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ARITHMETIC PROPERTIES OF THE 
MÉNAGE POLYNOMIALS 

HARLAN STEVENS 

1. Introduction. The ménage polynomials Un(t) are defined for n > 1 by 

Un= Un(t) = ±untkt\ 

where u„t k is the number of ways of seating n married couples at a circular 
table, men and women alternating, so that exactly k husbands sit next 
to their own wives. The numbers unt k are to be thought of as 'reduced' 
in that the positions of the women are taken as fixed. A comprehensive 
account of the problème des ménage is given by Riordan and Kaplansky 
in [3]. 

Riordan [4] has shown that the ménage polynomials possess a rather 
simple periodic property. He proved, namely, that when C/0 = 2, 
Ux = It - 1 

(1.1) y ^ = (,**_ l)£/w(mod/7) 

for all n ^ 0 and odd primes p. In this note we will show that the Un 

actually satisfy a much wider class of congruences. It will be demonstrated 
in fact that if m = cpe

9 then 

(1.2) S ( - mO(t - l)»<'-*> Un+sm = 0 (mod / ^ D H - ' I ) 
5=0 

for n ^ 0 and where rx = [r/2] is the greatest integer ^ r/2. This last 
notation for rx will be maintained throughout. The congruence (1.2) 
reduces to (1.1) when m = p2 and r — 1. 

In [1] Carlitz also considered congruences like (1.2). His results, how
ever, coincide with ours only for the cases e — 1 or r ^ 2, but are other
wise weaker. Moreover, the method of the present paper is very direct 
and avoids much of the computation of both [1] and [4]. 

It is of interest to note here that the congruences represented by (1.2) 
are quite reminiscent of those satisfied by Hermite and Laguerre poly
nomials [2]. In spite of these similarities and the fact that they all obey 
difference equations of the second order, it is curious that the proofs 
in each case are apparently unrelated. 
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2. Proof of (1.2) for m = p. All results will be considerably simplified 
by the introduction of operator notation. Accordingly, for a fixed positive 
integer m we define A by means of 

àg(n) = g(n + m) - (t - l)mg(n). 

The operator A is linear and possesses all of the standard algebraic pro
perties. A may also be expressed in terms of the usual shift operator E 
as A = Em — (t — l)m. In this notation our aim is to prove 

(2.1) ArUn = 0(mod/? r0. 

In order to prove (2.1) we employ the auxiliary polynomials Wn = 
Wn(t) defined by 

(2.2) Wn = £ (2»-/+1) (n - k)\(t - 1)*, 
£=0 

which are related to the Un by 

(2.3) U =nnWn^ + 2(t - I)» =Wn-(t- \)*Wn_2. 

The notation adopted here is that of [4], but the essential properties of 
the Wn{t) are given in [3]. 

We have from (2.3) 

(2.4) Wn = nWn^ + (t - 1)2Wn_2 + 2{t - 1)«. 

Indeed, in conjunction with (2.2), Wn can now be defined for negative n. 
By a straightforward induction it follows that 

(2.5) W_n= - ( / - l)-2«+2^_2. 

From (2.3) it is seen that (2.1) holds if 

(2.6) ArWn = 0(mod/?'i). 

To prove (2.6) we will use induction on r. For r = 1 there is nothing to 
prove. Thus its truth is to be assumed for the exponents 1, 2, . . . , r — 1. 

An easy calculation applied to (2.4) gives 

ArWn = nA'Wn_x + rpA^W^p^ + (t - \)*ArWn_2. 

Hence, according to hypothesis, 

ArWn = /iJ'WV-x 4- (/ - l)2J'tfV_2(mod/?'i), 

so that (2.6) is true if it is true for two consecutive values of n. We now 
show that it holds for n = — rxp and n = —rxp— 1. 

It is clear that only even values of r need be considered in (2.6). For 
« = - r ^ - 1 we have by (2.5) 
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s=0 

5=0 1 

= - s ( - r o c - i)<-»^_(ri+s)^1 

-Tjp-Ù 

s=0 

= - &W_r 

Thus 

(2.7) à'W-r^ = 0. 

Next, for n = — rjp, we get by (2.4) and (2.5) 

à'W_riP = ± ( - l).(;Xr - l)<-^^_(ri_s), 
s=0 

5=0 * 

= - £ ( - l)sO0 - l)*Wri-,),-(ri - ^ ^ - ^ 
s=0 

- 2(r - l )^ i -^} 

= - A'W__riP + r ^ J ' » ^ - r/?(f - l)PJr-ijy_riP. 

Hence, from (2.7) and the induction assumption, it follows that 

J ' W ^ s s - J ^ _ r i / m o d ^ i ) . 

Since p is an odd prime, (2.6) also holds for n = —rip, which completes 
the proof. 

A class of polynomials which, in contrast to the Wn(t), does have 
combinatorial significance is determined by the formula 

for n ^ 0. Here v„tk is the analog of untk for a non-circular table. It 
follows from (2.6) that the Vn also satisfy a congruence like (2.1). 

We summarize our results in the form of the following theorem. 

THEOREM 1. Let Pn denote Um Wn, or Vn. Then for every odd prime p 

(2.8) t (- mo« - i) (M)>/w s ° (mod z )̂ 
5=0 

/or all r ^ l üwd « è 0, w/*ere A*! = [r/2]. 
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3. Proof of (1.2) for arbitrary m. To extend Theorem 1 no specific 
properties of ménage polynomials are required. We may assume therefore 
that {Pn} is any sequence of polynomials satisfying (2.8), which can 
be rewritten as 

(3.1) (E* - {t - lyyPn = 0 (mod/?'i), 

where EPn = Pn+\. 
We remark first that by the binomial expansion of (xP — yP)P it follows 

that 

XP2 _ yP2 = (XP - yP)P + p(xP - yP)f(x, y) 

for some polynomial/(x, y) in x and y. More generally, it is not hard to 
prove by induction on e that 

(3.2) xPe - yr = sV(*> - y*)*"''1/,**, y), 

where again f{(x, y) is a polynomial in x and y. We will also need the 
r — th power of (3.2), a typical term of which is of the form pA(xP — yP)B 

M(x, y), where M(x, y) is again a polynomial, 

A = A(a\, a2, • • -, ae) = a2 + 2a3 + • • • + (e — \)ae 

B = B(ai, a2, • -, ae) = axp
e~l + a2/>'~2 + • • • + ae-iP + a, 

and an, 0:2, . . . , a* are non-negative integers satisfying 

(3.3) #1 + 0:2+ * * * + oce = r. 

If in (3.2) we now take x = E, y = / — 1 and apply Theorem 1, we get 
that 

(EP'-it- lY)rPH = 0 (mod p*), 

where z is the minimum value attained by the sum A + [B/2] over all 
«i, . . ., ae in (3.3). This minimum is given by cc\ = • • • = ar<,_i = 0, 
ae = r. To see this we treat even and odd values of r separately. Since B 
and r have the same parity, in the even case it is enough to show that 

L «,(/ - 1 + y/>«-') à r(e - 1) + r/2, 

which, because of (3.3), holds if 2/ + />*->' =: 2e + 1 for all 1 ^ j ^ e. 
This last inequality is easily verified. The same method applies to odd 
values of r. 

We have proven therefore that 

(EP6 - (/ - \yypn = 0 (mod ^Dr+T!) 
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for all n > 0 and r ;> 1. Since E? - (t - \ye divides Em - (t - l)m as 
a polynomial in Eif/?* divides m, the following generalization of Theorem 
1 can be stated. 

THEOREM 2. Let Pn = £/„, Wn or Vn. Then for every odd prime p 

(3.4) t ( - O'GX' - l)(r~s)m ^ + s m s 0 (mod p^r+ri) 

/ör all n ^ 0, r ^ 1, provided that pe divides m. 

By putting Pw = £/„(/) and f = 0 in (3.4) we obtain a similar congruence 
for the ménage numbers un = wWt0, namely 

L ( - m0 Un+2sm = 0 ( m o d p C - l M r l ) f 

where it is assumed that pe divides 2m. The analogous result is also true 
for the non-circular ménage numbers vn = vw> 0. 
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