A NONSTANDARD PROOF OF THE MARTINGALE CONVERGENCE THEOREM

LESTER L. HELMS* AND PETER A. LOEB*

In this note we use A. Robinson's [5] nonstandard analysis to give an elementary proof of the almost everywhere convergence of an L^{1}-bounded submartingale. Here, the index set \mathscr{I} is a countable subset of the real numbers \mathbf{R}; we assume that \mathscr{I} contains the natural numbers \mathbf{N}, but any cofinal subset of \mathbf{R} will do. The continuous parameter martingale convergence theorem usually reduces to the case considered here. Our proof does not use the notion of a stopping time. It does employ a nonstandard criterion for almost everywhere convergence and demonstrates the usefulness of that criterion. It also produces the limit function.

We shall use the notation from [4] to which we refer the reader for further details about nonstandard analysis in general. We assume that we are working with a fixed κ_{1}-saturated, nonstandard extension of a standard structure. Of course, ${ }^{*} \mathbf{R}$ and $* \mathbf{N}$ denote the nonstandard extensions of \mathbf{R} and \mathbf{N}, and $a \cong b$ means that $a-b$ is infinitesimal in ${ }^{*} \mathbf{R}$. If (X, \mathscr{F}, μ) is an internal measure space and $g: X \rightarrow * \mathbf{R} \cup\{-\infty,+\infty\}$ is internal and \mathscr{F}-measurable, then (following K. Stroyan) we shall say that $g \cong 0$ nearly surely (n.s.) when the following holds: For some infinitesimal $\varepsilon>0$, $\mu(|g|>\varepsilon) \cong 0$. Clearly, $g \cong 0$ n.s. if and only if for each $\varepsilon>0$ in \mathbf{R}, $\mu(|g|>\varepsilon)<\varepsilon$.

We now establish a nonstandard criterion for almost everywhere convergence. Here, as later, \mathscr{I} denotes a countable subset of \mathbf{R} with $\mathbf{N} \subset \mathscr{I}$. The ordering on \mathscr{I} is the ordering inherited from \mathbf{R}. We shall use n, m, and k to denote natural numbers, while i and j will denote elements of \mathscr{I} or $* \mathscr{I}$. Moreover, $\{i: n \leqq i \leqq m\}$ will denote the set of indices in just \mathscr{I} with $n \leqq i \leqq m$, while if γ and η are in $* \mathbf{N}-\mathbf{N}$, then $\{i: \gamma \leqq i \leqq \eta\}$ will denote the set of indices in $* \mathscr{I}$ with $\gamma \leqq i \leqq \eta$. Given $n \in \mathbf{N}, \bigcup_{i \geqq n} A_{i}$ will denote $\bigcup\left\{A_{i}: i \in \mathscr{I}, i \geqq n\right\}$.

Theorem 1. Let (X, \mathscr{F}, μ) be a standard measure space with $\mu(X)<$ $+\infty$, and for each $i \in \mathscr{I}$, let g_{i} be an extended real-valued, \mathscr{F}-measurable function on X.

[^0]i) If $g_{i} \rightarrow 0$ a.e., then for each γ and η in $* \mathbf{N}-\mathbf{N}$ with $\gamma \leqq \eta$,
$$
\sup _{r \leqq i \leq \eta}\left|g_{i}\right| \cong 0 \mathrm{n.s}
$$
ii) Conversely, $g_{i} \rightarrow 0$ a.e. if there is an $\eta \in * \mathbf{N}-\mathbf{N}$ such that for all $r \leqq \eta$ in $* \mathbf{N}-\mathbf{N}$,
$$
\sup _{r \leq i \leq \eta}\left|g_{i}\right| \cong 0 \text { n.s. }
$$
iii) Assume $\mathscr{I}=\mathbf{N}$. Then there is a null set $A \subset X$ such that $g_{i}(x)$ is a Cauchy sequence in \mathbf{R} for each $x \in X-A$ if and only if the following holds: For some $\eta \in * \mathbf{N}-\mathbf{N}$ and all $\gamma \leqq \eta$ in $* \mathbf{N}-\mathbf{N}$,
$$
\max _{r \leq i \leq j \leq \eta}\left|g_{i}-g_{j}\right| \cong 0 \text { n.s. }
$$

Proof. (i) If $g_{i} \rightarrow 0$ a.e., then given $\varepsilon>0$ in \mathbf{R} and setting $A_{i}^{\varepsilon}=\left\{\left|g_{i}\right|\right.$ $>\varepsilon\}$ for each $i \in \mathscr{I}$, we have

$$
\mu\left(\bigcap_{k=1}^{\infty} \bigcup_{i \geq k} A_{i}^{\varepsilon}\right)=0
$$

whence $\lim _{k \rightarrow \infty} \mu\left(\bigcup_{i \geqq k} A_{i}^{\varepsilon}\right)=0$. It follows that for $\gamma \leqq \eta$ in $* \mathbf{N}-\mathbf{N}$, ${ }^{*} \mu\left(\bigcup_{r \leqq i \leqq \eta} A_{i}^{\varepsilon}\right) \cong 0$, and so ${ }^{*} \mu\left(\sup _{r \leqq i \leqq \eta}\left|g_{i}\right|>\varepsilon\right)<\varepsilon$. Since this is true for any $\varepsilon>0$ in $\mathbf{R}, \sup _{r \leqq i \leq \eta}\left|g_{i}\right| \cong 0$ n.s.
(ii) If there is an $\eta \in{ }^{*} \mathbf{N}-\mathbf{N}$ such that for each $\gamma \leqq \eta$ in $* \mathbf{N}-\mathbf{N}$ and each $\varepsilon>0$ in \mathbf{R} we have $* \mu\left(\sup _{r \leq i \leq \eta}\left|g_{i}\right|>\varepsilon\right) \cong 0$ whence $* \mu\left(\bigcup_{r \leq i \leq \eta} A_{i}^{\varepsilon}\right)$ $\cong 0$, then it follows that for any $\delta>0$ in \mathbf{R} there is a $k \in \mathbf{N}$ with $\mu\left(\bigcup_{i \geqq k} A_{i}^{\varepsilon}\right)$ $\leqq \delta$. Therefore, $\mu\left(\bigcap_{k=1}^{\infty} \bigcup_{i \geqq k} A_{i}^{e}\right)=0$. Let

$$
B=\bigcup_{m=1}^{\infty} \bigcap_{k=1}^{\infty} \bigcup_{i \geqq k} A_{i}^{1 / m} .
$$

Then $\mu(B)=0$ and $g_{i}(x) \rightarrow 0$ for $x \in X-B$.
(iii) The proof is left to the reader; we shall not need this result.

The above criterion for almost everywhere convergence was suggested by Egorov's Theorem. A sufficient condition based on the Borel-Cantelli Lemma was used by Hersh and Greenwood [3] to consider the convergence of L^{2}-bounded martingales. A "maximal" condition similar to the one used here does appear in the body of their proof; further use of this maximal condition seems to be needed to carry out their proof.

We now fix an increasing family of σ-algebras $\left\{\mathscr{F}_{i}: i \in \mathscr{I}\right\}$ in a standard set X. We let \mathscr{F} denote the smallest σ-algebra containing each \mathscr{F}_{i}, i.e., $\mathscr{F}=\sigma\left(\bigcup_{i \geqq 1} \mathscr{F}_{i}\right)=\sigma\left(\bigcup_{n=1}^{\infty} \mathscr{F}_{n}\right)$. Let P be a fixed probability measure on (X, \mathscr{F}). Let \mathscr{J} be a finite or infinite subset of \mathscr{I}. Recall that a family $\left\{Y_{j}\right.$: $j \in \mathscr{J}\}$ of extended real-valued functions on X is said to be adapted to $\left\{\mathscr{F}_{j}: j \in \mathscr{J}\right\}$ if Y_{j} is \mathscr{F}_{j}-measurable for each $j \in \mathscr{J}$. If, moreover,
$\int_{A} Y_{i_{0}} d P \leqq \int_{A} Y_{j_{0}} d P$ (or, respectively, $\int_{A} Y_{i_{0}} d P=\int_{A} Y_{j_{0}} d P$) for each pair $i_{0}<j_{0}$ in \mathscr{J} and each $A \in \mathscr{F}_{i_{0}}$, then $\left\{Y_{j}: j \in \mathscr{J}\right\}$ is called a submartingale (or, respectively, a martingale). For completeness, we prove the following inequalities of Doob.

Theorem 2 (Doob [2, p. 314]). Given $n<m$ in \mathbf{N}, let $\left\{Y_{i}: n \leqq i \leqq m\right\}$ be a submartingale adapted to $\left\{\mathscr{F}_{i}: n \leqq i \leqq m\right\}$. Fix $\lambda \in \mathbf{R}$ and $A \in \mathscr{F}_{n}$. Let $\bar{M}=\left\{\sup _{n \leq i \leq m} Y_{i}>\lambda\right\}-A$ and let $\underline{M}=\left\{\inf _{n \leq i \leq m} Y_{i}<\lambda\right\}-A$. Then

$$
\begin{aligned}
& \text { (i) } \lambda P(\bar{M}) \leqq \int_{M} Y_{m} d P, \\
& \text { (ii) } \int_{X-A} Y_{n} d P-\lambda P(\underline{M}) \leqq \int_{(X-A)-M} Y_{m} d P .
\end{aligned}
$$

Proof. We assume that $\mathscr{I}=\mathbf{N}$. The general case follows by taking appropriate limits with respect to increasing finite subsets of \mathscr{I}; the order on the family of finite subsets of \mathscr{I} is given by containment.
(i) Define B_{i} by induction so that $B_{n}=\left\{Y_{n}>\lambda\right\}-A$ and for $n<i$ $\leqq m, B_{i}=\left[\left\{Y_{i}>\lambda\right\}-\bigcup_{j=n}^{i-1} B_{j}\right]-A$. Then, using the submartingale property on $B_{i} \in \mathscr{F}_{i}$, we have

$$
\begin{aligned}
\int_{\bar{M}} Y_{m} d P & =\int_{{\underset{i=n}{m} B_{i}} Y_{m} d P \geqq \sum_{i=n}^{m} \int_{B_{i}} Y_{i} d P} \\
& \geqq \sum_{i=n}^{m} \lambda P\left(B_{i}\right)=\lambda P(\bar{M}) .
\end{aligned}
$$

(ii) Define C_{i} and D_{i} by induction so that $C_{n}=\left\{Y_{n}<\lambda\right\}-A, D_{n}=$ $\left\{Y_{n} \geqq \lambda\right\}-A$, and for $n<i \leqq m, C_{i}=\left\{x \in D_{i-1}: Y_{i}<\lambda\right\}$ and D_{i} $=D_{i-1}-C_{i}$. Then

$$
\begin{aligned}
\int_{X-A} Y_{n} d P & \leqq \lambda P\left(C_{n}\right)+\int_{D_{n}} Y_{n} d P \\
& \leqq \lambda P\left(C_{n}\right)+\int_{D_{n}} Y_{n+1} d P \\
& \leqq \lambda P\left(C_{n}\right)+\lambda P\left(C_{n+1}\right)+\int_{D_{n+1}} Y_{n+1} d P \\
& \vdots \\
& \leqq \lambda P(\underline{M})+\int_{D_{m}} Y_{m} d P .
\end{aligned}
$$

Recall that for $Y \in L^{1}(X, \mathscr{F}, P), E\left[Y \mid \mathscr{F}_{i}\right] \in L^{1}\left(X, \mathscr{F}_{i}, P\right)$ is the RadonNikodym derivative of the measure obtained by integrating Y over sets in \mathscr{F}_{i}. The following result is proved here using a simplification of a proof by Alda [1].

Theorem 3. Let Y be \mathscr{F}-measurable and integrable on X. Then $E\left[Y \mid \mathscr{F}_{i}\right]$ $\rightarrow Y$ a.e.

Proof. Fix γ and η in ${ }^{*} \mathbf{N}-\mathbf{N}$ with $\gamma<\eta$. Since $\mathscr{F}=\sigma\left(\bigcup_{n=1}^{\infty} \mathscr{F}_{n}\right)$, there is for any standard set $A \in \mathscr{F}$ and any $\varepsilon>0$ an $n \in \mathbf{N}$ and an $E \in \mathscr{F}_{n}$ such that $P(A \triangle E)<\varepsilon$, and so there is an $E_{A} \in \mathscr{F}_{r}$ with ${ }^{*} P\left({ }^{*} A \triangle E_{A}\right) \cong 0$. It follows that there is an internal \mathscr{F}_{r}-measurable function Y_{0} on ${ }^{*} X$ such that $\left.\int_{{ }^{*}}\right|^{*} Y-Y_{0} \mid d^{*} P \cong 0$, whence $\left.\right|^{*} Y-Y_{0} \mid \cong$ 0 n.s. Let $Y_{i}=E\left[{ }^{*} Y \mid \mathscr{F}_{i}\right]$ for $\gamma \leqq i \leqq \eta$. Then $\left\{\left|Y_{i}-Y_{0}\right|: \gamma \leqq i \leqq \eta\right\}$ is an internal submartingale and this is also true if $\left.\right|^{*} Y-Y_{0} \mid$ is adjoined as a last element. Given $\varepsilon>0$ in \mathbf{R} and setting $B_{\varepsilon}=\left\{\sup _{r \leq i \leq \eta}\left|Y_{i}-Y_{0}\right|\right.$ $>\varepsilon\}$, we have by (i) of Theorem 2,

$$
\varepsilon^{*} P\left(B_{\varepsilon}\right) \leqq \int_{B_{\varepsilon}}\left|Y_{\eta}-Y_{0}\right| d * P \leqq \int_{B_{\varepsilon}}\left|* Y-Y_{0}\right| d^{*} P \cong 0
$$

Therefore, $P\left(B_{\varepsilon}\right) \cong 0$ for any $\varepsilon>0$ in \mathbf{R}, and so $\sup _{r \leq i \leq \eta}\left|Y_{i}-Y_{0}\right| \cong 0$ n.s. Since $\left|Y_{0}-* Y\right| \cong 0$ n.s., $\sup _{r \leqq i \leqq \eta}\left|Y_{i}-* Y\right| \cong 0$ n.s., whence $\left|Y_{i}-Y\right| \rightarrow 0$ a.e.

We now consider a fixed $\left\{\mathscr{F}_{i}\right\}$-adapted submartingale $\left\{Y_{i}: i \in \mathscr{I}\right\}$ such that $Y_{i} \geqq 0$ for each $i \in \mathscr{I}$ and $L=\sup _{i} \int_{X} Y_{i} d P<+\infty$. Since $\int_{X} Y_{i} d P \leqq \int_{X} Y_{j} d P$ when $i<j$ in $\mathscr{I}, L=\lim _{i \rightarrow \infty} \int_{X} Y_{i} d P$. Thus $L=$ ${ }^{\circ}{ }_{{ }^{*} X} Y_{i} d^{*} P$ for each infinite $i \in * \mathscr{I}$. Given any infinite $i \in{ }^{*} \mathscr{I}$, we let

$$
S_{i}=L-\lim _{\substack{m \rightarrow \infty \\ m \in N}} \int_{*_{X}}^{\circ}\left(Y_{i} \wedge m\right) d^{*} P
$$

We call S_{i} the singular part of the integral of Y_{i}. One can find an $\alpha \in$ $* \mathbf{N}-\mathbf{N}$ such that $S_{i}={ }^{\circ} \int_{\left\{Y_{i} \geqq \alpha\right\}} Y_{i} d^{*} P$.

Proposition 1. There is an $\eta \in * \mathbf{N}-\mathbf{N}$ such that for each infinite $i \leqq \eta$ in ${ }^{*} \mathscr{I}, S_{i}=S_{\eta}$.

Proof. Given an infinite $i \in{ }^{*} \mathscr{I}$, choose $\alpha \in{ }^{*} \mathbf{N}-\mathbf{N}$ so that $S_{i}=$ ${ }^{\circ} \int_{\left\{Y_{i} \geqq \alpha\right\}} Y_{i} d^{*} P$. The set $D_{i}=\left\{Y_{i} \geqq \alpha\right\}$ has infinitesimal measure, so for $j \geqq i$ in $* \mathscr{I}$ and $m \in \mathbf{N},{ }^{\circ} \int_{D_{i}}\left(Y_{j} \wedge m\right) d^{*} P=0$, whence

$$
S_{i}=\int_{D_{i}}^{\circ} Y_{i} d^{*} P \leqq \int_{D_{i}} Y_{j} d^{*} P \leqq S_{j}
$$

Let $\left\{r_{n}: n \in \mathbf{N}\right\}$ be a decreasing sequence in $* \mathbf{N}-\mathbf{N}$ such that $\lim _{n \rightarrow \infty} S_{\gamma_{n}}=\inf \left\{S_{i}: i\right.$ infinite in $\left.* \mathscr{I}\right\}$. By κ_{1}-saturation, there exists an $\eta \in * \mathbf{N}-\mathbf{N}$ so that $\eta \leqq \gamma_{n}$ for all $n \in \mathbf{N}$. Clearly $S_{i}=S_{\eta}$ for each infinite $i \leqq \eta$ in $* \mathscr{I}$.

We now fix $\eta \in{ }^{*} \mathbf{N}-\mathbf{N}$ so that $S_{i}=S_{\eta}$ for any infinite $i \leqq \eta$ in ${ }^{*} \mathscr{I}$. Let $S=S_{\eta}$. If $S=0$, we set $A_{i}=\varnothing$ for all $i \in{ }^{*} \mathscr{I}$. If $S>0$ and $i \leqq \eta$ in ${ }^{*} \mathscr{I}$, we let α_{i} be the largest element $\rho \in{ }^{*} \mathbf{N}$ such that

$$
\int_{\left\langle Y_{i} \geqq \rho\right\rangle} Y_{i} d^{*} P \geqq S-S / \rho,
$$

and we let $A_{i}=\left\{Y_{i} \geqq \alpha_{i}\right\}$. The proof of Proposition 1 shows that for each infinite $i \leqq \eta$ in ${ }^{*} \mathscr{I}$ we have $\alpha_{i} \in * \mathbf{N}-\mathbf{N}, \int_{A_{i}} Y_{i} d^{*} P \cong \int_{A_{i}} Y_{\eta} d^{*} P$ $\cong S, * P\left(A_{i}\right) \cong 0$, and $\int_{A_{\eta}-A_{i}} Y_{\eta} d^{*} P \cong 0$.

Given any set $B \in \mathscr{F}$, there is a set $E_{B} \in \mathscr{F}_{\eta}$ such that ${ }^{*} P\left({ }^{*} B \triangle E_{B}\right) \cong 0$. Let $\nu(B)={ }^{\circ} \int_{E_{B}-A_{\eta}} Y_{\eta} d^{*} P$. Since

$$
\lim _{m \rightarrow \infty} \int_{\left\{Y_{\eta} \geqq m\right\}-A_{\eta}}^{\circ} Y_{\eta} d^{*} P=0
$$

there exists for each $\varepsilon>0$ in $\mathbf{R} a \delta>0$ in \mathbf{R} such that $\nu(B)<\varepsilon$ when $P(B)<\delta$. Thus ν is σ-additive on \mathscr{F} and absolutely continuous with respect to P. Let Z be the Radon-Nikodym derivative $d \nu / d P$.

Proposition 2. The nonnegative submartingale $Y_{i} \rightarrow Z$ a.e.
Proof. For each $i \in \mathscr{I}$, let $Z_{i}=E\left[Z \mid \mathscr{F}_{i}\right]$. By Theorem 3, $Z_{i} \rightarrow Z$ a.e.; we will show that $Y_{i}-Z_{i} \rightarrow 0$ a.e. Given $\varepsilon>0$ in \mathbf{R}, it follows from the properties of the A_{i} 's that there exists an $n \in \mathbf{N}$ such that $P\left(A_{n}\right)$ $<\varepsilon / 2$ and ${ }^{\circ} \int_{A_{\eta}-* A_{n}} Y_{\eta} d^{*} P<\varepsilon^{2} / 2$. For each $m \geqq n$ in \mathbf{N}, set $B_{m}=$ $\left\{\sup _{n \leq i \leq m}\left(Y_{i}-Z_{i}\right)>\varepsilon\right\}-A_{n}$. Since $Y_{i}-Z_{i}$ is a submartingale and ${ }^{*} B_{m} \in{ }^{*} \mathscr{F}_{m} \subset \mathscr{F}^{m}$, it follows from the definition of ν that

$$
\begin{aligned}
\varepsilon P\left(B_{m}\right) & \leqq \int_{B_{m}}\left(Y_{m}-Z_{m}\right) d P \leqq \int_{*_{B_{m}}} Y_{\eta} d^{*} P-\int_{B_{m}} Z d P \\
& \leqq \int_{A_{\eta} * A_{n}} Y_{\eta} d^{*} P+\nu\left(B_{m}\right)-\int_{B_{m}} Z d P<\frac{\varepsilon^{2}}{2}
\end{aligned}
$$

Therefore, for any $m \geqq n$ in $\mathbf{N}, P\left(\sup _{n \leqq i \leqq m}\left(Y_{i}-Z_{i}\right)>\varepsilon\right) \leqq P\left(B_{m}\right)+$ $P\left(A_{n}\right)<\varepsilon$. It follows that for $\gamma \leqq \eta$ in $* \mathbf{N}-\mathbf{N},{ }^{*} P\left(\sup _{\gamma \leqq i \leq \eta}\left(Y_{i}-Z_{i}\right)\right.$ $>\varepsilon)<\varepsilon$ for each $\varepsilon>0$ in \mathbf{R} and thus for some positive $\varepsilon \cong 0$ in $* \mathbf{R}$. On the other hand, if for each $\varepsilon>0$ in \mathbf{R} we set $M_{\varepsilon}=\left\{\inf _{\gamma \leq i \leq \eta}\left(Y_{i}-Z_{i}\right)\right.$ $<-\varepsilon\}-A_{r}$, then

$$
\int_{*_{X-A_{\gamma}}}\left(Y_{\gamma}-Z_{\gamma}\right) d^{*} P+\varepsilon^{*} P\left(M_{\varepsilon}\right) \leqq \int_{\left({ }^{*} X-A_{\gamma}\right)-M_{\varepsilon}}\left(Y_{\eta}-Z_{\eta}\right) d^{*} P
$$

Here, $\int_{* X-A_{T}}\left(Y_{r}-Z_{r}\right) d^{*} P \cong \nu(X)-\int_{X} Z d P=0$. Moreover, we have just shown that $Y_{\eta}-Z_{\eta}$ is either negative or infinitesimal except on a set E of infinitesimal measure. Since $\int_{E-A_{\gamma}} Y_{\eta} d^{*} P \cong 0$,

$$
\int_{\left(* X-A_{7}-M_{\varepsilon}\right)}^{\circ}\left(Y_{\eta}-Z_{\eta}\right) d^{*} P \leqq 0
$$

Therefore, ${ }^{*} P\left(M_{\varepsilon}\right) \cong 0$ for each $\varepsilon>0$ in \mathbf{R}. It now follows that for any $\gamma \leqq \eta$ in ${ }^{*} \mathbf{N}-\mathbf{N}, \sup _{r \leqq i \leqq \eta}\left|Y_{i}-Z_{i}\right| \cong 0$ n.s., whence $Y_{i}-Z_{i} \rightarrow 0$ a.e.

It now follows from Proposition 2 that $S_{i}=S$ for every infinite $i \in{ }^{*} \mathscr{I}$. Moreover, when $S=0$, the above proof shows that $P\left(\exists i \in \mathscr{I}\right.$ with Y_{i} $\left.>Z_{i}\right)=0$. The nonnegative submartingale $\left\{Y_{i}\right\}$ is called uniformly integrable if $S=0$ (see [4, Page 131]). We now prove the convergence theorem for L^{1}-bounded submartingales.

Theorem 4. Let $\left\{Y_{i}: i \in \mathscr{I}\right\}$ be an $\left\{\mathscr{F}_{i}\right\}$-adapted submartingale with $\sup _{i} \int_{X}\left|Y_{i}\right| d P<+\infty$. Then Y_{i} converges a.e.

Proof. For each $m \in \mathbf{N},\left\{Y_{i} \vee-m\right\}$ is a submartingale as is $\left\{\left(Y_{i} \vee-m\right)+m\right\}$. By Proposition 2, $Y_{i} \vee-m$ converges a.e. for each $m \in \mathbf{N}$. Given $m \in \mathbf{N}$, let $D_{m}=\left\{\inf _{i \in \mathscr{F}} Y_{i}<-m\right\}$. For almost all $x \in X-$ $\bigcap_{m=1}^{\infty} D_{m}, Y_{i}(x)$ converges. We will show that $P\left(\bigcap_{m=1}^{\infty} D_{m}\right)=0$. Assume not. Then for some $\varepsilon>0$ in $\mathbf{R}, P\left(D_{m}\right) \geqq \varepsilon$ for all $m \in \mathbf{N}$ and thus for all $m \in{ }^{*} \mathbf{N}$. Fix $m_{0} \in * \mathbf{N}-\mathbf{N}$. For each $\eta \in * \mathbf{N}-\mathbf{N}$, let $M_{\eta}=\left\{\inf _{1 \leqq i \leqq \eta} Y_{i}\right.$ $\left.<-m_{0}\right\}$. Then

$$
\int_{* X} * Y_{1} d^{*} P+m_{0} * P\left(M_{\eta}\right) \leqq \int_{* X-M_{\eta}} Y_{\eta} d^{*} P .
$$

Since both integrals are finite and m_{0} is infinite, $* P\left(M_{\eta}\right) \cong 0$. Since η is arbitrary in ${ }^{*} \mathbf{N}-\mathbf{N},{ }^{*} P\left(\inf _{i \in^{*} \mathcal{S}} Y_{i}<-m_{0}\right) \cong 0$, a contradiction.

Assume $\left\{Y_{i}\right\}$ is an L^{1}-bounded martingale, i.e., both $\left\{Y_{i}\right\}$ and $\left\{-Y_{i}\right\}$ are submartingales, and assume the submartingale $\left\{\left|Y_{i}\right|\right\}$ is uniformly integrable. Then it is a well-known and now easily obtained fact that for $Z=\lim Y_{i}$, we have $Y_{i}=E\left[Z \mid \mathscr{F}_{i}\right]$ a.e. for each i.

References

1. V. Alda, On conditional expectations, Chech. Math. J. 5 (1955), 503-505.
2. J. L. Doob, Stochastic Processes, Wiley, New York, 1953.
3. R. Hersh and P. Greenwood, Stochastic differential and quasi-standard random variables, in Conference on Probabilistic Methods and Differential Equations, E. A. Pinsky, ed., Lecture Notes in Math. No 451. Springer-Verlag, Berlin and New York, (1975), 35-61.
4. P. A. Loeb, An introduction to nonstandard analysis and hyperfinite probability theory, in Probabilistic Analysis and Related Topics, Vol. 2, A. T. Bharucha-Reid, ed., Academic Press, New York, 1979, 105-142.
5. A. Robinson, Non-standard Analysis, North-Holland Publ., Amsterdam, 1966.

[^0]: *This research was supported in part by a grant from the U.S. National Science Foundation (NSF MCS 76-07471).

 Received by the editors on July 11, 1980, and in revised form on October 14, 1980.

