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CHAIN CONDITIONS AND INTEGRAL EXTENSIONS 

CHARLES LANSKI 

ABSTRACT. Let R be a ring, integral of bounded degree n over a 
subring C of the center of R. Various theorems are proved relating 
chain conditions in R and C. When R is a semi-prime ring which is 
torsion free for the regular elements of C and which is «!-torsion 
free, then R is a Goldie ring when C is. If also, « ! is a unit in R and C 
is "integrally closed" then C is a Noetherian ring (has Krull dimen­
sion) if and only if R is a Noetherian ring (has Krull dimension). 
Finally, assuming only that n\ is a unit in Ry any R module has 
Gabriel dimension exactly when it does as a C module, in which case 
the dimensions are equal. 

In this paper we consider rings which are integral extensions of central 
subrings and investigate whether certain chain conditions on one ring of 
the pair transfer to the other. Specifically, we examine the situation when 
one of the rings is a Goldie ring, a Noetherian ring, or has Krull dimen­
sion, and also consider modules over the larger ring which have Gabriel 
dimension with respect to one of the rings. To show that these conditions 
transfer from one ring to the other, we need to assume that the degrees 
of integrality are bounded, and usually, that this bound is invertible. 
Examples are presented to show that these assumptions are necessary. 
For the case of Noetherian rings, or of rings with Krull dimension, we 
must also assume that the central subring is "integrally closed" in its 
quotient ring, although we do not know if this assumption is necessary. 

The questions studied here were raised as a consequence of similar ones 
for rings with involution [16 and 17], where the situation of a ring quad­
ratic over its center occurs as a special case which must be considered. 
The more specific subject of algebraic algebras of bounded degree has 
been studied in the past, but the work was concerned with problems of a 
different kind. Some results on the finite dimensionality of such algebras 
were obtained in [12] and [15], such as for division algebras over their 
centers [12; Theorem 7, p. 701], or for semi-simple algebras over infinite 
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perfect fields [12; Corollary, p. 704]. Other work in these papers concerns 
commutativity theorems [12], topological representations of such algebras 
[15], and in both, the Kurosh problem, culminating in the result of 
Kaplansky [15; Theorem 6.1, p. 71] that algebraic algebras of bounded 
degree are locally finite. The more general situation of algebras whose 
nilpotent elements have bounded index was studied by Levitzki [18] who 
was concerned, primarily, with structural properties such as the existence 
of certain matrix ideals and the relation between the algebra and its 
primitive images. Studying chain conditions in integral extensions has a 
somewhat more commutative flavor than these earlier works. Although 
the relation between the prime ideals in a commutative ring and those of 
an integral extension is well known, and although there are counter­
examples to the transfer of the ascending chain condition [20; Example 
4, p. 207], the questions about chain conditions in the case of bounded 
degree do not seem to have been considered. In fact, the strong assump­
tion of bounded degree appears difficult to use to advantage in the purely 
commutative setting. 

For C a commutative ring, call a polynomial p(x) = xk 4- cixk~l + • • • 
4- ch with ct- G C, a monic polynomial of C[x], We call a ring R integral 
over a central subring C if for each r e R there exists a monic polynomial 
p(x) of C[X] so that p(r) = 0. If, in addition, it is possible to choose p(x) 
of degree at most n, then R is integral of bounded degree n over C. Note 
that in this case of bounded degree n, there is for each r e i ? , a monic 
polynomial of degree exactly n which is satisfied by r. An important 
result which follows from this is that when R is integral of bounded 
degree n over C, R satisfies a polynomial identity [9; Lemma 6.2, p. 155]. 
Also, we recall that if R is an algebraic algebra over a field F, then each 
non-nilpotent element of R has a multiple which is a nonzero idempotent. 
To see this, observe that from the minimal polynomial for reR one 
obtains a relation of the form rk = rk+1g(r) ^ 0, and then use the proof 
of [9; Lemma 1.3.2, p. 22]. 

I. Goldie conditions. In this section we study when the Goldie chain 
conditions transfer from one of our rings to the other. It is easy to see 
that one must assume that R is a semi-prime ring to force any reasonable 
finiteness condition on R from C. For example, let C be a commutative 
ring, and set R = C[xh x2, . . . ] / / , where / is the ideal generated by all 
XjXj. Each reR can be written r = c0 + 2cr**- Then (r — c0)

2 = 0, so 
R is integral over C of bounded degree two but contains infinite direct 
sums of ideals. On the other hand, if R is a semi-prime Goldie ring, any 
central subring is also a semi-prime Goldie ring. Therefore, we shall 
consider the situation when R is a semi-prime ring and C is a Goldie 
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ring. We begin with the special case when C is a field and prove an easy 
but useful lemma. 

LEMMA 1. Let R be an algebraic algebra over the field F so that R s Fi® 
— • @ Ft, for each F{ a separable field extension of F. If R is of bounded 
degree n over F, and either char F > n or char F = 0, then dimF R ^ n. 

PROOF. The separability of each F{ over Fand the bound on the degrees 
of elements show that dim^F, g n. To prove the lemma by induction on 
t, it suffices to consider an algebra B © K, algebraic of bounded degree 
n, over F, where B has an element of degree m, K is a separable extension 
field of F with éìmFK = k, and to show that B © K contains an element 
of degree at least m + k over F. If h(x) e F[x] is the minimal polynomial 
for (b, t) G B © K, then h(x) is divisible by the corresponding polynomials 
for b and for /. Take b e B with minimal polynomial g(x) of degree m and 
t e K so that K = F(t). If f(x) is the minimal polynomial over F for t, 
then f(x) is irreducible of degree k, and for each 1 ^ / ^ n, f(x + i) e 
F[x] is also irreducible over F and has degree k. Now {f(x + /) | 0 ^ z ^ 
n) contains n -f 1 distinct irreducible polynomials, by the assumption on 
char F, and since degg(x) ^ n, there is some y with f(x + j) / g(x). 
Thus (&, f — y) has degree at least m + k. 

For any ring R, let i?* denote the semi-group of regular elements of 
R, and Z(R), the center of R. 

THEOREM 1. Let R be a semi-prime ring and F afield contained in Z(R). 
If R is integral of bounded degree n over F, then R is F*-torsion free and 
has the same identity element as F. If also either char F = 0 or char F > n, 
then R is a finite dimensional algebra over F. In this case, writing R = 
M„(DC£>I) © • • • © Mnit)(Dt) for D{ division algebras, with Z(Dt) = Z{ 

and dimZjZ>,- = m% one has 2]«(0widimFZz- fg n, dimFjR g n2, and each 
Zt is a separable extension ofF. 

PROOF. If e is the identity element of F, then e is a central idempotent 
in R, and we may write, formally, R = eR © (1 — e)R. Since F c eR, 
each element of (1 — e)R annihilates every nonleading coefficient of its 
minimal polynomial in F[x], Therefore, the ideal (1 — e)R is nil of index 
n, so must equal zero [10; Lemma 1.1, p. 1]. Hence e is the identity of R 
and the elements of i7* are units in R. 

As we have just observed, no nonzero right ideal of R can be nil, so our 
earlier remark about algebraic algebras over fields implies that every 
right ideal of R contains an idempotent. If the right ideal eR, for e2 = e, 
is not minimal, then eRe is algebraic over F and contains a proper idem-
potent. Thus eR 3 exR + e2R for ex and e2 orthogonal idempotents. 
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Similarly, if eR e T, properly, then T = eR + (1 - é)R fi T, so eR + 
fRczT for e and / orthogonal idempotents. Consequently R will be 
Artinian if there is a finite bound on the cardinality of sets of orthogonal 
idempotents. We claim that n is such a bound. If {eh e2, . . . , en+1} is a 
set of orthogonal idempotents, the assumption on char F enables one to 
choose n + 1 distinct elements Ö 1? a2, . . . , an+i e F. Consider g = axe\ + 
• • • + aw+1ew+1 and note that any polynomial over F having g as a root 
must have each aj as a root. This forces the degree of g over F to be n + 1. 
Therefore, R must be an Artinian algebra, so a finite direct sum of matrix 
algebras over algebraic division algebras, as claimed. 

Each division algebra Dt is of bounded degree n over i% so each Dt is 
finite dimensional over its center [12; Theorem 7, p. 701]. In fact, the 
assumption on char F forces any subfield of Dt containing F to be a finite 
dimensional separable extension of F, which itself yields the finite dimen­
sionality of Dt over Zz [9; Theorem 4.2.1, p. 95]. Since dimz.D,- = m% 
Dt contains a maximal subfield Kt with dimz.A^ = m{. For each /, the 
direct sum of n(i) copies of K{ appears in R as diagonal matrices in 
Mn{i)(Dt). Using Lemma 1 gives the inequality J^n(i)mtdimFZt- ^ «, 
from which it follows that dimFR ^ n2. 

It is clear that the first inequality in Theorem 1 can be an equality, 
by taking a direct sum of n copies of F for example, and that the second 
equality can be obtained by taking R = Mn(F). Also, if rather than 
assuming F a R, one simply assumes that R is an algebra over F, then 
the proof of Theorem 1, after the first paragraph, is still valid. 

Before presenting the main result of this section, we give two examples 
which show the necessity of the characteristic assumption on F. 

EXAMPLE 1. Let F = GF(p)(X) for X an infinite set of indeterminates, 
and let Kbe an algebraic closure of F. Select Y a Kby Y = {xl/P \ x G X). 
Then A = F[Y] is an infinite dimensional extension of F, yet a* e F for 
each a e A. Note that each a e A is a root of x^+1 — bx for some b e F, 
so that char F ^ n does not suffice in Theorem 1. 

The next example is in the same spirit and shows that A need not be a 
Goldie ring without the characteristic assumption on F. 

EXAMPLE 2. Let A = n^wCGFC/?)),, the complete direct product of GF(p) 
over the natural numbers. Each element of A satisfies x* — x = 0, but 
it is clear that A is not a Goldie ring. As in Example 1, if we consider 
each element of A to satisfy JC^+1 — x2 = 0, then char F ^ n is not enough 
in Theorem 1. This observation will be relevant to Theorem 2. 

Our next theorem does the general case of noncommutative semi-prime 
rings. 
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THEOREM 2. Let R be a semi-prime ring and C a subring ofZ(R) so that 
C is a Goldie ring and R is C*-torsion free. IfR is integral over C of bounded 
degree n, and if R is n l-torsion free, then R is a left and right Goldie ring 
with quotient ring S = i?(C*)-1. Furthermore, S is a finitely generated 
Q(C) = C(C*)~l module, and the minimal primes of R intersected with C 
are the minimal primes ofC. 

PROOF. Observe that C ^ O , for otherwise R would be nil of bounded 
index n, contradicting the semi-primeness of R[10; Lemma 1.1, p. 1]. 
Set S = R(C*)~X, the localization of R at C*, and note that R embeds in 
S because R is C*-torsion free [1; Section 2]. Since C is a semi-prime 
Goldie ring, C(C*)~l = g(C) c S is a direct sum of fields Fx © • • • © Ft, 
and either char F{ > n or char F{ = 0 by the assumption that R is n\-
torsion free. If f is the identity of F{, then^ is a central idempotent in 
S, S = fS © • • • © ftS, andf-S is a semi-prime algebra over F{, algebraic 
of bounded degree n. By Theorem l , / -5is a semi-simple Artinian algebra, 
finite dimensional over F{, Thus S is a semi-simple Artinian ring which is 
finitely generated as a Q(C) module. The integrality of R over C, and the 
C*-torsion freeness assumption imply that regular elements of R are 
invertible in S. Therefore, R is an order in S, so is a Goldie ring [10; 
Theorem 4.5, p. 70]. 

For the statement about minimal primes, we may assume that R is 
not a prime ring, for if it is, C is a domain. Let P ^ 0 be a minimal prime 
of R and set B = ann(P). Now B(P fi C) = 0, so P f] C contains no 
element of C*. Thus P f] C c Mx U • • • U M„ where {AfJ are the 
maximal annihilator ideals of C. Consequently, P f| C <= Mj for somey*. 
Since P f] C is a prime ideal of C, P f] C = A/y is a minimal prime ideal of C. 

When i? is commutative, combining Theorem 2 with Theorem 1 gives 

COROLLARY. If R is a commutative semi-prime ring with 1, integral of 
bounded degree n over a subring C = Fx © • • • © Ft for F{ fields with 
char Fj > nor char Ft = 0, then R is a finite direct sum of at most nt fields, 
each a finite dimensional separable extension of some F{. 

Example 2 shows that the condition that R is n !-torsion free in Theorem 
2 cannot be replaced with the condition that R is «-torsion free. Our next 
example shows that Theorem 2 is false unless R is C*-torsion free. 

EXAMPLE 3. For each prime/7 > 3, let Fp = GF(/?2), and set A = ®pFp. 
Denote by R, the ring obtained from A by adjoining 1. That is, R = A x 
/ , for / the ring of integers, with component-wise addition, and multi­
plication given by {a, n) • (b, m) = (ab + am + bn, nm). Clearly, R is a 
commutative semi-prime algebra over / = (0, / ) . If ep is the identity ele­
ment of Fp, then Jep s GF(p) and Fp ^ Jep(yp), where yp is a root of an 
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irreducible quadratic polynomial in Jep[x]. Any element of R has a unique 
expression as r = a0 + J^p(apyp + bpep), where the summation ranges 
over a finite set of primes and all ah bj e J. Using the fact that the Fp 

annihilate one another in R, and that each yj is a J linear combination 
of yp and ep, one obtains r2 = c0 + LjCfyfy + <W>> where c ^ = 0 if 
apyp = Q- Since the primes p appearing are distinct, one can solve, simul­
taneously, the congruences apt = cp(modp\ and it follows that r2 — tr = 
m + 2J kpep. If k e J is a simultaneous solution of k = kp(mod /?), then 
(r2 - t r - m)2 = Œpkpep)2 = 2**fo = k{Zpkpep) = k(r2 - tr - m). 
Consequently, each element of R satisfies a monic polynomial of degree 
4 over / and R is 4!-torsion free since each p > 3. Therefore, all of the 
hypotheses of Theorem 2 are satisfied by R and / , except that R is not 
J*-torsion free. Although J is a commutative domain, R is not a Goldie 
ring because J^FP is a direct sum of ideals of R. 

One can obtain a noncommutative example by repeating the con­
struction above with Fp replaced by M2(GF(/?)), or more generally by 
Mk(GF(p)) for k fixed and/? > 2&. 

As a final comment on the C*-torsion free assumption in Theorem 2, 
note that although, as Example 3 shows, regular elements of C can be 
zero divisors on R, no nonzero element of R can annihilate C*. To see 
this, let Q(C) = Fi 0 • • • © Ft again for {Fj fields wi th/c" 1 the identity 
of Fi. For any J G C set T = {/;.|#;. = 0}. Then d + S ^ G C* since as 
an element of ß(C), it has a nonzero coordinate in each F{. If ye R 
satisfies >>C* = 0, then in particular yc = 0, so (yft)

2 = y2f\ = y2f{c = 0. 
Now H = Ann C* is an ideal of R, and Hft is nil of index 2, so / /£ = 0 
by Levitzki's Theorem [10; Lemma 1.1, p. 1]. By adding suitable./} to 
the coefficients of the monic polynomial in C[x] satisfied by y, we may 
assume that this polynomial has coefficients in C* U {1}. But j C * = 0 
forces yn = 0. Using Levitzki's Theorem again gives H = 0. 

II. Ascending chain condition and Krull dimension. In this section we 
study the relation between the lattices of right (left) ideals of R and of its 
central subring C. As consequences are results on the ascending chain 
condition and on Krull dimension. For the definitions and elementary 
properties of Krull dimension, see [7]. To show that chain conditions 
transfer from C to R, we want to improve upon Theorem 2 by showing that 
R embeds as a C submodule of a finitely generated C module. To do this 
requires an additional assumption on C When C is a domain this assump­
tion is simply that C be integrally closed. 

DEFINITION. If C is a commutative ring with 1, call C an MIC ring if 
CjP is integrally closed in its quotient field for each minimal prime ideal 
PofC. 
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For the case of primary interest, when C is a semi-prime Goldie ring, 
let the total ring of quotients of C be Q(C) = QC*)- 1 ^ Fx © • • • © Ft, 
with e{ the identity element of the field F{. Note that e{C s C/Pi for Pf. a 
minimal prime ideal of C. This follows from writing e{ = d{c~l

9 for rff- e C. 
and observing that P, = Ann(^). Conversely, every minimal prime ideal 
is one of the Pt above, for otherwise it would contain every dh and so the 
regular element d\ + • • • + dt. Hence, our definition is equivalent to 
assuming that etC is integrally closed in Ft. If C were integrally closed in 
0(C), in the usual sense, then since e{ is integral over C, it would follow 
that C = exC © • • • © etC, and the minimal primes of C would be co-
maximal. Of course, any finite direct sum of integrally closed integral 
domains is an MIC ring. To see that an MIC ring need not be integrally 
closed in Q(C), we present an easy example. 

EXAMPLE 4. Let C = F[x, y]/(xy) for any field F. Then C is a semi-
prime Goldie ring with 1 and has no nontrivial idempotents, so cannot be 
a direct sum of ideals. Now (x) and (y) are the minimal prime ideals but 
are not co-maximal, so our remarks above show that C is not integrally 
closed in Q(C). Since C/(x) £ F[y] and C/(y) SE F[X], it is clear that C is 
an MIC ring. 

For simplicity in stating the results in this section, we shall say that R 
and C are as usual if R is a ring with 1 and C is a subring satisfying: 
(i) U C c Z(R), (ii) C is a semi-prime Goldie M/C ring, (iii) R is ex­
torsion free, (iv) R is integral of bounded degree n over C, and (v) « ! is 
a unit in JR. 

Our next result is the extension of Theorem 2 mentioned above. Thus 
any condition on lattices of submodules which holds for sublattices, finite 
direct sums, and homomorphic images, will transfer from C to R. The 
ascending chain condition and Krull dimension are two such conditions. 
Others would be the nonexistence of chains of submodules of a given 
infinite cardinal, or the nonexistence of a well-ordered chain of a given 
ordinal. For this particular theorem, we do not need the invertibility of 
n !, but only that R is n !-torsion free. 

THEOREM 3.I/R and C are as usual, and if R is a semi-prime ring, then 
R embeds as a C submodule of a finitely generated C module. In particular, 
if C is a Noetherian ring, then R is Noetherian as a C module, or if C has 
Krull dimension t, then R has Krull dimension at most t as a C module. 

PROOF. By the assumptions on C, one obtains from Theorem 2 that R 
is a semi-prime Goldie ring. Therefore, R contains a finite collection of 
minimal prime ideals Ph ...,Pk with f]Pi = 0 [10; p. 73-74]. It follows 
from the last statement of Theorem 2, that RjPi and (C + Pt)/Pi are as 
usual. Clearly, as a C module, R embeds in R/Pi + • • • + RIPk, so it 
suffices to prove the Theorem for R a prime ring. 



382 C. LANSKI 

As we remarked earlier, the fact that R is integral of bounded degree 
over C means that R satisfies a polynomial identity. A theorem of For-
manek [4; Theorem 1, p. 79] shows that R embeds as a Z(R) submodule 
in a finitely generated free Z(R) module. Since this is also a C module 
embedding, to prove the theorem, it suffice to show that Z(R) embeds as a 
C submodule of a finitely generated C module. But Z(R) is integral over 
C of bounded degree n and char Z(R) = 0 or char Z(R) > «, so the 
quotient field of Z(R) is a finite dimensional separable extension of the 
quotient field of C. It follows [21; Theorem 7, p. 264] that Z(R) embeds 
as a C submodule of a finitely generated C module, completing the proof 
of the theorem. 

Our earlier examples show the necessity of some of the hypotheses in 
Theorem 3. If one assumes that R is a Goldie ring the C*-torsion free 
assumption may not be needed, but we are unable to show this. Although 
we do not know if it is necessary to assume that C is an MIC ring in order 
to prove that R embeds in a finitely generated C module, there is no 
hope of proving Theorem 3 without assuming that R is of bounded degree 
over C, even when R is a domain of characteristic zero and C is a Noe­
therian ring. Our example is in the spirit of [20; Example 4, p. 207] and 
also shows that bounded degree is necessary for transferring chain condi­
tions from R to C. 

EXAMPLE 5. Let X = {xl9 x2, . . . } be an infinite set of indeterminates 
over the rational numbers, Q, and consider T = Q[X] and its subring 
A = Q[x\, x\, . . . ] . Note that, as rings, A s T and both are integrally 
closed. For the prime ideals (xj) c A, set S = A — U (xf). Then As is a 
PID, Ts is integral over As, Ts is a Noetherian ring since each of its 
nonzero prime ideals is maximal and principal, and Ts is still integrally 
closed. It follows that As[y] a Ts[y] is an integral extension of Noetherian 
integrally closed domains. Set As[y] = C and R = C + C ^ ] ^ + C[xh 

X2Ìy2 + • • •. Clearly, R is integral over C but R is not Noetherian since 
(*!>>) c (xiy, x2y

2) c • • •, so that R cannot be embedded in a finitely 
generated C module. Furthermore, an argument like that in [7; Proposi­
tion 9.1, p. 60] shows that R does not have Krull dimension. Therefore, 
without the assumption of bounded degree, chain conditions need not 
transfer from C to R. To see that they may not transfer in the other 
direction, simply consider the integral extension R c Ts[y]. 

To prove that chain conditions on R are inherited by C, for integral 
extensions of bounded degree «, we must assume that R and C are as 
usual. As in Theorem 3, we do not know if all the assumptions on C are 
necessary. To see that the invertibility of n\ and the integrally closed 
condition on C cannot both be discarded, we present an example of 



CHAIN CONDITIONS AND INTEGRAL EXTENSIONS 383 

Chaung and Lee [3; Example, p. 17] which is based on a similar example 
of Nagarajan [19] in the characteristic two case. 

EXAMPLE 6. Chaung and Lee [3; Example, p. 17] have constructed a 
commutative, Noetherian integrally closed domain A of characteristic 
zero with an automorphism T of order two, so that the T-fixed point 
ring B of A is not a Noetherian ring. Now 2 is not a unit in A, but A 
is integral of degree two over B, since any y e A satisfies X2 — (y + yT)X 
+ (yT)y = 0. Let R = A[x] and extend T to R by setting (x)T = x. It 
is easy to see that B[x] is the T-fixed point ring of R, so R is again integral 
of degree two over B[x]. Although R is a Noetherian ring, B[x] fails to 
have Krull dimension [7; Proposition 9.1, p. 60]. 

Before stating the theorem about chain conditions, we require a result 
which shows that when R is a prime ring, it is a generator when considered 
as a C module. 

THEOREM 4. If R and C are as usual and R is a prime ring, then there 
exists a C module homomorphism T of R onto C. 

PROOF. Since C c Z(R) and R is a prime ring, R embeds in Q(R) = 
R(C*)~l [1 ; §2]. It is clear that Q(R) is a prime ring integral of bounded 
degree n over F, the ring of fractions for C, that Z(Q(R)) = K = 
Z(R)(C*)-1 is a field algebraic over F, and that char(g(i?)) = 0 or 
char(Ô(i?)) > n. It follows from Theorem 3 that Q(R) is finite dimen­
sional over K, say dimKQ(R) = m2. Let / be the C algebra isomorphism 
of R into Mm2(K) given by the right regular representation of Q(R) onto 
itself with respect to some fixed K basis. Then (r)V = Trace((r)/j is a 
C linear map from R into K. Of course, (r) V is the negative of the sum 
of the characteristic values of (r)f including multiplicity. Now the minimal 
polynomial mK(x) of r over K is the same as that for (r)f over K, and 
mK(x) divides mF(x), the minimal polynomial for r over F. Since C is 
integrally closed in F, mF(x) e C[x] [21; Theorem 4, p. 260]. It follows 
that in any splitting for mK(x) over K, the roots of mK(x) are integral 
over C. Therefore, the characteristic values of (r)f are integral over C, 
which forces (r) V to be integral over C. 

The characteristic assumption on F and the fact that K is algebraic of 
bounded degree n over F force K to be a finite dimensional separable 
extension of F with K = F(u) and dimFA: ^ n. If L is a normal closure 
of ^ over F, then L is a normal (Galois) extension of F and dimFL = s 
divides «!, so s is a unit in C. Let G be the Galois group of L over F. 
For g G G, ((r)V)g is integral over C, so ((r)V)S is integral over C, where 
S is the usual Galois trace from L to F. Therefore T: R -> C given by 
( r ) r = ((r)F)5 is a C module homomorphism and for c e C , (c)r = sm2c. 
Since ^ is a unit in C, r is onto if m is also a unit in C. Recall that m2 = 
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dimKQ(R), and write Q(R) ^ MU(D) for D a division algebra with 
dimKD = q2, so that m = w#. There exist elements in MU{K) c g(i?) 
whose minimal polynomial over ^ has degree w. But every element in 
Q(R) satisfies a polynomial over K of degree at most n, so u ti n and w 
is a unit in C. Now q is the dimension over K of a maximal subfield JV 
of Z). But N a Q(R), so is algebraic over K of bounded degree n, and is 
separable over K. Thus, dim^TV = q g «, # is a unit in C which shows 
that misa unit in C, completing the proof of the theorem. 

For any ring A, let L(A) be the lattice of ideals of A. The homomor-
phism given in Theorem 4 enables us to prove that L(C) embeds in L(R) 
for our usual situation. 

THEOREM 5. If R and C are as usual and R is a semi-prime ring, L(C) 
embeds in L(R). 

PROOF. Exactly as in the proof of Theorem 3, one uses Theorem 2 to 
conclude that R is a Goldie ring and then obtain an embedding of R in 
the direct sum of {R/Pi}, for {P j of minimal prime ideals of R. Also 
RIP{ and (C + Pf-)/Pf- are as usual. Given I e L(C), it is clear that IR e 
L(R). To see that this association is an embedding it suffices to do so in 
each RI Pi, and so, to assume that R is a prime ring. Now let I, Je L(C) 
with J ^ I and suppose that JR = IR. If T is the C module homomor-
phism given in Theorem 4, then (JR)T = J(RT) = JC = J. Similarly 
(IR)T = I so that J = I results, proving that I -* IR is an embedding 
of L(C) into L(R). 

Using Theorem 3 together with Theorem 5 shows that any of the chain 
conditions mentioned before Theorem 3 hold for right ideals of R if and 
only if they hold for left ideals. In this regard, we note that since R satisfies 
a polynomial identity, the ascending chain condition on L(R) implies that 
R is both left and right Noetherian by a result of Cauchon [2; Proposition 
1.1, p. 101]. When R is a Noetherian ring or has Krull dimension then it 
must be a Goldie ring [7; Corollary 3.4, p. 20], but even in this case we do 
not know if the C*-torsion free assumption can be eliminated. Because of 
the importance of these chain conditions, we state for them one consequ­
ence of Theorem 5, using Theorem 3. Recall that any Noetherian ring has 
Krull dimension [7; Proposition 1.3, p. 7]. 

THEOREM 6. Let R and C be as usual. If Ris a semi-prime ring which (is 
a right Noetherian ring and) has right Krull dimension t, then C (is a Noe­
therian ring and) has Krull dimension t. Furthermore, R (is a left Noetherian 
ring and) has left Krull dimension t. 

When R satisfies either chain condition in Theorem 6, it must satisfy 
the same condition as a C module by Theorem 3. Clearly, any finitely 
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generated R module also has this chain condition as a C module. These 
observations enable us to obtain an extension of Theorem 6 to the case 
when R is not semi-prime. In what follows, let N(R) denote the prime radi­
cal of R. 

THEOREM 7. Let R and C be as usual Then 
(a) ifR has right Krull dimension t then C has Krull dimension t, and if in 

addition, N(R) is a finitely generated R module then RasaC module has Krull 
dimension t so the left Krull dimension ofR is t, 

(b) ifR is a right Noetherian ring then R is Noetherian as a C module, so 
C is a Noetherian ring, and R is also a left Noetherian ring. 

PROOF. We prove only (a) since the proof of (b) is similar. First note 
that the right Krull dimensions of R and ofR/N(R) are the same [7 \ Corol­
lary 5.8, p. 36]. As a semi-prime ring, C must embed in R/N(R). It is 
straightforward to check that R/N(R) and (C + N(R))/N(R) are as usual. 
From Theorem 6 applied to R/N(R) we have that C has Krull dimension 
t, and so, as a C module R/N(R) has Krull dimension t, by Theorem 3. 
If N(R) = TV is finitely generated as an R module, then N/N2 is finitely 
generated as an R/N module so has Krull dimension as a C module at 
most t. Thus R/N2 has Krull dimension at most / as a C module. Repeating 
this argument for N/N3 and then higher powers of N, gives that R/Nk has 
Krull dimension at most r a s a C module. But N is nilpotent [7; Theorem 
5.1, p. 32] and Cis a C submodule of R, so R must have Krull dimension / 
as a C module. In particular, the left Krull dimension of R, as an R mod­
ule, is at most /. Since our argument is right-left symmetric, this left Krull 
dimension of R must be exactly /. 

III. Gabriel dimension. In our study of Gabriel dimension, we can drop 
the assumptions that R is C*-torsion free and that C is integrally closed, 
and can work with modules over R or C rather than with the rings them­
selves. Before getting to a brief discussion of Gabriel dimension, we require 
a result on nil rings of bounded index. In general, a nil ring of bounded 
index need not be nilpotent. A standard example is to let A = GF(2)[x!, 
x2, . . . ] / / for / the ideal generated by {x^} and then take R to be all 
"polynomials" in A with zero constant term. Clearly, y2 = 0 for all y e R, 
but xix2 - • • x„ # 0 for all n. However, if R is a nil algebra of bounded 
index n over a field F with either char F = 0 or char F > n then a result 
of Higman [11; Theorem 1, p. 2] shows that R is nilpotent. A slight modi­
fication of Higman's argument works if one assumes that R is «!-torsion 
free rather than assuming that R is an algebra. Let S„(xl9 . . . , xn) denote 
the sum of the H ! products of xh . . . , xn taken in all possible orders. Then 
Sn(xh . . . , xn) = 0 is the linearization of the relation xn = 0, and n\xn = 
Sn(x, . . . , x), so R is nil of index n exactly when Sn(rh . . . , rn) = 0 for all 
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/*!, . . . , rn e R. Using only that R is n !-torsion free, Higman's argument 
shows that Sw_iO>i, . . . , yn_{) = 0 for y{ e B9 the ideal of R generated by 
all (n — 1) —s/ powers. By induction on n, B is nilpotent, say of index k. 
Using Zorn's Lemma there is an ideal V oî R maximal with the properties 
that B c Fand Vk = 0. It follows easily that R/Vis /i!-torsion free and 
has each element nilpotent of index n — 1, so R/ Fis also nilpotent. There­
fore, R is nilpotent. For future reference, we state this as a proposition. 

PROPOSITION 1 (HIGMAN). If Ris a nil ring of bounded index n, and is nl-
torsion free, then R is nilpotent. 

The concept of Gabriel dimension is a categorical one defined and ex­
plored in [5], [7], and [8]. Our needs are better served by a noncategorical 
approach, so we give an equivalent noncategorical definition of Gabriel 
dimension. All modules under consideration will be right unital modules, 
and N ^RM means that N is an R submodule of M. For proper submod­
ules we write TV < R M. If it exists, the Gabriel dimension of an R module 
M is an ordinal number denoted by Gdim^M. The definition proceeds by 
induction, beginning with Gdim^M = 0 if and only if M = 0. Let a be a 
nonlimit ordinal and suppose that Gdim^M = ß has been defined for all 
ß < a. Call A an a-simple R module if for every 0 ^ N ^R A, both 
Gdim^Af < a and GdimR(A/N) < a. Then Gdim^M = a if Gdim^M < a 
and if for each N <R M, M/N contains a /3-simple module for ß ^ a. 
When a is a limit ordinal, the definition Gdim^M = a is the same, except 
that ß < a must hold. 

The following important property of Gabriel dimension follows by in­
duction on a. 

PROPOSITION 2. For any N ^RM, Gd\mRM = sup{GdimÄ7V, 
GdimR(M/N)}, if either side exists. 

PROOF. [8; Lemma 1.3, p. 462] or [17; Proposition 1]. 

It is immediate from the definition that an a-simple R module has Ga­
briel dimension a. The only difficulty in proving Proposition 2 from our 
definition is in showing that nonzero submodules of a-simple modules 
are also a-simple. From the definition it is easy to see that if M is the direct 
sum of modules {Mj with Gdim#Mt- = a,, then Gdim^M = sup,{aj. 
Since any sum of submodules is a homorphic image of a direct sum of 
modules, we obtain a useful consequence of Proposition 2. 

PROPOSITION 3. For any R module M and ordinal number a, 
(i) if {M{} are R submodules of M with Gdim^M, g a, then 

Gdim^(2]M,) ^ a, and 
(ii) M contains a unique maximal R submodule Na such that 
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Gdim^iVa ^ a, and M/NR contains no nonzero submodule H with GdimRH 
è a. 

When a ring R with 1 has Gabriel dimension as a module over itself, 
then any R module M satisfies Gdim^M ^ GâimRR, since M can be re­
presented as a sum of cyclic submodules. However, if M is also a ring it 
need not have Gabriel dimension. For example, let M = F[X], the poly­
nomial ring over a field F in an infinite set of indeterminates X. Since 
GdimFF = 1, Gdim^M = 1, but M, as an M module does not have Ga­
briel dimension [8; p. 472]. This example shows that Gabriel dimension 
viewed as a condition on the lattice of submodules is not inherited by sub-
lattices, unlike the other chain conditions which we have considered. 

For our usual situation of R integral over a central subring C, the next 
result is the crucial step in showing that an R module M with Gabriel 
dimension as a C module satisfies Gdim^M ^ GdimcM. By MA we shall 
mean M considered as an A module. 

THEOREM 8. Let R be a ring with 1, C a subring of R, and a a nonlimit 
ordinal so that: (i) 1 e C c Z(R); (ii) R is integral of bounded degree n over 
C; (iii) /i! is a unit in R; and(iv) for any R module H9 Gdimc / / < a implies 
that GdimÄ// < a. IfMR = NRfor Nc a-simple, then GdimcM S ce. 

PROOF. First observe that (i)-(iv) are inherited by any nonzero homo-
morphic image of R. Thus, if A = AnnRM = {r e R\Mr = 0}, we may 
replace R with R/A, C with (C 4- A)/A, and so assume that MR is faithful. 
For ceC - {0}, right multiplication by c on N gives rise to the C module 
isomorphism Nc ^ N/AnnN(c), where AnnN(c) = {y e N\yc = 0}. But 
N is an a-simple C module and Nc icN so either Nc = 0 or ArmN(c) 
= 0. In the first case 0 = NcR = Mc, so c = 0, a contradiction. There­
fore, N is C — {0} torsion free, which implies that C is a domain. Also, 
yC = C for y e N — {0}, so that C is an a-simple C module. 

Using Proposition 3 and the fact that a — 1 exists, let T <:R M be maxi­
mal with the property that Gdim^T < a. Then M/T contains no nonzero 
R submodule with Gabriel dimension less than a, and if GdimR(M/T) 
^ a then GdimcM g a by Proposition 2. Suppose that me M — T and 
that mceT for some e e C*. Then mRc ^R T and H = (mR + T) ^R 

(M/T). Now Hc = ZU/eCmr + T) C, and (mr -h T) C s C/A(r) for A(r) 
= {ce C\mrce T}. Since A(r) ^ 0 is an ideal of C, which is a-simple, 
Gd\mc(C/A(r)) < a, and so by Proposition 3 Gd\mcH < a forcing 
Gd\mRH < a by (iv), contradicting the choice of T. Therefore, unless 
M = T, M/T is C*-torsion free. Furthermore, M/T is generated as an R 
module by (7V+ T)/T, and we may assume that N f\ T= 0, for otherwise 
Gdimc(N/N f] T) < a and as above we can represent M/T as a sum of 
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C modules of Gabriel dimension less that a to obtain GdimR(M/T) < a. 
Consequently, replacing M with M/T leaves all of our hypotheses un­
changed, and in addition we have that M is C*-torsion free and that MR 

has no nonzero submodule of Gabriel dimension less that a. Of course, 
we still have that C is a domain and is a-simple. 

Next we show that we may assume that R is a semi-prime ring. Let 
r e R and e e C* so that re = 0. Then Mrc = 0, so the C*-torsion freeness 
of M forces re Ann M. Clearly, C f] Ann M = 0 so C embeds in R/Ann M 
and replacing R with this factor ring leaves us in the same situation as 
before, except that now R is C*-torsion free. Since R is integral of bounded 
degree n over C, and is C*-torsion free, the nil radical K of R is nil of 
bounded index n. But R is «!-torsion free, so by Proposition 1, AT is nil-
potent of some index t. Consider M •=> MK => • • • =) MKf~l => 0. Each 
quotient V{ = MK>IMKl+1 is naturally an R/K module, Gdim^F, = 
Gd\n\R/KVh and from Proposition 2 to show Gdim^M ^ a it suffices to 
show Gdim^F,- S a. Observe that C H K = 0 so that C embeds in Ä/A: 
and remains a domain which is a-simple. Clearly, hypotheses (i)-(iv) still 
hold for R/K and C, and it is easy to see that R/K is C*-torsion free. There­
fore, replacing JR with R/K allows us to assume that R is a semi-prime ring, 
and it is surely enough to prove that Gdim^M ^ a for any R module 
M. Our comment after Proposition 3 shows that we need only prove 
Gdim^i? ^ a. 

As a commutative domain, C is a Goldie ring, so Theorem 2 may be 
used to obtain that R is a Goldie ring. It follows that there exist prime 
ideals P l 9 . . . , Pk of R so that Ç\P{ = 0 and as an R module, R embeds 
in the direct sum of {R/Pi}. The proof will be finished if we show 
GdimR(R/Pt) ^ a for each i. Each R/P{ is a (C + PJ/P; module and 
C is a-simple, so Gdimc(i?/P,-) ^ a. If Gdimc(Ä/P,-) < a, then from as­
sumption (iv) GdimR(R/Pt) < a. On the other hand if GdimçiR/Pi) = a 
then (C + Pj)/Pt ^C so C f] Pi = 0. Thus C embeds in A{ = 7?//>,- as an 
a-simple C module. The hypotheses (i)-(iv) hold for A{ and C, and 4̂,- is a 
prime ring satisfying a polynomial identity. It follows [17; Theorem 4] that 
Gdim^,- = Gdim^ Ai ^ a, completing the proof of the theorem. 

It is now easy to obtain one direction of the general result on Gabriel 
dimension. 

THEOREM 9. Let R be a ring with 1 and C a subring of R satisfying: (i) 
l e C c Z(R); (ii) R is integral of bounded degree n over C; and (iii) n\ is a 
unit in R. For any R module M, // GdimcM = a, then Gdim^M ^ a. In 
particular, //GdimcC = a, then G d i m ^ ^ a. 

PROOF. Proceed by induction on a, assuming the theorem holds for R 
modules M with GdimcAf < a. Use Proposition 3 to obtain H ^R M 
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maximal with Gdim^// ^ a. Then for T ^R M/H with GdimÄr ^ a, 
one must have 7 = 0 . Assuming that M/H ^ 0, Gdimc(M/H) ^ a, so 
(M/H)c contains a /3-simple module TV. From Theorem 8 one may conclude 
that GdimR(NR) g ß ^ a, contradicting the choice of H. Therefore H = 
M and Gdim^M ^ a, proving the theorem. 

That some assumption about ^-torsion freeness is required in our last 
two theorems can be seen from Example 2. We present an example which 
shows that n !-torsion freeness is not sufficient to guarantee that MR has 
Gabriel dimension when Mc does. 

EXAMPLE 7. Let J be the ring of integers, X = {xl9 x2, . . . } a set of 
indeterminates indexed by the positive integers, and set R = J[X]. Denote 
by / the ideal of R generated by x] and 2x{ for all x{ e X. Then if C = / + 
J, it is easy to see that p2(x) e C for every p(x) e R, so R is integral of 
bounded degree two over C, and R is torsion free. Set M = R/(I + 2R) 
and observe that M is a ring whose ideals are its R submodules. Also, 
Mc is in effect AfGF(2), so that GdimcM = 1, and MR = (lMC)R is 
generated as an R module by the 1-simple C module ÌMC ^ GF(2). To 
prove that MR fails to have Gabriel dimension, it suffices to show MM 

fails to have it. Clearly, as a ring, M ^ GF(2)[X]/K for K the ideal 
generated by all x% If GdimMM exists, let TV be a /3-simple submodule. It 
is straightforward to show that TV must contain a monomial, say xxx2 • • • 
xk by rearrangement of indices, so xx • • • xk M is a /3-simple M submodule 
of M. But as an M module Xi • • • xkM ^ M/AnnM(x! • • • xk) = M/ 
(xxM + • • • + xkM) = T, and the M submodules of T are exactly the 
ideals of J = GF(2)[xÄ+1, xk+2, . . . ]/L for L the ideal generated by 
{xj\j â k 4- 1}. Evidently Tand M are isomorphic rings, so their lattices 
of ideals are the same. Consequently, the lattice of ideals of M is the same 
as the lattice of M submodules of TM, so MM must be /3-simple, implying 
that GdimM(xx • • • xkM) < /3, a contradiction. Therefore, MR cannot 
have Gabriel dimension. 

To show that R modules with Gabriel dimension have Gabriel dimen­
sion as C modules, we begin with a result about simple modules analogous 
to Theorem 8. 

THEOREM 10. Let R be a ring with 1, C a subring of R, and a a nonlimit 
ordinal so that: (i) 1 e C c Z(R); (ii) R is integral of bounded degree n over 
C; (iii) n! is a unit in R; and(iv)for any R module H, Gdim#// < a implies 
that Gdimc / / < a. If MR is a-simple, then GdimcM ^ a. 

PROOF. For any ce C — {0}, Mc ^RM and Mc ^ M/AnnM(c) as R 
modules. The ^-simplicity of MR forces either Mc = 0 or AnnM(c) = 0. 
As in the proof of Theorem 9, we may replace R with RjAnn M and C with 
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(C + AnnM)/Ann M, so we may assume that MR is faithful and is C-{0) 
torsion free. Thus, C is a domain and C* = C — {0}. 

Let W ^R M, A = Ann^H^, and F = {me M \mc e W for some 
e e C*}. Since C is a domain, V SR M. Should V = M, then for each 
me M and some e e C*, me e W9 which implies mcA = mAc = 0. The 
C*-torsion freeness of M forces mA = 0, so MA = 0 and thus A = 0. 
This argument shows that if v4 # 0 then V ^ M. Now W c K, so if both 
W ^ 0 and 4̂ ^ 0, F must be a proper nonzero submodule of M. In this 
case M/V is C*-torsion free, for if me e V, for m e M and c G C*, then 
mec! G W for ^ G C* so by definition me V. But MR is a-simple, so 
Gdim^M/K) < a forcing Gdimc(M/F) < a by assumption (iv). Take 
me M/V — {0} and observe that wC ^ C as C modules, so GdimcC < a. 
Our comment after Proposition 3 gives GdimcM < a, proving the theo­
rem. Therefore, we are finished unless each nonzero submodule of MR is 
faithful. With this assumption, it is clear that 7? is a prime ring. By 
Theorem 2 R is a Goldie ring and has finite uniform dimension, say t. 

Next, let m e M — {0} and set A — ArmR{m). For ve A, letp(x) e C[x] 
be the monic polynomial of least degree satisfied by v. Clearly, v is regular 
in R exactly when p(Q) # 0. But mv = 0 implies that 0 = mp(v) = mp(0), 
so v must be a zero divisor in R using the C*-torsion freeness of M. 
Consequently, no element of A is regular in R which means that A cannot 
be an essential right ideal of R. Let U be a uniform right ideal of R so 
that A fi U = 0. Then as R modules, mil ^ U, and UR is a-simple. 
Therefore, every uniform right ideal of R is an a-simple R module [6; 
Lemma 2.3, p. 594], and W = Ui® • • • ®Ut is essential in R for some 
choice {Ut) of uniform right ideals of R. For y e W, regular in R and 
satisfying the monic polynomial q(x) e C[x] of least degree, #(0) ^ 0 and 
d = q(0) = q(0) - q(y) e W f| C*. Clearly, dR g R ^ a n d gives an R module 
embedding of i? into W. If 7 ^ 0 is an ideal of C, dZ/Ê is an ideal of R, so 
the primeness of R yields d/i? f| U{ = ^ ^ 0. Thus 0 W{ ^ d/i? ^ 
rfi* ^ J^. Since W/® Wi s ®(UJWt) and each I/,, is an a-simple i? mod­
ule, it follows that GdimR(W/®Wt)<a, forcing G d i m c ( » 7 © ^ ) < a 
by hypothesis. From Proposition 2 we have Gdimc(dRjdIR) < a, and 
difyWi? ^ j?/ /^ yields Gdimc(RlIR) < a. Hence Gdimc((C + IR)/IR) 
= Gdimc(C/(C fi /R)) < a. 

Our goal is to improve that last inequality to GdimcC/7 < a; for then, 
if Gdimc7 < a we would have GdimcC < a, and if Gdimc7 < a for all I, 
then Cc is a-simple. In either case, GdimcC ^ a, so GdimcM ^ a 
follows. Note that for y e I — {0}, yC is a nonzero ideal of C contained 
in 7, so to show GdimcC/7 < a, it suffices to show that GdimcC/yC < a. 
Apply the inequality we have obtained to I = yC and observe that 
C fi 0>CXR = C [\yR9 so GdimcC/(C f| J^) < cc. Choose >r G C fl J>Ä. 
If/(x) G C[x] is the monic polynomial of least degree, say k, satisfied by 
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r, then 0 = ykf{r) = (yr)k 4- yc^yr)*'1 + • • • + ykck. But yr e C implies 
that (yry e C and it follows that (yr)k e yC. Thus, in CjyC the ideal (C fl 
yR)lyC is nil of bounded index n. Hypothesis (iii) gives us that CjyC 
is n !-torsion free, so Proposition 1 enables us to conclude that (C f] yR)s 

a yC, for some s. Consider the chain of C modules C => yR f] C => 
(yR fi C)2 z> •. • •=> (yR fl C)s. Each quotient Kf. = (yR fl O V O * fi 
Cy+1 is a C/(^i? fi C) module and Gdimc(C/(ji? fl O ) < « implies that 
GdimcK,- < a. Using Proposition 2 yields Gdimc(C/0>i? fl QS) < oc. 
However, yC •=> (yR fl C)s, so GdimcC/jKC < a as desired, completing 
the proof of the theorem. 

Using Theorem 10, the result for arbitrary R modules follows fairly 
easily. 

THEOREM 11. Let R be a ring with 1 and C a subring of R satisfying: 
(i) l e C c Z(R); (ii) R is integral of bounded degree n over C; and (iii) 
ni is a unit in R. For any R module M, if GdimRM = a, then GdimcM ^ a. 
In particular, if GdimRR = a, then GdimcC ^ a. 

PROOF. Proceed by induction on a. Given MR with Gdim^M = a, then 
by definition, M contains a /3-simple submodule for ß ^ a. Consequently, 
either the induction assumption, or Theorem 10 guarantees that M 
contains a nonzero R submodule N with Gdimc7V ^ a. Using Proposition 
3, there exists a nonzero, maximal such R submodule H. If MjH ^ 0, 
then a repetition of the argument shows that MjH contain a nonzero R 
submodule TI H with Gdimc7y// g a. But then Gdim c r <; a, contradict­
ing the choice of H. Consequently, H = M proving the theorem. 

The following theorem is an immediate corollary of Theorem 9 and 
Theorem 11. 

THEOREM 12. Let R be a ring with 1 and C a subring of R satisfying: 
(i) 1 e C c Z(R); (ii) R is integral of bounded degree n over C; and (iii) n\ 
is a unit in R. For any R module M, Gdim#M = GdimcM, if either exists. 
In particular GdimRR = GdimcC if either exists. 
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