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A NONSTANDARD PROOF OF THE MARTINGALE 
CONVERGENCE THEOREM 

LESTER L. HELMS* AND PETER A. LOEB* 

In this note we use A. Robinson's [5] nonstandard analysis to give an 
elementary proof of the almost everywhere convergence of an L1-bounded 
submartingale. Here, the index set / is a countable subset of the real 
numbers R; we assume that J contains the natural numbers N, but any 
cofinal subset of R will do. The continuous parameter martingale con
vergence theorem usually reduces to the case considered here. Our proof 
does not use the notion of a stopping time. It does employ a nonstandard 
criterion for almost everywhere convergence and demonstrates the useful
ness of that criterion. It also produces the limit function. 

We shall use the notation from [4] to which we refer the reader for fur
ther details about nonstandard analysis in general. We assume that we are 
working with a fixed «i-saturated, nonstandard extension of a standard 
structure. Of course, *R and *N denote the nonstandard extensions of R 
and N, and a s b means that a — b is infinitesimal in *R. If (X, J^, //) is 
an internal measure space and g: X -+ *R U { — °o> +00} is internal and 
«^-measurable, then (following K. Stroyan) we shall say that g = 0 nearly 
surely (n.s.) when the following holds: For some infinitesimal e > 0, 
M(\S\ > e) = 0. Clearly, g = 0 n.s. if and only if for each s > 0 in R, 
Misi > e) < e. 

We now establish a nonstandard criterion for almost everywhere con
vergence. Here, as later, y denotes a countable subset of R with N <= J. 
The ordering on J is the ordering inherited from R. We shall use n, m, and 
k to denote natural numbers, while / and j will denote elements of J or 
*y. Moreover, {/: n ^ / :g m} will denote the set of indices in just J~ with 
n g / g m, while if 7- and 7] are in *N — N, then {/: 7- ^ / ^ yj] will denote 
the set of indices in *</ with 7- ^ / ^ rj. Given n e N, \Jt^n A{ will denote 
U {A{: ieS, i ^ «}. 

THEOREM 1. Let (X, £?, ju) be a standard measure space with ju(X) < 
4- 00, and for each i e <f9 let g{ be an extended real-valued, ^-measurable 

function on X. 
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0 Ifgi -+ Oa*e.9 then for each y and TJ in *N — N with y ^ TJ, 

sup |g,-| ^ 0 n.s. 

ii) Conversely', g( -+ 0 a.e. if there is an rj e *N — N such that for all 
y ^ Tj in *N — N, 

sup \gt\ s 0 n.s. 

iii) Assume J = N. 7%e« //zere w a ««// sef A c= X swc/z /Aûtf g;(x) is a 
Cauchy sequence in Rfor each x e X — A if and only if the following holds: 
For some 7] G *N — N and all y ^ rj in *N — N, 

max \g{ - gj\ Ä 0 n.s. 

PROOF, (i) If g{ -> 0 a.e., then given e > 0 in R and setting Al = {|g,-| 
> s} for each / G J, we have 

oo 

whence lim^oo /^((J^^O = 0. It follows that for y <; 97 in *N — N, 
*MLW^? ^t) = 0, and so *^(supr^f-^ |g,-| > £ ) < £ . Since this is true for 
any e > 0 in R, sup r <^ |gf.| ^ 0 n.s. 

(ii) If there is an 77 G *N — N such that for each y <; 77 in *N — N and 
each e > 0 in R we have */*(supr^<^ \g{\ > e) = 0 whence *//((Jr^,-^ ̂ 4?) 
^ 0, then it follows that for any ö > 0 in R there is a & G N with /u({j^k Af) 
^ Ö. Therefore, ß( f)?=1 [j^k AD = 0. Let 

0 0 00 

41/m B=[jf][jA} 
m=\ k=l i^k 

Then ju(B) = 0 and gt{x) -+ 0 for x e X - B. 
(iii) The proof is left to the reader; we shall not need this result. 

The above criterion for almost everywhere convergence was suggested 
by Egorov's Theorem. A sufficient condition based on the Borei-Cantelli 
Lemma was used by Hersh and Greenwood [3] to consider the convergence 
of L2-bounded martingales. A "maximal" condition similar to the one used 
here does appear in the body of their proof; further use of this maximal 
condition seems to be needed to carry out their proof. 

We now fix an increasing family of ^--algebras {ßF{\ i e<f}ma, standard 
set X. We let !F denote the smallest <7-algebra containing each $Fh i.e., 
^ = <KU» î ^ì) = 0"(Lfei ^n)- Let P be a fixed probability measure on 
(X, SF). Let ß be a finite or infinite subset of,/. Recall that a family {Y;-: 
j G f} of extended real-valued functions on X is said to be adapted 
to {8Fj\ ; e / } if Yj is ^-measurable for each j e / . If, moreover, 
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\AYiQdP è \AYhdP (or, respectively, \AYiQdP = \AYhdP) for each pair 
'o < Jo m # a nd each A e J%-0, then {T,: j e f) is called a submartingale 
(or, respectively, a martingale). For completeness, we prove the following 
inequalities of Doob. 

THEOREM 2 (DOOB [2, p. 314]). Given n < min N, let {Y{: n ^ i ^ m} 
be a submartingale adapted to { Jv n ^ i ^ m}. Fix XeR and A e3Fn. 
Let M = {sup^^F,- > X] - A and let M = { in f^^F , < X} - A. 
Then 

(i) XP(M) S f YmdP, 

(ii) f YndP-XP(M)^{ YmdP. 
J X-A J (X-A)-M 

PROOF. We assume that J = N. The general case follows by taking 
appropriate limits with respect to increasing finite subsets of,/; the order 
on the family of finite subsets of J is given by containment. 

(i) Define B{ by induction so that Bn = {Yn > X] — A and for n < i 
^ m, B{ = [{Yt- > X} - \Jj^nBj] — A. Then, using the submartingale 
property on Bt e <Fh we have 

J M J m f.=Jf J Bi 

i—n 

m _ 

i—n 

(ii) Define C, and D{ by induction so that Cn = {Yn < X] — A, Dn = 
{Yn ^ X} - A, and for n < i ^ m, Ct = {x e Dt_x: Y( < X} and Dt 

= A_i - Q. Then 

f YndP < XP{Cn) + f YndP 
J X-A J Dn 

^XP(Cn)+ f Yn+1dP 

g xp(cn) + ^/>(cw+1) + f ywHrl</p 

g A/>(M) + f YmdP. 

Recall that for Y e L\X, J% P), E[Y\^t] e L\X, &i9 P) is the Radon-
Nikodym derivative of the measure obtained by integrating Y over sets in 
J*t-. The following result is proved here using a simplification of a proof 
by Alda [1]. 
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THEOREM 3. Let Y be ^-measurable and integrable on X, Then E[Y\tFt] 
-+ 7a.e. 

PROOF. Fix y and rj in *N - N with y < 77. Since ^ = tf"((j£Li <Fn), 
there is for any standard set A G 8F and any e > 0 an n G N and an 
is G J% such that P(A A E) < e, and so there is an EA G <Fr with 
*P(*AAEA) ^ 0. It follows that there is an internal «^-measurable 
functionY0 on *Xsuch that $*x\ *Y - Y0\ d*P £ 0, whence \*Y - F0 1 = 
0 n.s. Let Y{ = E[*Y\&t] for r g i ^ 97. Then {|rf. - 7 0 | : r ^ ' ^ } 
is an internal submartingale and this is also true if \*Y — Y0\ is adjoined 
as a last element. Given e > 0 in R and setting Be = {supr^^| Y, — F0| 
> e}, we have by (i) of Theorem 2, 

e *P(B£) ̂  f |yv - y0| d*P S f 1*7 - 70| </*P s 0. 
v Be J Bs 

Therefore, P(B£) ^ 0 for any e > 0 in R, and so sup r<^ | Y{ — Y0\ s 0 
n.s. Since |F0 - *^l = 0 n.s., sup r ^ 7 | yf- - *Y\ ^ 0 n.s., whence 
\Yi - Y\ ->0a.e. 

We now consider a fixed {«^J-adapted submartingale { ^ : Ì G / } 

such that Yi ^ 0 for each f e / and L = sup j x Y{dP < + 00. Since 
\xYidP ^ UYsdP w h e n ' < 7 in ^ , L = lim^oo j^ ï^ /P . Thus Z, = 
°JVr 7, d*P for each infinite / G *,/. Given any infinite / G *J^, we let 

Si = L - lim°f (7,-A iw)</*/\ 

We call Si the singular part of the integral of Yt. One can find an a G 
*N - N such that 5,-= °}{r,*a} Yt d*P. 

PROPOSITION 1. There is an TJ G *N — N such that for each infinite i ^ rj 
in *S, Si = Sr 

PROOF. Given an infinite i G * y, choose a e * N - N so that St = 
°jV,èa} Yt d*P. The set D{= {Y{ ^ a] has infinitesimal measure, so for 
j ^ / in * j ^ and m G N, °\Di{Yj A m) d*P = 0, whence 

Si =[ Yi d*P ^ ° f Yj d*P ^ Sj. 
J Di J Dt-

Let {yn: n G N} be a decreasing sequence in *N — N such that 
lim^oo STn = inf{iSx-: / infinite in *S}. By Krsaturation, there exists an 
7] G *N — N so that 7} è Tn f°r a^ « e N. Clearly Si = Ŝ  for each infinite 
1 ^ 77 i n *J>. 

We now fix TJ G *N — N so that S{ = Sç for any infinite / ^ 77 in *j*\ 
Let S = S r If S = 0, we set ,4, = 0 for all 1 G * j ^ . If S > 0 and / ^ 97 
in *./", we let a:,- be the largest element pe*N such that 
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f y ,< /*Pè s - s/p, 

and we let Ai = {Y{ ^ a j . The proof of Proposition 1 shows that for 
each infinite i <i 77 in *f we have et,- e *N - N, J^. 7,- d*P Ä J^. YV d*P 
s S, *P(i«,) S 0, and J ^ , Yv d*P s 0. 

Given any set Be^, there is a set £# e « ^ such that *P(*J5 A £ß) ^ 0. 
Let v(5) = ° t a _ ^ 7 , </*P. Since 

lim ° f Yv d*P = 0, 
«-00 J W - 0 0 

there exists for each £ > 0 i n R a 5 > 0 i n R such that v(B) < e when 
P(B) < d. Thus v is ^-additive on $F and absolutely continuous with re
spect to P. Let Z be the Radon-Nikodym derivative dvjdP. 

PROPOSITION 2. The nonnegative submartingale Yt -» Z a.e. 

PROOF. For each i e </, let Z{ = E[Z\^t]. By Theorem 3, Z, -> Z 
a.e. ; we will show that Y{ — Z, -» 0 a.e. Given e > 0 in R, it follows 
from the properties of the A/s that there exists an n e N such that P(An) 
< e/2 and \AV-*AH YV d*P < e2/2. For each m â n in N, set 5W = 
{sup„<^<;w(7,- - Zt) > e} - An. Since 7, - Z, is a submartingale and 
*Bm e * J%, c J*" r it follows from the definition of v that 

eP(*m)gf (Ym-Zm)dP^l Yvd*P-{ ZdP 
J Bm J *Bm J Bm 

S°{ Yvd*P + v(Bm)-{ ZdP<e* 
J AV-*A„ J Bm I 

Therefore, for any m ̂  n in N, P(supw^^w(7, - Zt) > e) ^ P(Bm) + 
P(,4M) < e. It follows that for r g v in *N - N, *P(sup r<^(7, - Zt) 
> e) < e for each e > 0 in R and thus for some positive e = 0 in *R. On 
the other hand, if for each e > 0 in R we set M£ = {infr<^<^(7,- - Z,-) 
< — e} — Ar then 

f ( 7 r - Z r) d*P + e*P(M£) ^ f (Yv - Zv) d*P. 
J*X-Ar J(*X-Ar)-Me ' ' 

Here, \*X-AT(YT - Zr) d*P s y(X) - \xZdP = 0. Moreover, we have 
just shown that Yv — Zv is either negative or infinitesimal except on a set 
E of infinitesimal measure. Since \E_A Yv d*P ^ 0, 

7 (Yv-Zv)d*P£0. 
Ar-M€) ' 

Therefore, *P(M£) ^ 0 for each e > 0 in R. It now follows that for any 
7- g 97 in *N - N, s u p r ^ ^ 17t - Z{\ ^ 0 n.s., whence Y{ - Z{ -> 0 a.e. 
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It now follows from Proposition 2 that 5, = S for every infinite / e * J. 
Moreover, when S = 0, the above proof shows that P(3i e y with Y{ 

> Zt) = 0. The nonnegative submartingale {Yt) is called uniformly 
integrable if S = 0 (see [4, Page 131]). We now prove the convergence 
theorem for Z^-bounded submartingales. 

THEOREM 4. Let {Y{\ iejf} be an {^^-adapted submartingale with 
s u p j x l^il dP < + oo. Then ^converges a.e. 

PROOF. For each m e N, {Y{ V — m) is a submartingale as is 
{{Y{ V — m) 4- m}. By Proposition 2, Yt V — m converges a.e. for each 
msN. Given m e N, let Dm = {infïGJf Y{ < — m). For almost all x e X — 
f]Z=i Dm, Yt{x) converges. We will show that P(f)™=1 DJ = 0. Assume 
not. Then for some e > 0 in R, P(Dm) ^ e for all m e N and thus for all 
m e *N. Fix m0 G *N — N. For each rj e *N - N, let Af7 = {inf^^y,-
< — m0}. Then 

f *7i d*P 4- m0 *P(M7) g f Yjd*P. 
J *X J *X—MJ) 

Since both integrals are finite and mQ is infinite, *P(MV) ^ 0. Since rj is 
arbitrary in *N - N, *i>(infl-e*t/yi-< - ra0) = 0, a contradiction. 

Assume { y j is an Z^-bounded martingale, i.e., both {y,-} and {- y j 
are submartingales, and assume the submartingale {\Y{\} is uniformly 
integrable. Then it is a well-known and now easily obtained fact that for 
Z = lim y,, we have Y{ = E[Z \ tFt] a.e. for each /. 

REFERENCES 

1. V. Alda, On conditional expectations, Chech. Math. J. 5 (1955), 503-505. 
2. J. L. Doob, Stochastic Processes, Wiley, New York, 1953. 
3. R. Hersh and P. Greenwood, Stochastic differential and quasi-standard random 

variables, in Conference on Probabilistic Methods and Differential Equations, E. A. 
Pinsky, ed., Lecture Notes in Math. No 451. Springer-Verlag, Berlin and New York, 
(1975), 35-61. 

4. P. A. Loeb, An introduction to nonstandard analysis and hyperfinite probability 
theory, in Probabilistic Analysis and Related Topics, Vol. 2, A. T. Bharucha-Reid, ed., 
Academic Press, New York, 1979,105-142. 

5. A. Robinson, Non-standard Analysis, North-Holland Pubi., Amsterdam, 1966. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, IL 61801 


