CHOICE SETS AND MEASURABLE SETS

F. S. CATER

Call two real numbers equivalent if their difference is rational. Call $S \subset R$ a choice set if S is a set of representatives of the equivalence classes of R. J. A. Andrews [1] observed that the set $\{\lambda S: S \in \mathscr{F}\}$ is dense in the unit interval $[0,1]$ where λ denotes Lebesgue outer measure and \mathscr{F} denotes the family of all choice sets $\subset[0,1]$. In this note we prove that in fact $\{\lambda S: S \in \mathscr{F}\}=(0,1]$. More generally we prove the following theorem.

Theorem 1. There exists a set $E \subset R$ such that
(i) $\lambda(E \cap A)=\lambda(A)$ where A is any Lebesgue measurable set, and
(ii) $E \cap(r+E)=\varnothing$ where r is any nonzero rational number. Moreover, if I is any interval in R, and S is any extension of the set $E \cap I$ to a choice set $S \subset I$, then $\lambda S=\lambda I$.

Proof. Let Q be the field of rational numbers. Say that $x, y \in R \backslash Q$ are Q-equivalent if $y \in Q x+Q$. This divides $R \backslash Q$ into Q-equivalence classes. Let $W \subset(0,1)$ be a set of representatives of the Q-equivalence classes. Now $R \backslash Q \subset \bigcup_{a, b \in Q}(a W+b)$ and $\lambda(a W+b)=a \lambda W$. It follows that $0<\lambda W \leqq 1$.

We use the Vitali covering theorem to a.e. cover W with countably many pairwise disjoint closed intervals I_{j} with rational endpoints such that $\lambda I_{j}<2^{-1} \lambda W$ for each j and $\sum_{j} \lambda\left(I_{j}\right)<\left(1+2^{-1}\right) \lambda W$. For some index $j, \lambda\left(I_{j}\right)<\left(1+2^{-1}\right) \lambda\left(I_{j} \cap W\right)$. Let K_{1} be this I_{j}. Then

$$
\lambda\left(W \backslash K_{1}\right) \geqq \lambda W-\lambda K_{1} \geqq \lambda W-2^{-1} \lambda W>0 .
$$

We use the Vitali covering theorem to a.e. cover $W \backslash K_{1}$ with countably many pairwise disjoint closed intervals J_{j} with rational endpoints, and disjoint from K_{1}, such that $\lambda J_{j}<2^{-1}\left(\lambda\left(W \backslash K_{1}\right)\right)$ for each j and $\sum_{j} \lambda\left(J_{j}\right)<$ $\left(1+2^{-2}\right) \lambda\left(W \backslash K_{1}\right)$. For some index $j, \lambda\left(J_{j}\right)<\left(1+2^{-2}\right) \lambda\left(J_{j} \cap W\right)$. Let K_{2} be this interval J_{j}. Then

$$
\lambda\left(W \backslash K_{1} \backslash K_{2}\right) \geqq \lambda\left(W \backslash K_{1}\right)-\lambda K_{2}>2^{-1} \lambda\left(W \backslash K_{1}\right)>0 .
$$

We use the Vitali covering theorem to a.e. cover $W \backslash K_{1} \backslash K_{2}$ with countably many pairwise disjoin closed intervals L_{j} with rational endpoints, and disjoint from $K_{1} \cup K_{2}$, such that $\lambda L_{j}<2^{-1} \lambda\left(W \backslash K_{1} \backslash K_{2}\right)$ for each j and
$\sum_{j} \lambda L_{j}<\left(1+2^{-3}\right) \lambda\left(W \backslash K_{1} \backslash K_{2}\right)$. Then for some index $j, \quad \lambda L_{j}<$ $\left(1+2^{-3}\right) \lambda\left(L_{j} \cap W\right)$. Let K_{3} be this interval L_{j}. Also

$$
\lambda\left(W \backslash K_{1} \backslash K_{2} \backslash K_{3}\right) \geqq \lambda\left(W \backslash K_{1} \backslash K_{2}\right)-\lambda K_{3}>2^{-1} \lambda\left(W \backslash K_{1} \backslash K_{2}\right)>0 .
$$

We continue by induction on n to produce a sequence of pairwise disjoint closed intervals (K_{n}) with rational endpoints such that $\lambda K_{n}<\left(1+2^{-n}\right)$ $\lambda\left(K_{n} \cap W\right)$ for each n.

Now let $\left(I_{n}\right)$ be a sequence of closed intervals with rational endpoints such that if I is any closed interval with rational endpoints, $I=I_{n}$ for infinitely many indices n. Then for each n there is a unique increasing surjective linear function $f_{n}: K_{n} \rightarrow I_{n}$ of the form $f_{n}(x)=a_{n} x+b_{n}$ $\left(a_{n}, b_{n} \in Q, a_{n} \neq 0\right)$. Let $E=\bigcup_{n=1}^{\infty} f_{n}\left(K_{n} \cap W\right)$.

Suppose $f_{n}(x), f_{m}(y) \in E$ where $x \in K_{n} \cap W, y \in K_{m} \cap W$, and $f_{n}(x) \neq$ $f_{m}(y)$; then clearly $x \neq y$. If $n=m$, then $f_{n}(x)-f_{m}(y)=a_{n}(x-y) \notin Q$ since $x, y \in W$. If $n \neq m$, then $f_{n}(x)-f_{m}(y)=a_{n} x-a_{m} y+b_{n}-b_{m} \notin Q$ since $x, y \in W$. In either case, $f_{n}(x)-f_{m}(y) \notin Q$. Thus E satisfies (ii).

Now let I be any closed interval with rational endpoints. Say $I=I_{n}$. Then

$$
\lambda(E \cap I) / \lambda I \geqq \lambda f_{n}\left(K_{n} \cap W\right) / \lambda I_{n}=\lambda\left(K_{n} \cap W\right) / \lambda K_{n}>\left(1+2^{-n}\right)^{-1}
$$

Since $I=I_{n}$ for infinitely many indices n, we have $\lambda(E \cap I)=\lambda I$. It follows that if J is any open interval, $\lambda(E \cap J)=\lambda J$. (Just express J as the union of an expanding sequence of closed intervals with rational endpoints.) So if U is any open set, $\lambda(E \cap U)=\lambda U$.

Finally, let $A \subset R$ be any Lebesgue measurable set with $\lambda A<\infty$. There is an open set $U \supset A$ such that $\lambda(U \backslash A)<1$. Then $\lambda(E \cap U)=\lambda U$. Since A is measurable, we obtain
$\lambda(E \cap U)=\lambda(E \cap A)+\lambda(E \cap(U \backslash A))=\lambda U=\lambda A+\lambda(U \backslash A)<\infty$. It follows that $\lambda(E \cap(U \backslash A))=\lambda(U \backslash A)$ and $\lambda(E \cap A)=\lambda A$. Thus E satisfies (i).

If I is any interval in R, we extend the set $E \cap I$ to a choice set $S \subset I$, and then $\lambda I=\lambda(E \cap I)=\lambda S$. This completes the proof.
E. Hewitt and K. Stromberg, J. Australia Math. Society 18 (1974), 236-238, presented a set that can be shown to satisfy (i) but not (ii). H. W. Pu also presented a set satisfying (i) in the same journal, 13 (1972), 267-270.

It is easy to see that no two elements in E are Q-equivalent. The field Q can be replaced by a larger subfield F of R provided only that $\lambda W>0$. The problem can be generalized to R^{n}, where $E \cap(r+E)=\varnothing$ for any nonzero vector $r \in R^{n}$, all of whose coordinates are rational. The proof, however, is more awkward.

Reference

1. J. A. Andrews, Problem E 2710, American Mathematical Monthly 85 (1978), 276.

Department of Mathematics, Portland State University, Portland, OR 97207.

