CERTAIN FUNCTIONALS ON ℓ_{∞}

F. S. CATER

1. Introduction. In [2] Albert Wilansky observed that if A is a linear functional on the Banach space of bounded sequences, l_{∞}, such that
(*) $\quad A x$ is a limit of some subsequence of x for each $x \in \ell_{\infty}$,
then A is multiplicative on ℓ_{∞}. In this note we show that any additive real valued function satisfying (*) on ℓ_{∞} must be linear and multiplicative on ℓ_{∞}. We also show that if G denotes the subgroup of ℓ_{∞} composed of all sequences with finite range, then any additive real valued function of G satisfying (*) extends to a unique additive real valued function satisfying $(*)$ on ι_{∞}. We will show that there is a canonical correspondence between the linear functionals on ℓ_{∞} satisfying ($*$) and the nontrivial ultrafilters in the set of positive integers. Finally, we extend all this work from sequences to nets on a directed set.
2. Notation. Throughout this note, D will be a nonvoid set directed by the ordering $<$ such that D has no greatest element. Let S be the set of all bounded real valued nets on D [1, p. 65]. We make S a Banach algebra under the sup norm by defining vector addition, multiplication, and scalar multiplication pointwise. Let G_{0} denote the additive subgroup of S consisting of those nets that take only integer values. If G is an additive subgroup such that $G_{0} \subseteq G \subseteq S$, then by a special function on G, we mean a real valued function f on G satisfying
(*) $\quad f x$ is the limit of some subnet of x for each $x \in G$.
Fix a $d \in D$. Then the set of all subsets of D containing d is (trivially) an ultrafilter in D. By a nontrivial ultrafilter in D, we mean an ultrafilter with void intersection. By a special ultrafilter in D, we mean a nontrivial ultrafilter every set of which is cofinal in D. (Of course, if D is the set of positive integers with the usual ordering, then any nontrivial ultrafilter in D is a special ultrafilter.)

A simple example of a special ultrafilter in D can be constructed as follows. Let \mathscr{F} be the family of all subsets of D containing sets of the form $\{x: x>d\}$ for $d \in D$. Then \mathscr{F} is a filter in D. Extend \mathscr{F} to an ultrafilter by Zorn's axiom.

[^0]If $F \subseteq D$, then χ_{F} will denote the characteristic function of the set F on D.
3. Special functions. Our first order of business is to establish a canonical correspondence between the additive special functions and the special ultrafilters. This will be done in two lemmas.

Lemma 1. Let A be an additive special function on an additive subgroup G of S containing G_{0}. Then there is a unique special ultrafilter \mathscr{F} in D such that for any $\varepsilon>0, g \in G$, we have $g^{-1}(A g-\varepsilon, A g+\varepsilon) \in \mathscr{F}$.

Proof. Let $F \cong D$. Then $\chi_{F} \in G_{0} \subseteq G$ and $A \chi_{F}=0$ or 1 . If $A \chi_{F}=1$ put $F \in \mathscr{F}$. If, on the other hand, $A \chi_{F}=0$, put $D \backslash F \in \mathscr{F}$. In the latter case, note that

$$
1=A 1=A\left(\chi_{F}+\chi_{D \backslash F}\right)=A \chi_{F}+A \chi_{D \backslash F}=A \chi_{D \backslash F} .
$$

Thus \mathscr{F} is a family of cofinal subsets of D, and for any $F \cong D$, either $F \in \mathscr{F}$ or $D \backslash F \in \mathscr{F}$.

Suppose $F \subseteq F_{0} \subseteq D$ and $F \in \mathscr{F}$. Then

$$
A \chi_{F_{0}}=A \chi_{F}+A \chi_{F_{0} \backslash F}=1+A \chi_{F_{0} \backslash F} .
$$

But $A \chi_{F_{0}}$ and $A \chi_{F_{0} \backslash F}$ are either 0 or 1 , so $A \chi_{F_{0} \backslash F}=0$ and $A \chi_{F_{0}}=1$. Hence $F_{0} \in \mathscr{F}$. Now suppose that $F_{1} \in \mathscr{F}$, and $F_{2} \in \mathscr{F}$. Then

$$
\chi_{F_{1} \cap F_{2}}=\chi_{F_{1}}+\chi_{F_{2}}-\chi_{F_{1} \cup F_{2}}
$$

and

$$
A \chi_{F_{1} \cap F_{2}}=A \chi_{F_{1}}+A \chi_{F_{2}}-A \chi_{F_{1} \cup F_{2}}=1+1-1=1
$$

Hence $F_{1} \cap F_{2} \in \mathscr{F}$. We have shown that \mathscr{F} is a filter in D. But for any $F \subseteq D$, either $F \in \mathscr{F}$ or $D \backslash F \in \mathscr{F}$. So \mathscr{F} is in fact an ultrafilter. And every member of \mathscr{F} is cofinal in D, so \mathscr{F} is finally a special ultrafilter.

Take any $\varepsilon>0$ and $g \in G$. Suppose that $F=g^{-1}(A g-\varepsilon, A g+\varepsilon) \notin$ \mathscr{F}. We assume, without loss of generality, that $\varepsilon<1 / 2$. Then $A \chi_{F}=0$. Put $f=g+\chi_{F}$. Then $A f=A g+A \chi_{F}=A g$. Clearly f is bounded away from $A g$ on F and on D. Thus f has no subnet that converges to $A g=A f$, contrary to hypothesis. This contradiction proves that $g^{-1}(A g-\varepsilon$, $A g+\varepsilon) \in \mathscr{F}$.

Now suppose that \mathscr{F}^{\prime} is a special ultrafilter in D and $\mathscr{F}^{\prime} \neq \mathscr{F}$. Say $F \in \mathscr{F} \backslash \mathscr{F}^{\prime}$. Then $A \chi_{F}=1$. But $\chi_{F}^{-1}(1-1,1+1)=F \notin \mathscr{F}^{\prime}$. This proves the uniquencess of \mathscr{F}.

Lemma 2. Let \mathscr{F} be a special ultrafilter in D. Then there exists a unique special function A on G related to \mathscr{F} as in Lemma 1. Moreover, A is additive on G.

Proof. Take any $g \in G$ and any integer $n>0$. Then exactly one of the sets

$$
\begin{aligned}
& \ldots g^{-1}\left(-2 \cdot 2^{-n},-2^{-n}\right], g^{-1}\left(-2^{-n}, 0\right], g^{-1}\left(0,2^{-n}\right], \\
& \quad g^{-1}\left(2^{-n}, 2 \cdot 2^{-n}\right], g^{-1}\left(2 \cdot 2^{-n}, 3 \cdot 2^{-n}\right], g^{-1}\left(3 \cdot 2^{-n}, 4 \cdot 2^{-n}\right], \ldots
\end{aligned}
$$

lies in \mathscr{F}. Call it E_{n}. Clearly $E_{1} \supseteqq E_{2} \supseteq E_{3} \supseteqq \ldots$ and each E_{n} is cofinal in D. By [1, Lemma 5, p. 70], there is a subnet of g which is eventually in $g E_{n}$ for all n. This subnet evidently converges to a real number. Let $A g$ denote its limit. For any $\varepsilon>0$, clearly $g^{-1}(A g-\varepsilon$, $A g+\varepsilon) \in \mathscr{F}$.

Suppose that B is a real valued function on G and $A \neq B$. Say $g \in G$ and $A g \neq B g$. Then there is an $\varepsilon>0$ such that $|u-A g|<\varepsilon$ implies that $|u-B g|>\varepsilon$. Then $g^{-1}(A g-\varepsilon, A g+\varepsilon) \cap g^{-1}(B g-\varepsilon, B g+\varepsilon)=$ \varnothing. Since $g^{-1}(A g-\varepsilon, A g+\varepsilon) \in \mathscr{F}$, it follows that $g^{-1}(B g-\varepsilon, B g+\varepsilon) \notin$ \mathscr{F}. This proves the uniqueness of A.

It remains only to prove that A is additive on G. Suppose, on the contrary, that there exist $g \in G, f \in G$, such that $A(f+g) \neq A f+A g$. There is an $\varepsilon>0$ such that $|u-A f|<\varepsilon,|v-A g|<\varepsilon$ imply that $\mid u+$ $v-A(f+g) \mid>\varepsilon$. Consequently

$$
\begin{aligned}
& f^{-1}(A f-\varepsilon, A f+\varepsilon) \cap g^{-1}(A g-\varepsilon, A g+\varepsilon) \\
& \quad \cap(f+g)^{-1}(A(f+g)-\varepsilon, A(f+g)+\varepsilon)=\varnothing,
\end{aligned}
$$

contrary to the fact that this intersection is in \mathscr{F}.
Lemmas 1 and 2 establish our canonical correspondence between the additive special functions on S and the special ultrafilters in D.

Lemma 3. Let \mathscr{F} and A be related as in Lemmas 1 and 2. Let U be a continuous real valued function on the Euclidean plane. Let $f \in G, g \in G$, such that $U(f, g) \in G$. Then $A U(f, g)=U(A f, A g)$. Thus in particular, $A(f g)=(A f)(A g)$ if $f g \in G$, and $A(c g)=c A g$ if c is real and $c g \in G$.

Proof. Suppose, on the contrary, $A U(f, g) \neq U(A f, A g)$. Put $w=$ $A U(f, g)$. Since U is continuous, there is an $\varepsilon>0$ such that $|r-A f|<$ $\varepsilon,|s-A g|<\varepsilon$ imply that $|w-U(r, s)|>\varepsilon$. Thus
$f^{-1}(A f-\varepsilon, A f+\varepsilon) \cap g^{-1}(A g-\varepsilon, A g+\varepsilon) \cap(U(f, g))^{-1}(w-\varepsilon, w+\varepsilon)=\varnothing$.
But this is impossible since the intersection lies in \mathscr{F}. Hence $A U(f, g)=$ $U(A f, A g)$.

For $A(f g)=(A f)(A g)$, let $U(r, s)=r s$. For $A(c g)=c A g$, let $U(r, s)=$ cs.

It is worth noting that additive special functions on G (as in Lemmas $1,2,3$) have norm 1 on G. For $F \in \mathscr{F},\left|A \chi_{F}\right|=1$. And for $g \in G,|A g| \leqq$
$\|g\|$ because a subnet of g converges to $A g$.
If $G=S$ in Lemma 3, then A is linear and multiplicative on S. Thus we have the following theorem.

Theorem 1 (Wilansky). Let A be an additive special function on S. Then A is linear and multiplicative on S.

Proof. A is associated with a special ultrafilter as in Lemma 1. By Lemmas 2 and 3, A is linear and multiplicative on S.

Now we have the extension theorem we promised in the introduction.
Theorem 2. Let G be an additive subgroup of S containing G_{0}, and let A be an additive special function on G. Then A has a unique special extension A_{0} on S. Moreover, A_{0} is linear and multiplicative on S.

Proof. A is related to a special ultrafilter \mathscr{F} as in Lemma 1. Then \mathscr{F} in turn is related to a special function A_{0} on S by Lemma 2, and indeed A_{0} coincides with A on G by uniqueness. By Lemmas 2 and $3, A_{0}$ is linear and multiplicative on S.

Our next result will show, among other things, that if f is a fixed net in S and if w is the limit of some subnet of f, then there is a linear special function A on S such that $A f=w$.

Theorem 3. Let X be a subset of S such that for each $f \in X$ there is a real number $w(f)$ satisfying (i) for any $\varepsilon>0$ and any finite number of members of X, f_{1}, \ldots, f_{n}, we have

$$
f_{1}^{-1}\left(w\left(f_{1}\right)-\varepsilon, w\left(f_{1}\right)+\varepsilon\right) \cap \cdots \cap f_{n}^{-1}\left(w\left(f_{n}\right)-\varepsilon, w\left(f_{n}\right)+\varepsilon\right)
$$

is cofinal in D. Then there is a linear special function A on S such that $A f=w(f)$ for all $f \in X$.

Proof. Let \mathscr{F}^{\prime} be the smallest filter in D containing all the sets of the form $f^{-1}(w(f)-\varepsilon, w(f)+\varepsilon), f \in X, \varepsilon>0$, and of the form $\{x \in D: x>d\}$ $d \in D$. We extend \mathscr{F}^{\prime} to an ultrafilter \mathscr{F} by Zorn's axiom. Then \mathscr{F} is a special ultrafilter. Let A be the linear special function given by Lemma 2.

Let f be any member of X. It remains only to show that $A f=w(f)$. Suppose, on the contrary, that $A f \neq w(f)$. Then for some $\varepsilon>0$,

$$
f^{-1}(w(f)-\varepsilon, w(f)+\varepsilon) \cap f^{-1}(A f-\varepsilon, A f+\varepsilon)=\varnothing
$$

Since $f^{-1}(w(f)-\varepsilon, w(f)+\varepsilon) \in \mathscr{F}^{\prime} \subseteq \mathscr{F}$, we have that $f^{-1}(A f-\varepsilon, A f+\varepsilon)$ $\notin \mathscr{F}$, which is impossible.

In conclusion we show that there must be uncountably many linear special functions on S.

Theorem 4. There are at least c linear special functions on S.

Proof. By transfinite induction we construct a cofinal subset E of D well ordered by < such that
(i) if $x, y \in E$ and x is a $<$ limit point and $y \ll x$, then $x \nless y$, and
(ii) if $x, y \in E$ and y is the $<$ successor of x, then $x<y$.

By a type 0 element in E we mean the < first element of E or any << limit point in E. By a type 1 element of E we mean the < successor of a type 0 element. In general, by a type $n+1$ element of E we mean the « successor of a type n element.

Let $E_{0} \cong E$ consist of all the type 0 , type 2 , type 4 , type 6 , type 8 , etc., elements. Let E_{1} consist of all the type 1 , type 5 , type 9 , type 13, etc., elements. Let E_{2} consist of all type 3, type 11, type 19, type 27, etc., elements. Let E_{3} consist of all the type 7, type 23, type 39, etc., elements. We continue in this way to construct a sequence $E_{1}, E_{2}, E_{3}, \ldots, E_{n}, \ldots$ of pairwise disjoint cofinal subsets of E and of D.
We construct $f \in S$ by making f constant on each E_{n} so that $f(E)$ is dense in $(0,1)$ and $f(D \backslash E)=\{0\}$. By [1, Theorem 6, p. 71], for each number $w \in(0,1)$ there is a subnet of f converging to w. And by Theorem 3 there is a linear special function A on S satisfying $A f=w$. Thus there are at least as many linear special functions on S as there are real numbers between 0 and 1 .

A possible topic for further study would be to find exactly how many linear special functions on S there are. This will depend, naturally, on D and its ordering.

Note that complex scalars will suffice in this work as well as real scalars.

References

[^1]Portland State University, Portland, OR 97207

[^0]: Received by the editors on February 20, 1979.

[^1]: 1. J. Kelley, General Topology, van Nostrand, New York, 1955.
 2. A. Wilansky, Problem E2712, The American Mathematical Monthly, 85 (1978), 277.
