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OPEN COMPACT MAPPINGS, MOORE SPACES 
AND ORTHOCOMPACTNESS 

JACOB KOFNER 

ABSTRACT. TWO examples are given to show that an open compact 
map between zero dimensional Moore spaces need not preserve 
quasi-metrizability even if the domain space is separable or meta­
compact. 

Perfect maps preserve quasi-metric spaces as well as non-Archimedean 
quasi-metric spaces and ^-spaces [14], [12]. The same is true for arbitrary 
closed maps with the first countable images [16], [13]. This paper is con­
cerned with open and pseudo-open maps of quasi-metric spaces. 

It was observed in [5] that quasi-metric spaces and ^-spaces are preserved 
under open finite-to-one maps; the corresponding result holds for non-
Archimedean quasi-metric spaces. In answer to a question raised by R. F. 
Gittings [6], we show that a further generalization of these results is false; 
open compact maps do not preserve quasi-metrizability. 

While the open compact images of metric spaces are the metacompact 
Moore spaces, which are very nice non-Archimedean quasimetric spaces 
[4], we show that one more application of an open compact map may yield 
a Moore space which is not quasimetrizable (Example 2). Hence there are 
non-quasi-metrizable spaces in MOBI, the smallest class containing all 
metric spaces and closed under open compact maps [1]. Example 2 answers 
a question asked by H. R. Bennett [2]. Example 1 shows that open com­
pact maps do not preserve quasi-metrizability in the class of separable 
Moore spaces. 

In both examples the domain spaces are non-Archimedean quasi-metric 
while the image is not quasi-metrizable and hence not 7% since developable 
7--spaces are quasi-metrizable [8]. 

Since a developable space is orthocompact if and only if it is non-Archi­
medean quasi-metrizable [4], examples show that orthocompactness is not 
preserved under open compact maps. A Moore space may fail to be ortho-
compact even if it is an open compact image of a metacompact Moore 
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space or an orthocompact separable Moore space. Thus Example 2 an­
swers Question 2 of [6], and improves upon the examples of J. Chaber [3] 
of nonmetacompact Moore spaces in MOBI. 

A distance function d is called quasi-metric if d(x, z) :g d(x, y) + d(y9 z), 
non-Archimedean quasi-metric if d(x, z) ^ max{d(x, y), d(y, z)} and j -
metric if d(x, zn) -> 0 whenever d(x9 yn) -> 0 and d(yn, zn) -> 0. A non-
Archimedean quasi-metric space is a quasi-metric space, and a quasi-
metric space is a f-space, i.e., has a ^-metric. A space is non-Archimedean 
quasi-metrizable if and only if it has a ^--interior preserving base ( = a-Q-
base) [4], [11]. A collection of open sets is interior preserving if the inter­
section of any subcollection is open. A collection of sets is point countable 
if any point belongs to no more than countably many members. Every 
space in MOBI has a point countable base [1]. A map (= continuous 
mapping) is open if the image of each open set is open, and it is compact 
if the pre-images of the points of the range are compact sets in the domain. 

EXAMPLE 1. The first example is an open compact map of a separable 
zero-dimensional non-Archimedean quasi-metrizable Moore space onto a 
separable zero-dimensional non-quasi-metrizable Moore space. 

The range space Xis similar to a space defined independently in [7] and 
[11]. The underlying set of X is a subset A \J B of the plane, R2, where 
A = {<x, 0>|x is irrational} and B = « x , y}\x, y are rational, y > 0}. 
The topology of X is defined as follows. For a e A and n e N, let T(a, \/n) 
denote the set of all points in B that belong to the interior of the isosceles 
right triangle above R x {0} having vertex a and hypotenuse of length 
2/n parallel toR x {0}. The sets Un{a} = {a} U T(a, l/«)form a neigh­
bourhood base for a. For b e B and neN, let C(b, l/n) denote the inter­
section with B of the circle of radius l/n and center b. The sets Un{b) = 
C(b, \/n) form a neighbourhood base for b. The author showed in [11] 
that there is a continuous semi-metric on X (hence X is developable) and 
that X is not quasimetrizable. It is easy to see that Zis zero dimensional. 

Let us show that X is an image under an open compact map of a quasi-
metric Moore space X0. The underlying set of XQ is A x {0} U B x /, 
where / = [0, 1]. The set B x lis open in X0, and has the usual topology 
of a subspace of R3; for each p eB x I and n e N let Ün(p) denote the 
intersection of B x /with the sphere of radius l/n and center/?. For each 
p e A x {0}, p = (JC0, 0, 0) and n e N let f(p, \/n) denote the set of all 
points in B x I that belong to the interior of the solid bounded by the 
cones 

d : ( x - x 0 ) 2 + (l + l/n)z2 = ^2, 

C2: (x - x0)2 + (1 - l/«)z2 = j 2 , 

and the plane y = \/n, and let 0n{p) = {/?} U f(/?, l/n). For each/? e 
XQ the sets 0n{p) form a neighbourhood base for /?. The projection 
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f((x,y, 2 » = <x, y) is an open map of X0 onto X, sincef(Un{(x, 7, z>}) = 
£/{<JC, >>>} and the pre-images of the points of Zare compact sets. 

We now show that X0 is developable and has a ^--interior preserving 
base so that X0 is non-Archimedeanly quasi-metrizable. Since {{0n(p)\ 
p e XQ}\n eN} is a development, the proof may be completed by showing 
that for each neN, { Un{p} \p e XQ} has an interior preserving refinement. 
The subspace B x / is metrizable so that for each neN, {Un{p}\pe 
B x 1} has an open interior preserving (even a locally finite) refinement j n . 

Let neN. For each p e A x {0} and q e 0n+1(p) — {/?}, let k(p, q) 
denote the least k eN such that st(q, j-k) c Un(p) and choose G(p, q) e 
Tk(Ptq) such that q e G(p, q). Set 

VJLp) = {/>} U (\J{G(p, q)\qeÜn+1(p) - {/>}}). 

Then 0n+1(p) c F„(/>) c #„(/>). Let us show that{Fw(/?)|/> e,4 x {0}} is 
interior preserving. Let ^ e f l ^ Vn(Pi)- Then for each / e N, there exists 
q{ e Ün+i(pt) - {pt} such that x e G(p{, qt). If <&(/?,, gv)> is bounded, then 
Ç\T=\G(Pi, qt) is ° P e n an<i D^=i^»(/?«!) *s a neighborhood of x. If 
<&(/?,-, q;)} is not bounded, we may suppose that (k(Pi, qt)} -* 00. For 
each 1 e N{x, q{} <= G(/v, qt) e fMh Qi), and so <#,•> -• x. Since x e B x 
(0, 1), there exists e > 0 such that for all /eN, qteB x [e, 1]. The Eu­
clidean distance ö between the sets Ün+1(p) [) B x [e, 1] and B x I — 
Ün(p) does not depend on p e A x {0}, and d is positive. Choose m e 
JVsuch that 1/m < d. Then for each ieN, st(qi9 j-m) cz Un(pt) so that 
k(Pi> QÒ = m\ this contradicts <£(/?*, (7,)) -> 00. 

We have proved that { ̂ w{/?} |/? e >4 x {0}} is interior preserving. Hence 
ßn = Tn U {^«{p}!/*6-^ x {0}} is an open interior perserving refinement 
of {#„{/?} |/? e XQ}, and </3M> is a development. Hence (J/3W is an <j-interior 
preserving base for X0. 

Although X0 is not zero-dimensional, there is a zero dimensional sub-
space X00 of X0 such that f(X00) = Xa.ndf\XQQ: X0Q -> X is open and com­
pact; X0Q = A x {0} U B x J, J Œ /, J = {0, xl9 x2, . . . } , xn -> 0 and 
xn are close enough to one another so that f(On{x, 0, 0>} f] X00) = 
Un«x, 0». 

The non-quasi-metrizable space X of the Example 1 is separable and, 
while it is an open compact image of a non-Archimedean quasi-metric 
Moore space, it is not in MOBI. Moreover, if has no point countable base, 
since a separable space with a point countable base is second countable. 
The following example provides a non-quasi-metrizable Moore space in 
MOBI. 

EXAMPLE 2. The second example is an open compact map of a metacom­
pact, zero-dimensional Moore space onto a non-quasi-metrizable zero-
dimensional Moore space. 

Using ideas of F. D. Tall [15] Wicke and J.M. Worrell [17], as combined 
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by J. Chaber [3], we shall modify the space X of Example 1 to obtain 
a non-quasi-metrizable space Y with a point countable base. Let A9 

B, T(a9 \/n) and C(b, l/n) have the same meaning as in Example 1. Let 
St be the collection of all countable infinite subsets of A and let 7 = 
A U (B x St). A basic neighbourhood of a e 4 is Vn{a] = {a} U 
T(a, l/n) x 31(a), where St(tf) = {a e 5(| a G a;}. A basic neighbourhood 
of <b, a}eB x % is Vn{(b9 a}} = C(b9 l/n) x {a}. 

Obviously Y is zero-dimensional and {{Vn{p)\pe Y}\n = 1 , 2, . . . } 
is a development for 7. Moreover 7, like the space X of Example 1, has 
a continuous semi-metric. To see that Y is not quasi-metrizable, suppose 
that there exists a quasi-metric d for Y with spheres 5(x, r). For each 
m9 ne N9 let 

a(m, «) = {ûG^|Fw{a} c S(a, l/m) a S(a9 2/m) c Ki{a}}. 

Since ^ = (Ja(m, «) by the Baire Category Theorem some a(m, n) is 
dense in an open interval / o f R x {0} in the Euclidean topology. We 
assume without loss of generality that the length of / is ^ l/n. Pick a 
point b eB inside the isosceles right triangle T <= R2 that lies above / 
and has / as its hypotenuse. Now pick some countable a a a(m9 n) f] I 
dense in / in the Euclidean topology. Obviously a G St. Let Ya = B x {a}. 
Consider the set S((b9 a}, l/m) f] 7 a . There exists k e N such that 
C(b, l/k) x {a} c S«£, a>, l/m) f| 7 a . Since a is dense in / in the 
Euclidean topology and the length of the hypotenuse of T is ^ l/n, 
one can find aea such that b e T(a, l/n) and such that the side of T(a, 
\jri) is so close to the center b of C(b9 l/k) that C(b9 l/k) <£ T(a9 1). Pick 
ceC(Z>, l/k)\T(a, l/n). Since a e a e 3t fi o&jn, n\ we have r(a, l/n) x 
{«} = ^ M n Yac sea,i/m) n^«cs(£i,2/m) n 7ac= F ^ } n Ya 
= T(a, 1) x {a}. We have rf(a, <6, a » < l/m since <6, a> e JT(Ä, 1/«) 
x {a} cz S(a, l/m), and d((b9 a}, <c, a » < l/m since <c, a> e C(b, l/k) 
x {a} c 5(<6, a>, l/m), while d(a, <c, a » ^ 2/m since S(a, 2/m) fl ^a 
c: T(a9 1) x {a} and <c, a> <£ r(a, 1) x {a}. Hence d is not a quasi-
metric. 

In order to show that Y is in MOBI, we construct a metacompact 
Moore space 7 0 and show that Fis the image of 7 0 under an open compact 
map. Consider the set Ya = B x {a}, a e St. Since a is countable, we 
have a = {aÌ9 a2, . . . } <= ^4. Add one point to a, say a*, and let the 
set a y { f l * j be denoted by a*. Set 7* = Ya x a*, and Y0 = A [j 
((JaG2r 7*). Define a topology on Y0 as follows. A basic neighbourhood 
of a e A is 

Vn{a] = {a} U (IU«C) TX*, 1/«) * {*} * {«})• 
A basic neighbourhood of <Jb9 a, ci) e Y*9 aea, is Vn{(b9 a, a}} = 
C(b9 l/n) x {a} x {a}. A basic neighbourhood of (b9 a, #*> e 7* is 
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Vn{(b, a, a*>} = {a*} \J ((J C(b, l/m) x {a} x {am}). 

Obviously YQ is a zero-dimensional Moore space, like Y. Since Y0 — A 
is a topological sum of open zero-dimensional countable subspaces, it 
is an open metrizable subspace of Y0. The metacompactness of Y0 follows 
since Vn(a) f] Vn{b) = 0 whenever a ^ b. Let us define a map / from 
Y0 onto Y. For aeA we set f(a) = a, and for <è, a, a} e Y*, a e a*, 
we set/«&, a, # » = <6, <x> e F a . Obviously/is open and the pre-images 
of the points of Y are compact. 

REMARK. The theorems on closed and open mappings mentioned in 
the beginning cannot be generalized in another direction. Pseudo-open 
mappings do not preserve quasi-metrics even if they are two-to-one. 

Let us give an outline of a counter-example. Take the quasi-metric 
space of Example 1 of [11]. The underlying set is the plane, a basic neigh­
bourhood is a point together with a circle above it. Now take a similar 
space on the set with the circles below the points. The intersection of 
two topologies gives the semi-metric space of the Example 1 or [9, 10] ; 
a basic neighbourhood is a point along with two circles-above and below 
the point. This will be the range space X, while the topological sum of 
the quasi-metric spaces is the domain. The obvious quotient map is 
pseudo-open since the range is first countable [1]. 

X is not 7% since a semi-metric f-space is developable [14], and hence 
has a <7-discrete network, while X has none [9, 10]. A slight modification 
(triangles in place of circles) will make the domain space even non-
Archimedean quasi-metrizable. 
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