is, by 1.9), symmetric elements have real 
spectra, so the methods of (a) can be applied. 

Thus result has some connections with well-known problems about 
algebraic algebras. If R is an algebraic *-algebra such that xx* = 0 
implies x = 0 (in 3.2, * was positive definite, R at least a real algebra), 
then R is *-regular : every symmetric element generates a finite dimensional 
algebra, the condition on the anti-automorphism guarantees that there 
are no nilpotent ideals, so the finite dimensional algebra is regular; if 
xx*yxx* = xx*9 then the condition on * yields x(x*y)x = x; whence R 
is regular. When * is positive definite, it is a matter of routine to check 
that R = Rb as well. We saw above that if R were *-regular, a complex 
•-algebra, and * is positive definite, then all normal elements (including 
all unitaries, symmetries, skew-symmetries) are algebraic. Does this imply 
all elements of the algebra are algebraic? There is also the question (well-
known in another formulation) of whether algebraic regular algebras are 
locally finite dimensional. A less commonly posed (but also interesting, 
because the structure of locally finite dimensional semisimple algebras 
over an algebraically closed field is reasonably well understood) question 
is whether regular locally finite dimensional algebras are locally semi-
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simple. It is easy to see that a locally finite dimensional *-algebra with 
xx* = 0 implying x = 0 is locally semisimple—the condition on * guaran
tees that any *-subalgebra has no nilpotent ideals. 

THEOREM 3.4. Let (D, *) be a real algebra with {positive definite) involu
tion, and suppose D = Db. IfD is Artinian, then D is finite dimensional over 
the reals. 

PROOF. AS XX* = 0 implies x = 0, the radical of D is zero, so D is 
semisimple. Also, we note that any central idempotent is a projection; we 
may thus assume D is simple. Let eD be a minimal right ideal; because 
D is regular, D is *-regular, so we may assume e is a projection. Set H = 
eDe, with the induced involution; His a division *-algebra over the reals. 
Pick h = A* in H; by 3.2(b), we may write /?asa real linear combination 
of orthogonal projections in H, whence h can only be a scalar. Hence the 
symmetric part of H is one dimensional, and it easily follows (e.g., [3]) 
that H is either R, C, or the real quaternions. As D = MnH (for some n), 
D is finite dimensional over the reals. 

COROLLARY 3.5. Let (D, *) be a real division *-algebra, with positive 
definite involution. If D is generated by its unitaries over the reals, then D 
is one of the reals, complexes or real quaternions. 

PROOF. All unitaries are bounded, so we have D = Db, and 3.4 applies. 

Maurice Chacron has asked if it is possible to construct a division ring 
with involution that is not generated over the centre by its unitaries. Tf 
the involution is positive definite, we need only take an example which 
is not finite dimensional over the reals, but has the reals or complexes as 
centre. For example, let F be either the reals or complexes equipped with 
conjugation, and form the Weyl algebra F[X, Y]/(XY - YX - 1). Let 
D be the division algebra of quotients of the Weyl algebra. Then it is well 
known that the centre of D is F. Define an involutory anti-automorphism 
on the Weyl algebra by defining X% — Y, Y% = X, and r# = f if r 
belongs to F—that this is well-defined is straightforward, and routine 
computations with the associated graded algebra show that # is positive 
definite. It follows that the extension of # to D is also positive definite. 
Thus (D, #) is an infinite dimensional division algebra with centre either 
R or C, so by 3.5, cannot be generated by its unitaries. 

In another vein, Professor Cohn has constructed characteristic 2 
division *-algebras (necessarily * is not positive definite) in which 1 is 
the only unitary. 

In the commutative case, we have seen that with practically any ordering 
invariant under inverses, the Riesz decomposition property holds. We 
will now show that this is an essentially commutative property; for 
example, if (D, *) is a division ring with positive definite involution, such 
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that Ds satisfies the decomposition property, and additionally D is al
gebraic over the rationals (this has the effect that D — Db), then D is 
either commutative or a quaternionic algebra over its centre, i.e., 4-
dimensional over its centre (2.7). 

We will require some results about real C* algebras that are well-known 
for complex ones, and can be proved by exactly the same techniques. 

(1) Any closed two-sided ideal is closed under the involution. (One 
constructs a positive approximate unit, as in the complex situation.) 

(2) Any quotient by a closed two-sided ideal is itself a (real) C* algebra, 
and the intersection of the primitive ideals is zero. 

(3) The spectrum of a symmetric element is a compact subset of R. 

THEOREM 3.6. Let (S, *) be a ring with positive definite involution, such 
that all terms of the form 1 + S****** are invertible. Then, if Ss satisfies 
the Riesz decomposition property, Sb/J*(S) is *-embeddable in a product of 
copies of the real quaternions; in particular, if J*(S) = (0), then S has no 
nilpotents and satisfies a polynomial identity of degree 2. 

PROOF. Let SB be as in 1.9 and 1.10. Then SB is the completion of 
Sb/J*(S), (SB)b = SB, and by 1.16, the state space of (SS

B, 1) is afflnely 
homeomorphic to that of (Ss

b, 1). By [8; 1.2.5] this state space is a Choquet 
simplex, and by 1.9, SB is a (real) Ç* algebra. 

Now, it is well-known in the theory of (complex) C* algebras that a C* 
algebra whose symmetric part has Riesz decomposition must be com
mutative; the following proof that SS

B is commutative also yields the real 
version of this folkloric result. 

Let c be an element of SS
B and let C*(c) denote the real C* algebra 

inside SS
B generated by 1 and c. Then it is clear that C*(c) is commutative 

and isometrically isomorphic to C(spec c, R) (for the latter result, use the 
2 x 2 matrix trick involved in the proof of 1.9 to show C*(c) ®R C is a 
complex C* algebra generated by c, so must be C(spec c, C) ; then observe 
that C*(c) can have only real images, since all elements of the form 1 + a2 

are invertible in SB and thus in C*(c)). We will show the induced subgroup 
ordering on C*(c) agrees with its own natural ordering. 

If, for d in C*(c), x{ in SB, d = ZI*^* , we must show d = a2 for some 
a in C*(c). Since C*(c) ^ C(X, R), there exist D, E in C*(c) such that 
DE = 0, D + E = d, D = a2 and E = -b2 with a, b in C*(c). Then 
ab = ba = 0. and 

Z>Q>*x**)6* = -(bb*y = - M 

(of course, b = b*); thus 2(**i)(**i)* + (bb*)* = 0; by positive de-
finiteness (1.9), bb* = 0, and so b = 0, whence d = a2. Thus C*(c)+ = 

(sBr n c*(c). 
By [7; Theorem 4.2], every state on (C*(c), 1) can be extended to a state 
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of (SSB, 1). The states of (C*(c), 1) determine its ordering (in the sense that 
x is positive if and only if its image at all states is positive), and it follows 
immediately that the states of (SS

B, 1) determine its ordering, in other words 
that SS

B is an Archimedean group. Being norm complete, by [1 ; II.1.8], SS
B 

is order-isomorphic to Aff(AT), where K = S(SB, 1) is the state space. 
We determined earlier that K is a Choquet simplex. Let M be a maximal 

right ideal of SB. Then M is closed (since || 1 - „v|| < 1 implies c is inver-
tible), and so Msa = M f) SS

B is closed. We will show Msa is a directed 
and convex subgroup of SS

B. 
Select c = c* in Msa. Then form C*(c) as previously, and identify C*(c) 

with C(X, R) via the Gelfand mapping ". Then / = Msa f| C*(c) is a 
proper closed ideal of C*(c), so there exists a compact subset V of X such 
that / = {fe C(X, R)\f/V= 0}. Since c lies in Msa, c\V = 0. Then 
d — \c\ is positive and d/V = 0. As d is positive, we may find e in C*(c) 
so that e = xx* (some x in C*(c)) and ê = d; in particular, e belongs to 
Msa9 and as both d — c and d are positive in C(X), so are e — c and e 
in C*(c), and both lie in Msa. As c = e — (e — c), MSß is directed. 

Now suppose for some a in SB and Z> in M5Û that 0 ^ a ^ b. Since « 
is positive, we may find via the Gelfand mapping on C*(a) an element 
x = x in (SS

B)+ with a = x2. It suffices now to show x belongs to Msa 

(for then a would also belong and hence Msa would be convex). 
If x £ Msa, there would exist r in SB and m in M so that xr = 1 — m. 

If ||r|| < AT, with AT > 1, then 

Al*2 = kxx* ^ (AT)*/*)*. 

From the identity, 

(1) (/ - u){t - w)* + (/ 4- w)(/ + w)* + 2(//* + ww*), 

we deduce (t = Ì — m, u = m), 

Ì/2K ^ (*r)(xr)*/AT + mm*/K ^ xx* 4- wra* ^ Z? -f mm*. 

Thus Z? 4- mm* is invertible, a contradiction since b, m belong to M. 
Hence Msa is convex. 

On the other hand, if / is a proper convex directed subgroup of SS
B, then 

the subset of SB, J = {r e SB\ rr* el} is a right ideal. For a, b in / , 
aa* 4- bb* belongs to /, and from the identity (1), we have (a 4- b)(a 4- b)* 
^ 2{aa* 4- Z?ò*), so convexity of / assures / is closed under addition. If 
a lies in / and r in SB, then rr* ^ « for some integer n, whence (ar)(ar*) = 
a(rr*)a* ^ naa*; thus ar belongs to / . 

Hence if / is a convex directed subgroup of SS
B containing Msa, then the 

right ideal {r e SB\ rr* G /} would strictly contain M. In particular, Msa is 
a maximal directed convex subgroup of SS

B ^ Aff(K). 
Now K is a simplex so by [1; II.5.19], if/ is any extremal state of S£, 
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ker / must be a directed convex subgroup. Now the quotient group 
(SS

B/Msa, Î) has an order unit, so possesses a state, and by the Krein 
Milman Theorem, has an extremal state / ; this induces an extremal state 

fon B% such that Msa E ker/; by maximality, Msa = ker/. 
Since M is a right ideal, if a belongs to Msa, so does a2. From 

/([* -Ab)]2) = 0 for all b in SS
B, we deduce that/(Z>2) = (f(b))2. Applying 

this to b = c + d (c, d in SB), we obtain that f(cd + dc) = 2f(c)f(d); in 
other words, / is a Jordan algebra homomorphism from SS

B to the reals. 
Since the intersection of the maximal right ideals of SB is zero, we obtain 
an embedding of Jordan algebras 

(SJ, 1) - (C(ßX, R), 1), 

where X is the set of extremal states of SB endowed with the discrete 
topology, and the Jordan operation on the right is just the usual multi
plication. Hence the Jordan product a o b = ab + ba on SS

B is associa
tive. It follows immediately that for all a, b, c in SS

B, (ab — bd)c = 
c(ab — ba). 

Let B be the Banach algebra generated by SB, within SB. It is easy to 
check that B is a Banach *-algebra, and in fact is a (real) C* algebra, since 
all terms of the form (1 + SdWO" 1 belong to B. Then for any a, b 
in SB, ab — ba belongs to the centre of B, denoted Z(B). If ab — ba is 
nonzero for some such a, b, since Z(B) is itself a (real) C* algebra, there 
exists a maximal ideal TV of Z(B) with ab — ba not in TV. 

Now NB is a proper two-sided ideal of B (if 1 = 2J W A> then 

is greater than a positive rational, and 

2(/ïf-My* + W/7,*) g ZX«;* • /I 

for a sufficiently large integer X; hence 2X7*,-* would be invertible, hence 
would be invertible in Z(B), a contradiction). Let T be a primitive ideal 
containing NB. Then r is a closed proper two-sided *-ideal of B, with 
r fi Z(B) = TV (by the maximality of the latter). In the Banach algebra 
B/T, ab — ba belongs to the image of the centre, but this is a field, so is 
either the reals or the complexes. Hence ab — ba is a nonzero scalar. 
As is well-known (compare the spectra of ab and ba), this is impossible. 
Hence all the elements of SS

B commute with each other. 
Let P be a primitive *-ideal of SB; by the comments just preceding this 

theorem, the intersection of all such P is zero. Since every symmetric in 
C = BB/P is the image of a symmetric, all of the symmetric elements in 
C commute as well. If r2 = 0 and r lies in C, then from (t + r*)rr* = 
rr*(r + r*), we deduce (rr*)2 = 0, and so r = 0. Hence C is a prime ring 



RINGS WITH INVOLUTION 371 

with no nilpotents; a one-line computation shows C can have no divisors 
of zero. Thus if c is a symmetric element of C, spec c can consist only of 
one point, that is O = R. It easily follows that C is a division ring, so 
being a Banach algebra must be one of R, C, or the real quaternions. 

Thus BB and hence Sb/J*(S) must be embeddable in a product of copies 
of the quaternions. If J*(S) is zero, then Sb is embeddable in such a 
product, so satisfies the standard polynomial identity of degree 2. As 
Sb is an order in S, so does S. 

When J*(S) is not zero, a little more information can be deduced. 
Pick an element u in Ss

b and let T be the convex subgroup of SS
B generated 

by u. Then the unitless ring U generated by T can be dealt with as Sb 

has been (if for example, S is a division ring), and we deduce U/J*(U) 
satisfies a polynomial identity. I was not able to prove that this forced 
the division ring to be quaternionic over its centre. 

COROLLARY 3.7. Let (Z>, *) be a division ring with positive definite in
volution, such that D5 satisfies Riesz decomposition. Suppose either of the 
following two conditions hold: 

(a) J*(D) = (0), or 
(b) D is algebraic over the rationalst 

then D is a quaternionic division algebra over its centre, or D is commutative. 

PROOF. Any commutative algebraic extension of the rationals is totally 
Archimedean, and it easily follows that (b) implies D = Db, so that in 
particular, (b) implies (a). When (a) holds, by 3.6, Db satisfies a polynomial 
of degree 2; by 1.2, so does D, and it is well-known that for division rings, 
this implies D is 4-dimensional over its centre (hence D is quaternionic), 
or else D is commutative. 

Before establishing the results concerning monotone ^-complete divi
sion rings, we require a clarification of the notion of Archimedean order-
ings. If G is a partially ordered group, it is said to be Archimedean if 
nz ^ y for all positive integers n implies z ^ 0. This is distinct from the 
weaker notion of Archimedean that is sometimes, confusingly, used, 
namely z ^ 0, and nz ^ y for all positive integers n implies z = 0, 
although when the ordering is total, or more generally is a lattice, the two 
notions agree. In [15], the latter property is referred to as weakly Archi
medean. In case G possesses an order unit, then being Archimedean is 
equivalent to the states determining the ordering, that is 

( + ) f(d) }^f(b) for all states / implies a ^ b. 

In the course of the proof of 3.6, we showed that ( + ) holds for the sym
metric part of a (real) C* algebra. However, ( + ) need not hold for its 
dense subalgebra Sb/J*(S), as Example 2.9 demonstrates. 
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A directed partially ordered abelian group G is monotone a-complete 
if every countable increasing chain xx ^ x2 ^ x3 g . . . that is bounded 
above, has a least upper bound (this will be denoted sup xt). In [12; 3 
Corollary], Holland shows that if (D, *) is a division ring with involution 
such that Ds possesses a total ordering whose positive cone contains all 
elements of the form dd*, and is invariant under the operation v -> xvx*, 
and Ds is monotone sigma complete, then D must be one of the three 
finite dimensional real algebras. We will show that if (D, *) is merely 
Artinian and Ds is monotone cr-complete in the natural ordering (or in 
many other possible orderings), then D is finite-dimensional over the 
reals. The methods of proof are again suggested by C* techniques. The 
presence of the hypothesis that Ds admits a total ordering in Holland's 
result seems to be not very natural, especially if the result is to be applied 
to the problem of Baer * rings of type 1^ (as was the motivation in [12]). 

When (G, u) is a monotone ^-complete group with order unit, it is 
straightforward to check that G has the weaker form of Archimedeanness 
referred to as weakly Archimedean, but does not generally possess the 
full Archimedean property. Fortunately, when G is a rational vector 
space and G+ is invariant under multiplication by \\n (n in N), the group 
is Archimedean; this is due to D. Bruncker, as is the proof below. 

PROPOSITION 3.8. (D. Bruncker). A directed partially ordered rational 
vector space that is monotone a-complete, is Archimedean. 

PROOF. Suppose na = b for all positive integers n. As G is directed, we 
may assume b is positive, and we have a — b/n for all positive n. Then 
c — lnf(b/n) exists (define it as b ^ sup (b — (b/n)), and is of course posi
tive or zero. Since c ^ b/2n for all n, 2c ^ b/n for all n, so 2c ^ c, whence 
c ^ 0. Since c ^ 0, we have c = 0. But a ^ b/n, so a g c = 0, whence 
G is Archimedean. 

The following is an elementary adaptation of the proof on page 119 
of [15]; the difference is due to the fact that 2i£=» \/k2 is never rational, 
whereas 2]£Lwl/2* always is. 

PROPOSITION 3.9. Let (G, u) be a monotone a-complete rational vector 
space with order unit. Then with respect to the norm \\a\\i = sup{|/(ö)| \f 
a state of(G, u)}, G is complete. 

PROOF. Because G is Archimedean, \\a\\i = 0 implies a = 0, and it easily 
follows from the pointwise ordering induced by the states that || Hi is a 
rational vector space norm. Let us identify the elements of (G, u) with 
functions on the state space; then u is identified with the constant function 
1. Let {xn} be a Cauchy sequence of elements of G; we may suppose 
||x J g 1 for all n, x0 = 0, and 
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ll*„ - *„+illi ^ 2-» 

for all n. This translates to 

(2~n represents the constant function with value 2~n). Hence 

0 ^ 2 - » + (xn+l -xH)£2. 2-", 

so 2i=o(2~w + xn+i — xn) ^ 4, for all inetgers /. There thus exists an 
element y in G such that 

y = sup{£(2-* + xn+l - * , ) } ; 

that is, set yt to be the /-th sum, observe that yx g j>2 = ^3 = • * • = 4 , 
and y — sup j , . Now 

0 ^ y - y ^ sup{ t (2"* + (XJH-1 - **))} ^ £ 2 - 2 - ^ 2-«-2). 

Thus at any state,/, \(y — >',)/| ^ 2~ ( / - 2 ) , so {>>,} converges to y. 
Set x = y — 2. Then 

||* - *,|| = || y - 2 - x,\\ ^ \\y^ - 2 - x,\\ + 2-<'-3> 

= ||1 + 2-1 + 2-2 + • • • + 2-<'-i> - 2 + X; - jc/ll + 2"«-3) 

= 2 _ ( / - 1 ) + 2 - ( / _ 3 ) . 

Hence {xt} converges uniformly to the element x of G, and so G is com
plete. 

THEOREM 3.10. Let (D, *) be an Artinian ring with positive definite 
involution, and suppose that Ds is monotone a-complete in the natural 
ordering. Then D is a finite dimensional algebea over the reals. 

PROOF. AS Ss
b is a convex subgroup of Z>5, D

s
b is also monotone ^-com

plete. By 1.14, || || ! on Db agrees with the natural norm, so Ds
b is norm 

complete in that norm (though as yet we have no information on the 
completeness of Db itself). For c in Ds

b, form C*(c) as in the proof of 3.6, 
and observe that completeness within Ds

b is sufficient to establish that 
C*(c) is isometrically isomorphic with C(spec c, R). If spec c were infinite, 
we could find an infinite nonzero set of elements {r j indise C*(c) such 
that r/t- = rt-rj = 0 for / i=- j . This is impossible inside an Artinian ring, 
since the chain condition on annihilators is inherited. Hence spec c is 
finite. 

We may thus find a finite orthogonal set of projections adding to 1, 
{/?,}, and a corresponding set of real numbers, {/-,}, such that c = J^rtpt-. 
It easily follows that for all c = c* in Db, there exists b in Db with cbc = c. 
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From xx* = 0 implying x = 0, we deduce that Db is regular and hence 
is *-regular. As Db is an order in D, and nonzero divisors are invertible in 
regular rings, D = Db. Now 3.4 applies. 

Holland [12] established his monotone ^-complete result by showing 
that the presence of a single Archimedean total ordering on Ds implies 
D is embeddable in the real quaternions (assuming D is a division ring). 
The obvious question then occurs. If Ds is Archimedean in the natural 
ordering, is D algebraic over its centre? This appears unlikely; the obvious 
candidate for a counter-example is the Weyl algebra of this section. 

Observe that in the proof of 3.10, the use of the natural ordering was 
really not necessary; only some of its weaker properties are required. 

4. Baer * rings. In this section we consider, for two classes of rings, 
when the ring of n by n matrices is Baer * (with respect to # = •-trans
pose). The first class includes semiprime PI Goldie rings (Theorem 4.5), 
and the second consists of the integral closure in a quadratic extension 
field of a Prüfer domain (Theorem 4.6)—of course the latter class is 
contained in the first, but the criteria are stated in terms of the quadratic 
extension. We then investigate the unitary equivalence of equidimensional 
subspaces of suitable inner product spaces over a field; this is equivalent 
to the matrix ring satisfying the LP ~ RP property of Baer * rings. 

We drop our convention that involutions be positive definite, through
out this section. 

A ring R with involution * is said to be matricially Baer * (with respect 
to *) if for all n, MnR is Baer *, with respect to # = *-transpose. 

It has been asked, albeit by the author, [9; p. 247], what conditions are 
required of an Ore domain with involution that it be matricially Baer *. 
It was suggested in [9] that the techniques there should apply to domains 
satisfying a polynomial identity. Unfortunately, localization was very 
heavily relied upon, and this does not seem to work for PI rings. Instead, 
using very different ideas, we prove the PI result, and in so doing provide 
quick proofs of some other results of [9]. We are conforming, however, 
to the spirit of the bounded subring. 

LEMMA 4.1. Let D be any ring with involution *. Suppose that for all x in 
D, 1 + xx* is invertible in D. Then for all maximal two-sided ideals P of 
D,P # />*. 

PROOF. If P # P*, the map D/(P f| P*) -> D/P x D/P* is an isomor
phism. There thus exists a in D so that a — 1 belongs to P9 but a + 1 lies 
in P*. Then 1 + aa* — a(a* -f 1) — (a — 1) belongs to P, a contra
diction. 

LEMMA 4.2. Let A be any ring with positive definite involution, and let 
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Q be its maximal right quotient ring. Suppose the involution extends to Q. 
Then the involution is positive definite in Q, Q is matricially Baer *, and 
A is matricially Baer * if and only if Qb is contained in A. 

PROOF. Implicit in [11; §7, 8], [10, 3.4(c)], and Lemma 1.4. 

PROPOSITION 4.3. Let Rhea semiprime Goldie ring whose primitive images 
are von Neumann regular, and suppose R possesses an involution * so that 

(a) P = P* for all primitive ideals, 
(b) the involution induced on RjP is positive definite, for all primitive 

ideals P, and 
(c) R is semihereditary. 

Then MnR is Baer * with respect to ^-transpose for all n. 

PROOF. Since MnR is an order in a semisimple ring, the right annihilator 
of any subset is the annihilator of a one-element set in MnR; as R is 
semihereditary, the annihilator is of the form EMnR for some E = E2 

in MnR. By [14; Theorem 26], it suffices to show 1 4- XX# is invertible 
i n M ^ f o r a l l ^ i n M ^ . 

Let MnP be a primitive ideal of MnR (the primitive ideals of MnR are 
precisely those of the form MnP, P a primitive ideal of R). Since the in
duced involution is positive definite, the induced involution on Mn(R/P) = 
(MnR)/(MnP) is also positive definite, so 1 + XX§ is not a divisor of 
zero modulo MnP. Since Mn(RjP) is regular, 1 + XX% is invertible 
modulo MnP. Any element of any ring that is invertible modulo every 
primitive ideal is invertible (a standard Zorn's Lemma argument), so 
1 + XX% is invertible. 

PROPOSITION 4.4. Let R be a semiprime Goldie ring with involution *, 
such that RjP is regular for all maximal ideals, and suppose MnR is Baer * 
with respect to ^-transpose, for all n. Then. 

(a) P = P*for all maximal (two-sided) ideals P of R, 
(b) for all maximal ideals P, the induced involution of RjP is positive 

definite, and 
(c) R is semihereditary. 

PROOF. Let Q denote the (semisimple Artinian) complete ring of frac
tions. Then * extends to Q, and by 4.2, the MnQ are also Baer *; again 
by 4.2, Qb is contained in R. Thus for x in R, 1 + xx* is invertible in R, 
and (a) follows from 4.1. 

Next, the regular ring RjP is *-regular, by [14; Theorem 26], so xx* 
belongs to P implies x belongs to P. But all the hypotheses apply to 
Mn(R/P), so XX% belongs to MnP implies X belongs to MnP. It follows 
immediately that 2*,-*»* e P implies all the x{ belong to P, so (b) holds. 

Finally, all the matrix rings over R are p. p. rings, so R is semihereditary. 
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THEOREM 4.5. Let R be a semiprime PI Goldie ring with involution *. 
Then MnR is Baer * with respect to ^-transpose for all n, if and only if 

(a) P = P* for all primitive ideals of R, 
(b) the induced involution on R/P is positive definite for all primitive 

ideals P, and 
(c) R is semiher editar y. 

PROOF. Observe that in a PI ring, all primitive ideals are maximal, and 
the residue rings are semisimple Artinian, hence regular. Now 4.3, 4.4 
apply. 

Now if A is a commutative domain, necessary and sufficient conditions 
were determined in [9; Theorem 2.3] so that A be matricially Baer * (they 
also follow from 4.5). In the case that * is the identity, these reduce to 

(i) A is a Prüfer domain, and 
(ii) all residue fields of A are formally real. 
Let E be the quotient field of a domain A satisfying (i) and (ii) ; then E 

is formally real. Let F be a quadratic extension field of E, so F = E[^/d], 
and suppose the Galois automorphism is positive definite on F (2.17). 
Set B to be the integral closure of A in F. We propose to determine when 
B is matricially Baer *; this is the first question on p. 246 of [9]. Equiva
lent^, knowing Eb a A, we determine when Fb cz B. 

It is possible that B not be matricially Baer * ; for instance, if Eb ^ E, 
but Fb = F (as in Example 2.16), set A = Eb; then B is not a field, so 
cannot contain Fb. Aside from this peculiarity, a necessary (but not suf
ficient) condition is that all the primes in A must not split. 

Let us define an equivalence relation on the elements of A — {0} ; [a] 
= [a'] if a/a' is a square in E, in other words, E(^/a) = E[^/a']. If of is 
an element of E, we may always find a in A so that E[^d] = E[^/a]\ 
we will always assume the element d of E that defines F is an element 
of^. 

LEMMA 4.6. Let L be a finite dimensional field extension of K, and let 
D, E be unital orders in K, L respectively, with D contained in E, and E 
integral over D. Suppose M is a maximal ideal of D, and the localization of 
D at M is a valuation domain. Then the dimension ofE/ME as a D/M vector 
space is less than or equal to [L: K]. 

PROOF. Localize at M, to obtain DM and EM = (D - M)~lE. Clearly, 
DM/MDM = D/M and EM/MEM = E/ME, so we may assume D = DM, 
so D is a valuation domain. 

Let {*,. + M}?=1 be part of a basis for E/ME over D/M. If n > [L: M], 
there exists a subset {aj?=1 of K, not all zero with J^x& = 0. We may 
obviously assume {a{} c D. Since D is a valuation domain, the ideals 
{a{D} are totally ordered. Hence after relabelling, there exists a subset 



RINGS WITH INVOLUTION 377 

{zt) c Dwithfl, = z{ai. We thus obtain xx 4- 2 ? % = 0, a contradiction 
to the linear independence of {x{ + M}. 

THEOREM 4.7. L^/ A be a matricially Baer * domain with respect to the 
identity, and let E be its quotient field. For an element d in A that is not a 
square in E, set F = E[*Jd\, and set B to be the integral closure of A in F. 
Then B, equipped with the Galois automorphism, is matricially Baer * if and 
only if 

(I) for every maximal ideal M of A, [d] contains no nontrivial sums of 
squares modulo M. 

PROOF. Suppose B is matricially Baer *, and (I) is violated. Localize 
at the maximal ideal M, so as to create the valuation domain, T = S~$A. 
Let U be the integral closure of T in F, and observe that S^B is contained 
in U. By, for example, [9; Proposition 1.1], U is also matricially Baer *. 
Now (M) is the maximal ideal of T; let TV be a maximal ideal of U. Then 
by 4.6, [U/N:T/(M)] = 1 or 2. 

If [d] contains a nontrivial sum of squares modulo M, we may find d" 
in [d], and fa} in D, but not all in M so that d" — J^e2 = m G M. Since 
d" $ M and ^/d" generates F, the image x of d" generates U/N over T/(M) 
and the extension is quadratic. Setting Et = e{ + TV in U/N, and observing 
that xx* = -d" + M, we have xx* + !]£,•£> = 0. By [9; 2.3(e)], x = 0, 
a contradiction. 

Now suppose (I) holds. We first show that if TV is a maximal ideal of B, 
then TV = N*. Set M = N fl A; M is clearly prime, and the field B/N is 
algebraic over the domain A/M, so M is maximal, and by 4.6, [i?/TV: 
y /̂Af] = 2 or 1. If [B/N: A/M] = 2, then assuming TV # TV*, we see that 
M e TV fi N* and 2?/(TV fl ^*) = ^/^V x -#/TV*, hence is of dimension at 
least 4 over D/M, a contradiction. 

If on the other hand [B/TV: ^4/M] = 1, but TV ^ TV*, then by 4.6, we must 
have MB = TV fl #*, and [£/(TV fl W*): >4/M] = 2. We may thus find x 
in 5/(TV fl N*) so that 5/TV fl N* = ^/Af[x]; let X be a preimage in J5. 
Write X = ö 4- b^/~d, a, b in F. Then A2 - #W = JO* e TV H N* (°| 4̂ = 
M. Set d' = b2d. Since 2fl = trace(X) is integral, we have 2A belongs to 
A, and since 2 ^ 1 in the natural ordering, 1/2 G Eb a A, and so a belongs 
to A, and so d' belongs to A, and thus to [d]. But d' — a2 G M, contradict
ing a weak form of (I). (We use the full strength of (I) to show the in
duced involution is positive definite). Thus TV = TV* in all cases. 

If B/N = A/M, the quotient fields are formally real, the induced in
volution is the identity and is thus positive definite. If [B/N: A/M] = 2, 
find XinB such that its image in B/N, x, is not 0 but squares to an element 
of A/M, and thus generates B/N over A/M. Writing X = a + b ^/d, as 
above, we see that a is integral over A and belongs to F, so a lies in A. 
Then z — x — {a + N) also generates Z?/TV over A/M, and satisfies a 
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quadratic equation, z2 = b2d + M. The induced involution on B/N sends 
z to — z, and by 2.17(a), this involution is positive definite if and only if 
z2 is not a sum of squares in A/M, and this easily translates to condition 
(I) on A. Hence the induced involution on B/N is positive definite in all 
cases. Since the integral closure of a Prüfer domain in an algebraic exten
sion is always Prüfer, we have verified conditions (i, ii iii) of 2.10(A), and 
so Fb cz B, and 4.2 applies to yield that B is matricially Baer *. 

Observe that as a not obvious consequence, (I) implies d is not a sum of 
squares in E. If one considers the identity involution on i7, instead of the 
Galois involution, the criterion (I) must be changed appropriately. 

In case A is a principal ideal domain, or more generally, if d can be 
chosen as a square-free product of principal primes or a unit, then the 
criterion of 4.7 can be simplified. In this case, one can show that B = 
A[^/d]; if d is a unit, B is matricially Baer * if and only if d is not a sum of 
squares modulo every maximal ideal; if (d) is a product of precisely the 
primes Px, P2, . . . , Pk9 (taken once each), then B is matricially Baer * if 
and only if d is not a sum of squares modulo all other maximal ideals. In 
particular, if A is local and principal, and dis a generator of the maximal 
ideal, there is no condition whatever on d. 

It is clear from the proof that none of the primes of A will split if and 
only if [d] contains no nontrivial squares modulo any maximal ideal: 
however, this condition is not sufficient for B to be matricially Baer * (a 
subring of Q(x)b can be constructed for this purpose). 

If R is a Rickart *-ring (see §1), for all r in R, there are projections 
1 — p and 1 — q so that the right annihilator or r is (1 — p)R, and the left 
annihilator of r is R(\ — q). Then rp = r, qr — r, and these are the 
minimal projections with these properties. We refer to p as the right 
projection of r, RP(r) = p, and q is the left projection of r, LP(r) = q. 
There is a notion of *-equivalence between projections: p is *-equivalent 
to q(ptq) if there exists u in R such that uu* = p, u*u = q. The usual 
notion of equivalence between idempotents, pR ^ qR, is denoted p ~ q. 
If for all r in R, LP(r) * RP(r), then R satisfies LP ~ RP [2]. 

Let (F, *) be a field with a positive definite involution. Let V be an 
«-dimensional vector space with basis {e{} and inner product generated 
sesquilinearly by the relation 

The question, whether equidimensional subspaces are unitarily equivalent, 
referred to in the introduction, is precisely the same as whether for all 
projections p, q in (MnF, #), p ~ q implies there exists a unitary u such 
that upu* = q. This latter condition is equivalent to both p î q and 1 — p 
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* 1 — q together; however, since in MnF,p ~ q implies 1 - p ~ 1 — q, 
and rR = (LP(r))R, the question reduces to, does MnF satisfy LP ~ RP! 

A formally real field is Pythagorean if every sum of squares is a square. 
If (F, *) is a field with positive definite involution, then it is ^-Pythagorean 
if for every finite subset {r{} of F, there exists s so that ss* = S/W*. 

PROPOSITION 4.8. [10; Theorem 4.5]. Let (F, *) be a division ring with a 
positive definite involution. Then, if MnF satisfies LP ~ RP {with respect to 
# = ^-transpose), for some n greater than 1, all matrix rings over F also 
satisfy LP ~ RP. 

THEOREM 4.9. Let F be afield with a positive definite involution *. Then 
{MnF, #) satisfies LP ~ RP for some {and hence every) n greater than 1 
if and only if Fis ^-Pythagorean. 

PROOF. Suppose Fis *-Pythagorean. With n = 2, a rank one projection 
P must have the form 

where a = a* and a{\ — a) = bb*; thus a = bb* + a2 = è&* -f Û#*. 
By hypothesis, there exists c so that cc* = a; set J = (c*)_16, and define 
the matrix, 

x-\c d] Lo oj 
Then X%X = P, and since d*c = b*c*~lc~lb = b*a~lb = 1 — a, we 
obtain that 

Since *-equivalence is transitive, all rank 1 projections are *-equivalent to 
each other, so M2F satisfies LP ~ RP, hence by 4.8, all matrix rings over 
F do. Conversely, if LP ~ RP holds in MnF, then [16; Lemma 1] applies, 
to yield the result. 

In the above proof, the only property of fields (as opposed to division 
rings) used, is that aa* = a*a for all a. All quaternionic division rings 
with the natural involution have this property, so we obtain the following 
corollary from the proof. 

COROLLARY 4.10. If {D, *) is a quaternionic division algebra with the 
natural involution, and this is positive definite, then all matrix rings over D 
satisfy LP ~ RP if and only if M2D does, and this occurs if and only if D 
is ^-Pythagorean. 

P = 
a b 
b* 1 
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These results lead to some apparently paradoxical examples. For exam
ple, if E is the rationals, or any finite dimensional field extension thereof, 
E cannot be »-Pythagorean for any involution; yet if D is the rational 
quaternions (of type — 1, — 1), so is only 4-dimensional over the rationals, 
D is »-Pythagorean since all sums of rational squares are sums of four 
squares, hence M2D satisfies LP ~ RP. On the other hand M2(D ® D) — 
M8Q does not. 

Somewhat more startling is that (F, *) can be * -Pythagorean, while E, 
the fixed subfield, is not Pythagorean. Choose for E any formally real 
field in which every sum of squares is a sum of two squares, but not every 
sum of squares is a square (for example, E = R(x)), and set F = E[i]. The 
norms of elements of F are the sums of two squares of E. 

THEOREM 4.11. Let (A, *) be a matricially Baer * commutative domain, 
with quotient field (F, *). Then MnA satisfies LP ~ RP if and only if MnF 
does, and this is equivalent to all sums of norms in A being norms in A. When 
this occurs, every finitely generated ideal of A is principal. 

PROOF. By [9; Theorem 2.3, final statement], all »-equivalences imple
mented in MnF can be implemented in MnA, and all projections of MnF 
lie in MnA. The first if and only if thus follows. 

Suppose Fis (*-) Pythagorean. Set s = 2]x,xf*, with xt- in A. By hypo
thesis, there exists t in F with tt* = s. It suffices to show that t belongs to 
A. If t did not so belong, by [9; Proposition 2.1(c)], there would exist a 
maximal ideal M of A, and an element d in M such that dt belongs to D 
but not to M. As M = M», neither does t*d* belong, so the product, 
dsd* = (dt)(dt)* cannot lie in M either; but this contradicts d belonging to 
M a n d a t o A. 

Conversely, if A is (*-) Pythagorean, it is very easy to check that F is 
as well. 

Finally, because A is a Prüfer domain, to show every finitely generated 
ideal is principal, we need only show that 2-generated projectives are free. 
Let P be a two-generated nonzero module, that is not free on two genera
tors. There exists a projection p in M2A such that P ^ p(A © A); neces
sarily rank p = 1. Since p is equivalent to [J §] within M2F, they are He-
equivalent, and since »-equivalences of M2F may be implemented within 
the bounded subring, p is »-equivalent to [J§] within M2A. Hence 

1 01 

0 0 
P S p(A ® A) s 

so P is free. 

(A ®A) = A, 
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