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CERTAIN FUNCTIONALS ON / „ 

F. S. CATER 

1. Introduction. In [2] Albert Wilansky observed that if A is a linear 
functional on the Banach space of bounded sequences, <*,, such that 

(*) Ax is a limit of some subsequence of x for each x e /TO, 

then A is multiplicative on /«,. In this note we show that any additive 
real valued function satisfying (*) on /«, must be linear and multiplicative 
on <„. We also show that if G denotes the subgroup of /«, composed of 
all sequences with finite range, then any additive real valued function of 
G satisfying (*) extends to a unique additive real valued function satisfying 
(*) on /oo. We will show that there is a canonical correspondence between 
the linear functional on /^ satisfying (*) and the nontrivial ultrafilters 
in the set of positive integers. Finally, we extend all this work from 
sequences to nets on a directed set. 

2. Notation. Throughout this note, D will be a nonvoid set directed 
by the ordering < such that D has no greatest element. Let S be the set 
of all bounded real valued nets on D [1, p. 65]. We make S a Banach 
algebra under the sup norm by defining vector addition, multiplication, 
and scalar multiplication pointwise. Let G0 denote the additive subgroup 
of S consisting of those nets that take only integer values. If G is an 
additive subgroup such that G0 E G E S, then by a special function on 
(j, we mean a real valued function fon G satisfying 

(*) fx is the limit of some subnet of x for each x e G. 

Fix a d e D. Then the set of all subsets of D containing d is (trivially) 
an ultrafilter in D. By a nontrivial ultrafilter in D, we mean an ultrafilter 
with void intersection. By a special ultrafilter in D, we mean a nontrivial 
ultrafilter every set of which is cofinal in D. (Of course, if D is the set 
of positive integers with the usual ordering, then any nontrivial ultrafilter 
in D is a special ultrafilter.) 

A simple example of a special ultrafilter in D can be constructed as fol
lows. Let 3F be the family of all subsets of D containing sets of the form 
{x: x > d) for de D. Then <F is a filter in D. Extend <F to an ultrafilter 
by Zorn's axiom. 
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If F g D, then %F will denote the characteristic function of the set F 
onD. 

3. Special functions. Our first order of business is to establish a canonical 
correspondence between the additive special functions and the special 
ultrafilters. This will be done in two lemmas. 

LEMMA 1. Let A be an additive special function on an additive subgroup 
G of S containing G0. Then there is a unique special ultrafilter $Fin D such 
that for any s > 0, g e G, we have g~l{Ag — e9 Ag + e) e SF. 

PROOF. Let F g D . Then ^F e G0 E G and AjF = 0 or 1. If AXF = 1 
put F e ^ . If, on the other hand, A X F = 0, put D\Fe3F. In the latter 
case, note that 

1 = Al = A(xF + XD\F) = ^XF + ^XD\F = 4xD\F. 

Thus SF is a family of cofinal subsets of D, and for any F E A either 
Fe & or D\Fe^. 

Suppose F i F o i ^ a n d F e ^ . Then 

AXFO = AXF + AXF0\F = 1 + AXFO\F-

But A%Fo and AXF0\F
 a r e either 0 or 1, so A%FQXF = 0 and ^£ F o = 1. 

Hence F0 e gF. Now suppose that Fx e SFy and F2 e ^ . Then 

XFlf]F2 = XFi + XF2 - XF1DF2 

and 

^ F l f i F 2 = 4XFl + ^ - AXFlUF2 = 1 + 1 - 1 = 1. 

Hence F1 f| F2 e ^ . We have shown that ^ is a filter in D. But for any 
F g Z>, either F e « f or Z>\F e,f . So «f is in fact an ultrafilter. And 
every member of SF is cofinal in D, so 3F is finally a special ultrafilter. 

Take any e > 0 and g e G. Suppose that F = g-1G4g — e, Ag + e) $ 
IF. We assume, without loss of generality, that e < 1/2. Then A%F = 0. 
P u t / = g + XF. Then 4 / = ^ + A X F = y4g. Clearly/is bounded away 
from Ag on Fand on D. Thus/has no subnet that converges to Ag = Af 
contrary to hypothesis. This contradiction proves that g~~l(Ag — e, 
Ag + e)e &. 

Now suppose that SF1 is a special ultrafilter in D and $F' ^ SF. Say 
F e ^ ' . T h e n ^ = 1. But z ^ ( l - 1, 1 + 1) = F<£ i?". This proves 
the uniquencess of <F. 

LEMMA 2. Let ZFbe a special ultrafilter in D. Then there exists a unique 
special fune Hon A on G related to ZF as in Lemma 1. Moreover, A is additive 
on G. 
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PROOF. Take any g e G and any integer n > 0. Then exactly one of the 
sets 

. . . r-K-2.2-», -2-»], grH-z-*, o], grKO, 2-»], 
g-i(2~», 2-2-], g"1(2-2- 3.2-], ^ ( 3 - 2 - 4-2-], . . . 

lies in &. Call it En. Clearly f̂  2 £ 2 2 £ 3 2 . . . and each Ew is 
cofinal in D. By [1, Lemma 5, p. 70], there is a subnet of g which is 
eventually in g En for all n. This subnet evidently converges to a real 
number. Let Ag denote its limit. For any a > 0, clearly g~l{Ag — e, 
Ag + a) e &. 

Suppose that B is a real valued function on G and A ^ B. Say g G G 
and Ag ^ i?g. Then there is an a > 0 such that |w — Ag\ < a implies 
that \u - Bg\ > e. Then g~\Ag - a, Ag + a) f] g~l(Bg - a, Bg + a) = 
0. Since g~l{Ag - e, Ag + e) e J% it follows that g~\Bg - a, Bg + a) £ 
8F. This proves the uniqueness of A. 

It remains only to prove that A is additive on G. Suppose, on the 
contrary, that there exist g e G , / e G, such that A(f + g) ^ Af + Ag. 
There is an a > 0 such that \u — 4/Ï < e> \v — Ag\ < £ imply that \u + 
v — A(f + g)\ > a. Consequently 

f-\Af - e,Af+ a)f) g'KAg - a, Ag + a) 

n ( / + g)-KA(f + g) - 5, A(f + g) + e) = 0 , 

contrary to the fact that this intersection is in J^. 

Lemmas 1 and 2 establish our canonical correspondence between the 
additive special functions on S and the special ultrafilters in D. 

LEMMA 3. Let !F and A be related as in Lemmas 1 and 2. Let U be a 
continuous real valued function on the Euclidean plane. Let fe G9 g e G, 
such that U(f g)tG. Then AU(f g) = U(Af Ag). Thus in particular, 
Afg) = (Af)(Ag) iffg e G, and A(cg) = cAg if c is real and eg e G. 

PROOF. Suppose, on the contrary, AU(f g) ^ U(Af Ag). Put w = 
AU(f g). Since U is continuous, there is an e > 0 such that \r — Af\ < 
a, \s - Ag\ < a imply that \w — U(r, s)\ > a. Thus 

f-K4f-e, Af + a)Ç] g-KAg-a,Ag + a) f) (U(f g))-i(w-a,w +a) = 0. 

But this is impossible since the intersection lies in 3F. Hence AU(fg) = 
U(Af Ag). 

For A(fg) = (Af)(Ag), let U(r,s) = rs. For A(cg) = cAg9 let U(r9s) = 
cs. 

It is worth noting that additive special functions on G (as in Lemmas 
1, 2, 3) have norm 1 on G. For F e J s \A%F\ = 1. And for g eG, \Ag\ ^ 
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||g|| because a subnet of g converges to Ag. 
If G = S in Lemma 3, then A is linear and multiplicative on S. Thus 

we have the following theorem. 

THEOREM 1 (WILANSKY). Let A be an additive special function on S. 
Then A is linear and multiplicative on S. 

PROOF. A is associated with a special ultrafilter as in Lemma 1. By 
Lemmas 2 and 3, A is linear and multiplicative on S. 

Now we have the extension theorem we promised in the introduction. 

THEOREM 2. Let G be an additive subgroup of S containing G0, and let 
A be an additive special function on G. Then A has a unique special extension 
AQ on S. Moreover, A0 is linear and multiplicative on 5. 

PROOF. A is related to a special ultrafilter <F as in Lemma 1. Then 8F 
in turn is related to a special function A0 on S by Lemma 2, and indeed 
AQ coincides with A on G by uniqueness. By Lemmas 2 and 3, A0 is linear 
and multiplicative on S. 

Our next result will show, among other things, that if / i s a fixed net 
in S and if w is the limit of some subnet off then there is a linear special 
function A on S such that Af = w. 

THEOREM 3. Let X be a subset of S such that for each / e l there is a 
real number w(f) satisfying (i) for any e > 0 and any finite number of 
members ofX,fl9 . . . , /„, we have 

/rx(w(/i) - e, < / l ) + e) fi • • • n fnl (*>(/„) - e, w(/„) + s) 

is cofinal in D. Then there is a linear special function A on S such that 
Af=w(f)forallfeX. 

PROOF. Let 3F' be the smallest filter in D containing all the sets of the 
ïorm f-\w(f) - e, w(f) + e),fe X9 e > 0, and of the form {xeD: x> d} 
de D. We extend $F' to an ultrafilter ^ by Zorn's axiom. Then 8F is a 
special ultrafilter. Let A be the linear special function given by Lemma 2. 

Let / be any member of X. It remains only to show that Af = w(f). 
Suppose, on the contrary, that Af ^ w(f). Then for some s > 0, 

f-Kw(f) - e, w(f) + e) fi /''(Af - e, Af + e) = 0 . 

Since f-\w(f) - e, w(J) + e) e &' g jF, we have t h a t / " 1 ^ / - e, Af +e) 
$ 3F, which is impossible. 

In conclusion we show that there must be uncountably many linear 
special functions on S. 

THEOREM 4. There are at least c linear special functions on S. 
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PROOF. By transfinite induction we construct a cofinal subset E of D 
well ordered by < such that 

(i) if x, y e E and x is a < limit point and >> < x, then x < y, and 
(ii) if x, y e £ and y is the < successor of x, then x < y. 
By a type 0 element in E we mean the < first element of E or any < 

limit point in E. By a type 1 element of E we mean the < successor of a 
type 0 element. In general, by a type n + 1 element of E we mean the < 
successor of a type n element. 

Let E0 Q E consist of all the type 0, type 2, type 4, type 6, type 8, etc., 
elements. Let Ex consist of all the type 1, type 5, type 9, type 13, etc., 
elements. Let E2 consist of all type 3, type 11, type 19, type 27, etc., 
elements. Let E$ consist of all the type 7, type 23, type 39, etc., elements. 
We continue in this way to construct a sequence Eh E2, £3, . . . , £ „ , . . . 
of pairwise disjoint cofinal subsets of E and of D. 

We construct fe S by making / constant on each En so that f(E) is 
dense in (0, 1) and f(D\E) = {0}. By [1, Theorem 6, p. 71], for each 
number w e (0, 1) there is a subnet of/converging to w. And by Theorem 
3 there is a linear special function A on S satisfying Af = w. Thus there 
are at least as many linear special functions on S as there are real numbers 
between 0 and 1. 

A possible topic for further study would be to find exactly how many 
linear special functions on S there are. This will depend, naturally, on 
D and its ordering. 

Note that complex scalars will suffice in this work as well as real 
scalars. 
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