MINIMAL H ${ }^{\text {P }}$ INTERPOLATION IN THE CARATHEODORY CLASS

JOSEPH A. CIMA

Abstract. For $C=\left(c_{1}, c_{2}, \cdots, c_{n}\right)$ a vector in \mathbf{C}^{n}, let $C\left(c_{1}, \ldots\right.$, c_{n}) denote the class of analytic functions with Taylor expansion

$$
f(z)=1+c_{1} z+\cdots+c_{n} z^{n}+\sum_{k=n+1}^{\infty} a_{k} z^{k}
$$

and $\operatorname{Re} f(z)>0$ in the unit disc. It is shown that for p fixed in $[1, \infty)$ there is a unique function of least H^{p}-norm in $C\left(c_{1}, \ldots, c_{n}\right)$.

1. Introduction. In this paper we give a new and shorter proof a result of Beller and Pinchuk [1] and extend their result to the general case of $H^{p}, 1 \leqq p<\infty$. We consider a minimal interpolation problem at the origin of the unit disc D for the class $H^{p} \cap C . H^{p}$ is the usual Hardy space of functions analytic in D with p-th integral means bounded. The class C is the Caratheodory class of functions

$$
f(z)=1+c_{1} z+c_{2} z^{2}+\cdots
$$

analytic in D with $\operatorname{Re} f(z)>0$ in D. If n complex numbers c_{1}, \ldots, c_{n} are given, we wish to prove that there is a unique function f in $H^{p} \cap C$ of the form

$$
f(z)=1+c_{1} z+\cdots+c_{n} z^{n}+\sum_{k=n+1}^{\infty} a_{k} z^{k}
$$

where $\|f\|_{p}$ is minimal among such functions.
It is well known that the mapping ν_{n} of C into \mathbf{C}^{n} by $\nu_{n}: f \rightarrow\left(c_{1}, \ldots, c_{n}\right)$ has range C_{n}, which is a compact convex subset of C^{n}. The following result of C. Caratheodory and 0 . Toeplitz appears in [4].

Theorem. To each point of $\left(C_{n}\right)^{0}=$ interior C_{n} there correspond infinitely many functions in C. Each boundary point of C_{n} corresponds to only one f in C. The preimages of boundary points are functions of the form

$$
\begin{equation*}
f(z)=\sum_{k=1}^{m} \mu_{k}\left[\frac{1+\alpha_{k} z}{1-\alpha_{k} z}\right], \tag{1.1}
\end{equation*}
$$

where $1 \leqq m \leqq n ;\left|\alpha_{k}\right|=1, \mu_{k}>0$ and $\sum_{k=1}^{m} \mu_{k}=1$.

In [1] E. Beller and B. Pinchuk prove that there is an extremal function of minimal norm for the problem $C\left(c_{1}, \ldots, c_{n}\right)$ in the Hilbert space H^{2}. Their technique is to solve a minimal (integral) extremal problem. Since functions f with positive real part in P are in H^{p} for $p<1$, it is perhaps more natural to consider the problem of finding a unique function f in H^{1} solving the $C\left(c_{1}, \ldots, c_{n}\right)$ condition.

Also note that the functions (1.1) are not in H^{1}.
2. The interpolation in \mathbf{H}^{P}. We begin by elaborating further on the proof of Beller and Pinchuk. For the H^{2} case they note that extremal functions exist and then in a sequence of computations they prove its uniqueness. They show moreover that the Herglotz representation of the extremal f is of the form

$$
f(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i t}+z}{e^{i t}-z} d \mu(t)
$$

where $\mu(t)=\max (0, P(t))$ and

$$
P(t)=a_{0}+\sum_{k=1}^{n}\left(a_{k} \cos k t+b_{k} \sin k t\right)
$$

a_{j} and b_{j} are real numbers. We see that u is a Lip 1 function, so its conjugate will be Lip α for $\alpha<1$. Hence, their f is not only in H^{2} but in the disc algebra.

Theorem. For each $\left(c_{1}, \ldots, c_{n}\right)$ in the interior of C_{n}, there exists a unique function f with least H^{p} norm in $C\left(c_{1}, \ldots, c_{n}\right)$.

Proof. Consider first p fixed in ($1, \infty$). The set $H^{p} \cap C\left(c_{1}, \ldots, c_{n}\right)$ is nonempty and is a normal family. Indeed, it is a closed convex subset of H^{p}. In reflexive Banach spaces we know (see [3]) that such sets have a unique element of minimal norm.

For $p=1$ we still observe that $H^{1} \cap C\left(c_{1}, \ldots, c_{n}\right)$ is convex and closed in H^{1}. Also one can show that elements of minimal norm exist. Hence, it remains only to prove the uniqueness. The set $H^{1} \cap C\left(c_{1}, \ldots\right.$, c_{n}) consists only of outer functions. Assume that there are two functions of minimal norm, say F and G. Then $H=(F+G) / 2$ is also in $H^{1} \cap$ $C\left(c_{1}, \ldots, c_{n}\right)$ and hence $\|H\|=\|F\|$. But this contradicts the known fact [2] that the extreme points of the unit ball in H^{1} are the outer functions of norm one.

The following result is a consequence of the Beller-Pinchuk solution. Let F be the mapping of $\left(C_{n}\right)^{0} \rightarrow H^{2}$ given by $F(p)=f_{p}$, where $P=$ $\left(c_{1}, \ldots, c_{n}\right) \in\left(C_{n}\right)^{0}$ and f_{p} is the unique function in $H^{2} \cap C\left(c_{1}, \ldots, c_{n}\right)$ of minimal norm.

Proposition. The mapping F is one-to-one and continuous from $\left(C_{n}\right)^{0}$ into H^{2}.

Proof. The multipliers λ_{j} in the lemma of [1] are continuous functions of $p=\left(c_{1}, \ldots, c_{n}\right)$. Hence, the solution

$$
u_{0}(t, p)=\max \left(0,-\frac{1}{2} \lambda_{1}-\frac{1}{2} \sum_{k=1}^{n} \lambda_{2 k} \sin k t+\lambda_{2 k+1} \cos k t\right)
$$

varies continuously in $\left(c_{1}, \ldots, c_{n}\right)$. That is if $p^{*} \in\left(C_{n}\right)^{0}$ and $\varepsilon>0$, there is a $\delta>0$ such that if $\left|p-p^{*}\right|<\delta$, then $\left\|u_{0}(t, p)-u_{0}\left(t, p^{*}\right)\right\|_{\infty}<\varepsilon$. This implies by the Riesz theorem that the conjugates are continuous in the L^{2}-norm. Hence, for $f_{p}(z)=u_{0}(z, p)+i \tilde{u}_{0}(z, p)$, the analytic completion of $u_{0}(z, p)$, we have that the mapping $p \rightarrow F(p)=f_{p}$ is continuous into H^{2}.

References

1. E. Beller and B. Pinchuk, Minimal H^{2} interpolation in the Caratheodory class, Proc. AMS 72 (1978), 289-293.
2. K. DeLeeuw, and W. Rudin, Estreme points and extremum problems in H^{1}, Pacific J. Math. 8 (1958), 467-485.
3. M. Dunford and J. T. Schwartz, Linear operators, Interscience Publishers, John Wiley \& Sons, New York, I, 1958; II, 1963.
4. A. Pfluger, Some coefficient problems of starlike functions, Ann. Acad. Sci. Fenn. Ser. A1. 2 (1976), 383-396.

Department of Mathematics, University of North Carolina, Chapel Hill, nC 27514.

