A UNIVERSAL EXAMPLE OF A CORE-FREE PERMUTABLE SUBGROUP

FLETCHER GROSS AND T.R. BERGER

Introduction. Let H be a core-free permutable subgroup of the group G. This means that there is no non-identity normal subgroup of G contained in H and that $H K=K H$ for every subgroup K in G. (The term quasinormal has been used instead of permutable, but we feel that permutable, Stonehewer's word, is preferable since it is more descriptive.) In proving results about the structure of H, a reduction often is made to the special case when G is a finite p-group and $G=H C$ for some cyclic subgroup C. As examples of the sort of results obtainable in this way, we mention two: (1) H is residually finite nilpotent ([1] and [8]). (2) If n is any integer, then the set $\left\{x \in H \mid x^{n}=1\right\}$ is a nilpotent subgroup of H and the class and derived length of this subgroup are bounded from above by functions of n ([2]; the best-possible bounds are given in [3]).

The study of the special case $G=H C$ with C cyclic and G a finite p group has also led to the construction of counter-examples. Thus, although Itô and Szep [6] showed that H is nilpotent if G is finite, H need not be solvable if G is infinite. This follows from applying Theorem 3.3 of [1] to the finite groups constructed by Stonehewer in [9]. Stonehewer's groups all have the special structure referred to earlier. A study of Stonehewer's examples suggested that there might be a "universal" example. The main result of this paper then is the following.

Theorem, Let p be any prime and n a positive integer. Then there is a group $G=H\langle x\rangle$ such that:
(i) H is a core-free permutable subgroup of G and x has order p^{n}.
(ii) If $G^{*}=H^{*}\left\langle x^{*}\right\rangle$ where H^{*} is a core-free permutable subgroup of G^{*} and x^{*} has order p^{n}, then there is one and only one monomorphism ψ of G^{*} into G such that $\psi\left(x^{*}\right)=x$ and $\psi\left(H^{*}\right) \leqq H$.

The group G in this theorem is a finite p-group which will be constructed as a transitive permutation group with H being the stabilizer of a point. This procedure was suggested by Stonehewer's work although his groups are not the same as ours.

Originally, it was our intention to use the above theorem to try to prove
that, in general, a core-free permutable subgroup must be locally nilpotent or locally solvable. However by using an infinite analogue of our groups, one of the authors of this paper succeeded in constructing an example in which H is not locally solvable [4]. This example depends heavily on the properties proved in the present paper about the groups of the theorem. In particular, in the groups in the above theorem, H decomposes as a direct product in a nice way.

After some preliminary results in $\S 2$, we construct the groups in $\S 3$ and derive some of their properties. The "universal" property (part (ii) of the theorem) of these groups is proved in $\S 4$.

This work was done while the authors were attending a Group Theory Conference at the University of Warwick. We are deeply appreciative to Trevor Hawkes (who organized the conference) and to everyone else at the University of Warwick for their warm hospitality. We are particularly grateful to NATO and the Science Research Council for financial support during our stay at Warwick. We should also like to acknowledge some very useful discussions with Stewart Stonehewer.
2. Preliminaries. With a few exceptions, our notation is standard. If x and y are elements of a group G and m is a positive integer, then

$$
[x, y ; m]=[x, y, y, \ldots, y]
$$

where y occurs m times. We also use this when x and y are subgroups of G. The lower central series $\left\{L_{n}(G) \mid n=1,2, \ldots\right\}$ is defined by $L_{1}(G)=G$ and $L_{n+1}(G)=\left[L_{n}(G), G\right]$. If G is nilpotent (solvable), then $\mathrm{c}(G)(\mathrm{d}(G))$ denotes the class (derived length) of G. If H is a subgroup of G, then H_{G}, the core of H in G, is the intersection of all conjugates of H in G. The set of primes p such that G contains an element of order p is denoted by $\pi(G) \mathbf{Z}$ is the additive group of integers while $Z(G)$ is the center of G.

We now prove some preliminary results. One of these, Corollary 2.3, surely is not new, but the authors have not found a reference in the literature. Thus, for the sake of completeness, we have included a proof.

Lemma 2.1. Let $G=H C$ where C is cyclic and H is a core-free permutable subgroup. Then G is nilpotent, H is finite, and $\pi(G)=\pi(C)$.

Proof. If $|C|=\infty$, then C normalizes H by either Theorem 4.1 of [1] or Lemma 2.1 of [8]. It follows from this that $H=1$ and then the lemma certainly is true. Now suppose C has finite order. Since $H_{G}=1,|G| \leqq$ $|G: H|$! and so G is finite. Then H is contained in the hypercenter $Z_{\infty}(G)$ [7]. Since $G / Z_{\infty}(G)$ then must be cyclic, we conclude that G is nilpotent. If q is any prime not dividing $|C|$, then H must contain a Sylow q-subgroup of G. The nilpotence of G and the fact that $H_{G}=1$ now combine to imply that q does not divide $|G|$. Thus $\pi(G)=\pi(C)$.

Lemma 2.2. Let p be a prime, n a positive integer, $m=p^{n}$, and G a subgroup of the symmetric group S_{m}. Assume that G contains an m-cycle x and that $Z(G) \neq 1$. Let x_{1} be an element of order p in $\langle x\rangle$, let $\Gamma_{1}, \ldots, \Gamma_{r}$ be all the orbits of $\left\langle x_{1}\right\rangle$, and let $K=\left\{g \in G \mid \Gamma_{i} g=\Gamma_{i}\right.$ for $\left.1 \leqq i \leqq r\right\}$. Then the following are true:
(1) $x_{1} \in Z(G) \leqq C_{G}(x)=\langle x\rangle$.
(2) $r=p^{n-1}, G$ transitively permutes $\Gamma_{1}, \ldots, \Gamma_{r}$ among themselves, and K is the kernel of this permutation representation.
(3) K is an elementary abelian p-group of order $\leqq p^{r}$.
(4) If G is a Sylow p-subgroup of S_{m}, then $|K|=p^{r}$ and G / K is a Sylow p-subgroup of S_{r}.
(5) If the stabilizer in G of a point is a permutable subgroup of G, then G is a p-group and $K=\Omega_{1}(G)$.

Proof. Since $\langle x\rangle$ is an abelian regular permutation group, $C_{G}(\langle x\rangle)$ must be $\langle x\rangle$. Then $Z(G) \leqq\langle x\rangle$. Since $\langle x\rangle$ is a cyclic p-group and since $Z(G) \neq 1$, this implies that $x_{1} \in Z(G)$. Then $\left\langle x_{1}\right\rangle \leqq G$ and so G must permute the orbits of $\left\langle x_{1}\right\rangle$. Each orbit of $\left\langle x_{1}\right\rangle$ has length p and so $r=$ p^{n-1}. We now have proved (1) and (2).

Now suppose y and z are elements of K. Then Γ_{i} is fixed by x_{1}, y, and z and so x_{1}, y and z will induce permutations a_{i}, b_{i}, and c_{i}, respectively, on Γ_{i}. Now $\left\langle a_{i}\right\rangle$ is a regular, abelian, permutation group on Γ_{i} and a_{i} commutes with both b_{i} and c_{i} (since $x_{1} \in Z(G)$). This forces b_{i} and c_{i} to belong to $\left\langle a_{i}\right\rangle$. Then $b_{1}^{p}=\left[b_{i}, c_{i}\right]=1$ for all i. Therefore, $y^{p}=[y, z]=1$ and so K is an elementary abelian p-group. There are at most p choices for each b_{i} and thus $|K| \leqq p^{r}$.

Now suppose G is a Sylow p-subgorup of S_{m}. Then $|G|=p^{M}$ where $M=\left(p^{n}-1\right) /(p-1)$. Since G / K is a subgroup of S_{r}, we see that $|G| K \mid \leqq$ p^{N} where $N=\left(p^{n-1}-1\right) /(p-1)$. But then

$$
p^{r} \geqq|K|=|G| /|G / K| \geqq p^{M-N}=p^{r} .
$$

This immediately implies that $|K|=p^{r}$ and that G / K is a Sylow p-subgroup of S_{r}. This proves (4).

Now assume that H, the stabilizer in G of a point, is a permutable subgroup of G. (We are no longer assuming that G is a Sylow p-subgroup of S_{m}. . Since $\langle x\rangle$ is transitive, we conclude that $G=H\langle x\rangle$ and that, since only the identity fixes everything, H is core-free in G. Lemma 2.1 now implies that G is a p-group. Now $H K / K$ fixes a point ($H K / K$ fixes the Γ_{i} which contains the point stabilized by H) and $H K / K$ is core-free in G / K. This implies that $(H K)_{G}=K$. But $K \leqq \Omega_{1}(G)$ by (3) and obviously $\Omega_{1}(\langle x\rangle)=\left\langle x_{1}\right\rangle \leqq K$. Hence, using [2, Lemma 3.1],

$$
H K \geqq \Omega_{1}(H) \Omega_{1}(\langle x\rangle)=\Omega_{1}(G) \geqq K
$$

Since $(H K)_{G}=K$, we obtain $K=\Omega_{1}(G)$ and the lemma is proved.
Corollary 2.3. Let x be an m-cycle in the symmetric group S_{m} where $m=p^{n}>1$ and p is a prime. Then there is one and only one Sylow psubgroup of S_{m} which contains x.

Proof. If $n=1$, the result is obvious. Now assume $n>1$ and use induction on n. Suppose P and Q are both Sylow p-subgroups of S_{m} containing x and let x_{1} be an element of order p in $\langle x\rangle$. Let G be the centralizer of x_{1} in S_{m}. Then G contains both P and Q by Lemma 2.2(1). The lemma also implies that G contains a normal elementary abelian p-subgroup K such that G / K is isomorphic to a subgroup of S_{r} where $r=p^{n-1} . K \leqq P \cap Q$ since K is a normal p-subgroup in G and P and Q are Sylow p-subgroups of G. Then P / K and Q / K are both Sylow p-subgroups of S_{r}. Since P / K and Q / K both contain the r-cycle $K x$, we may use induction to obtain $P / K=Q / K$. Then $P=Q$ and the corollary is proved.

Lemma 2.4. Let $G=H\langle x\rangle$ be a p-group with H being a core-free permutable subgroup. Then $\left[G, \Omega_{2}(\langle x\rangle) ; p-1\right]=1$.

Proof. Let $A=\Omega_{2}(\langle x\rangle)$ and let M denote the core of H in $H A$. By Lemma 3.1(c) of [2], $H A / M$ has class $\leqq p-1$. Therefore, $[H, A ; p-1] \leqq$ $M \leqq H$. Since $G=H\langle x\rangle$ and $[\langle x\rangle, A]=1$, this implies that

$$
[G, A ; p-1]=[H, A ; p-1] \leqq H
$$

Since x normalizes $[G, A ; p-1]$ and since $H_{G}=1$, it follows from this that $[G, A ; p-1]=1$.
3. Construction of the groups. We fix some notation for the rest of the paper. For the benefit of the reader a glossary is included at the end.

Let p be a prime. If $p>2$, set $e=1$ and $r=p-1$. If $p=2$, set $e=$ $r=2$. Let n be a positive integer and let Γ_{n} be the additive group $\mathbf{Z} / p^{n} \mathbf{Z}$. The permutation of Γ_{n} given by

$$
p^{n} \mathbf{Z}+a \rightarrow p^{n} \mathbf{Z}+a+1
$$

is denoted by x_{n}. If $0 \leqq m \leqq n$, then

$$
x_{n, m}=x_{n}^{p^{n-m}}
$$

Then $x_{n, m} \in\left\langle x_{n}\right\rangle, x_{n, n}=x_{n}, x_{n, 0}=1$, and $x_{n, m}$ has order p^{m}. Let $\Gamma_{n, m}$ be the set of elements in Γ_{n} of order dividing p^{m} and let $\Delta_{n, m}$ be the set of elements in Γ_{n} of order precisely p^{m}. Then, if $m \geqq 1, \Delta_{n, m}$ is the set-theoretic difference $\Gamma_{n, m}-\Gamma_{n, m-1}$ and $\left|\Delta_{n, m}\right|=p^{m}-p^{m-1}$.

Now suppose $0 \leqq m \leqq n-e$. Then $x_{n, m}$ fixes the set $\Delta_{n, m+e}$ and so $\Delta_{n, m+e}$ is the union of orbits $\left\{\theta_{n, m, i}\right\}$ under $\left\langle x_{n, m}\right\rangle$. The number of such orbits is

$$
\left|\Delta_{n, m+e}\right| /\left|\left\langle x_{n, m}\right\rangle\right|=\left(p^{m+e}-p^{m+e-1}\right) / p^{m}=r .
$$

Next, if $1 \leqq i \leqq r$, let $\pi_{n, m, i}$ be the permutation on $\theta_{n, m, i}$ induced by $x_{n, m}$. Let $\pi_{n, m, i}$ act on all of Γ_{n} by having $\pi_{n, m, i}$ fix every element not in $\theta_{n, m, i}$. Then let

$$
A_{n, m}=\left\{\prod_{i=1}^{r} \pi_{n, m, i}^{c_{i}} \mid \sum_{i=1}^{r} c_{i}=0\right\} .
$$

It is easily verified that $A_{n, m}$ is an abelian group which fixes every element of $\Gamma_{n}-\Delta_{n+e}$. Since $\pi_{n, m, i}$ is a p^{m}-cycle and since $r \geqq 2, A_{n, m}$ is the direct product of $(r-1)$ copies of a cyclic group of order p^{m}. Hence $A_{n, m}$ has order $p^{m(r-1)}$ and exponent p^{m}. In particular, $A_{n, 0}=1$. If $k \leqq m$, then $x_{n, k}$ fixes $\theta_{n, m, i}$ for $1 \leqq i \leqq r$. It follows from this that $\left[x_{n, k}, A_{n, m}\right]=1$. Since $A_{n, m}$ is abelian and since $A_{n, m}$ and $A_{n, m^{\prime}}$ move different points if $m \neq m^{\prime}$, we conclude that $\left[A_{n, m^{\prime}}, A_{n, m^{\prime}}\right]=1$. For future reference, we list these results as a lemma.

Lemma 3.1. Let $0 \leqq m \leqq n-e$. Then
(1) $A_{n, m}$ is homocyclic of order $p^{m(r-1)}$ and exponent p^{m}.
(2) If $\alpha \in \Gamma_{n}$ and $\alpha \notin \Delta_{n, m+e}$, then α is fixed by every element of $A_{n, m}$.
(3) $A_{n, 0}=1$.
(4) If $0 \leqq k \leqq m$, then $\left[A_{n, m}, x_{n, k}\right]=1$.
(5) If $0 \leqq m^{\prime} \leqq n-e$, then $\left[A_{n, m}, A_{n, m^{\prime}}\right]=1$.

Now let $G_{n}=\left\langle x_{n}, A_{n, m} \mid 0 \leqq m \leqq n-e\right\rangle$ and let H_{n} be the stabilizer in G_{n} of the zero element of Γ_{n}. G_{n} and H_{n} will turn out to be the groups in the theorem in the introduction. First, we list some elementary properties of G_{n}.

Lemma 3.2. (1) If $n \leqq e$, then $H_{n}=1$ and $G_{n}=\left\langle x_{n}\right\rangle$.
(2) $G_{n}=H_{n}\left\langle x_{n}\right\rangle$ for all n.
(3) H_{n} is core-free in G_{n}.
(4) $x_{n, e} \in Z\left(G_{n}\right)$.
(5) $A_{n, m} \leqq H_{n}$ if $0 \leqq m \leqq n-e$.

Proof. If $n \leqq e$, then $G_{n}=\left\langle x_{n}\right\rangle$ and (1) follows at once. Since $\left\langle x_{n}\right\rangle$ is transitive, both (2) and (3) are valid. Lemma 3.1 (2) implies that $A_{n, m} \leqq$ H_{n} if $0 \leqq m \leqq n-e$. Also from Lemma 3.1, we see that $\left[x_{n, e}, A_{n, m}\right]=1$ if either $m \geqq e$ or $m=0$. Thus (4) is proved if $p>2$. Assume now that $p=2$ and $n \geqq 3$. Let a, b, c, and d denote $2^{n} \mathbf{Z}+2^{n-3}, 2^{n} \mathbf{Z}+3 \cdot 2^{n-3}$, $2^{n} \mathbf{Z}+5 \cdot 2^{n-3}$, and $2^{n} \mathbf{Z}+7 \cdot 2^{n-3}$, respectively. Then $A_{n, 1}=\langle(a c)(b d)\rangle$. Now $x_{n, 2}$ fixes the set $\{a, b, c, d\}$ and, on this set, $x_{n, 2}=(a b c d)$. It is immediate that $\left[x_{n, 2}, A_{n, 1}\right]=1$. Hence $\left[x_{n, e}, A_{n, m}\right]=1$ for all m and the lemma is proved.

By Corollary 2.3, there is exactly one Sylow p-subgroup of the group
of all permutations of Γ_{n} which contains x_{n}. Denote this Sylow p-subgroup by P_{n} and let the stabilizer in P_{n} of the zero element of Γ_{n} be denoted by Q_{n}. We now prove that $G_{n} \leqq P_{n}$ (so, in particular, G_{n} is a p-group) and there is a homomorphism of G_{n} onto G_{n-1}.

Lemma 3.3. The following are true.
(1) $x_{n, 1} \in Z\left(P_{n}\right)$.
(2) $G_{n} \leqq P_{n}$.
(3) If $n>1$, then there is a homomorphism τ_{n} of P_{n} onto P_{n-1} such that $\left(P^{n-1} \mathbf{Z}+a\right) \tau_{n}(g)=p^{n-1} \mathbf{Z}+b$ if $\left(P^{n} \mathbf{Z}+a\right) g=P^{n} \mathbf{Z}+b$, for all $g \in P_{n}$ and a and $b \in \mathbf{Z}$.
(4) $\tau_{n}\left(x_{n, m}\right)=x_{n-1, m-1}$ if $n>1$ and $m \geqq 1$.
(5) $\tau_{n}\left(A_{n, m}\right)=A_{n-1, m-1}$ if $1 \leqq m \leqq n-e$.
(6) $\tau_{n}\left(G_{n}\right)=G_{n-1}$ if $n>1$.
(7) $\tau_{n}\left(Q_{n}\right)=Q_{n-1}$ if $n>1$.
(8) $\tau_{n}\left(H_{n}\right)=H_{n-1}$ if $n>1$.
(9) K_{n}, the kernel of τ_{n}, is elementary abelian of order $p^{p^{n-1}}$.
(10) $\left\langle x_{n, 1}\right\rangle A_{n, 1} \leqq K_{n}$ if $n \geqq e+1$.
(11) $P_{n}=\left\langle x_{n}\right\rangle Q_{n}$ and $H_{n}=G_{n} \cap Q_{n}$.

Proof. (1) follows from Lemma 2.2 (1). If $n=1$, the lemma certainly is true. Now assume $n>1$ and let C be the group generated by P_{n} and $G_{n} . Z(C)$ contains $x_{n, 1}$ by Lemma 3.2 (4) and so C satisfies the hypothesis of Lemma 2.2. It follows from this that C has a normal subgroup K_{n} such that K_{n} is an elementary abelian p-group and C / K_{n} is faithfully represented as a permutation group on the set of all orbits of $\left\langle x_{n, 1}\right\rangle$. These orbits are simply the cosets of $p^{n-1} \mathbf{Z} / p^{n} \mathbf{Z}$ in $\mathbf{Z} / p^{n} \mathbf{Z}$. Thus the orbits of $\left\langle x_{n, 1}\right\rangle$ are in a natural one-to-one correspondence with the elements of $\mathbf{Z} / p^{n-1} \mathbf{Z}$. Thus, we obtain a homomorphism τ_{n} of C onto a permutation group on Γ_{n-1} such that the kernel of τ_{n} is K_{n} and, if a and b are integers, $g \in C$, and if

$$
\left(p^{n} \mathbf{Z}+a\right) g=p^{n} \mathbf{Z}+b
$$

then

$$
\left(p^{n-1} \mathbf{Z}+a\right) \tau_{n}(g)=p^{n-1} \mathbf{Z}+b
$$

An immediate consequence of this is that $\tau_{n}\left(x_{n}\right)=x_{n-1}$. It then follows that $\tau_{n}\left(A_{n, m}\right)=A_{n-1, m-1}$ if $1 \leqq m \leqq n-e$. This implies that $\tau_{n}\left(G_{n}\right)=$ G_{n-1}. By induction, we may assume that G_{n-1} is a p-group. Since the kernel of τ_{n} is a p-group, this implies that G_{n} is a p-group. Since $x_{n} \in G_{n}$, Corollary 2.3 implies that $G_{n} \leqq P_{n}$. Then $C=P_{n}$. Lemma 2.2 (4) now implies that $\tau_{n}\left(P_{n}\right)=P_{n-1}$ and $\left|K_{n}\right|=p^{p^{n-1}}$. We now have proved parts (1), (2), (3), (4), (5), (6), and (9) of the Lemma. Part (10) follows from parts (4) and (5).

Since $\left\langle x_{n}\right\rangle$ is transitive, $P_{n}=\left\langle x_{n}\right\rangle Q_{n}$. Clearly $H_{n}=G_{n} \cap Q_{n}$ from the
definitions of H_{n} and Q_{n}. From (3), $\tau_{n}\left(Q_{n}\right)$ fixes the zero element of Γ_{n-1}. Hence $\tau_{n}\left(Q_{n}\right) \leqq Q_{n-1}$ and $\tau_{n}\left(H_{n}\right) \leqq H_{n-1}$. Now suppose $g \in P_{n}$ and $\tau_{n}(g) \in$ Q_{n-1}. Then g fixes all orbits of $\left\langle x_{n, 1}\right\rangle$ and so g certainly fixes $\Gamma_{n, 1}\left(\Gamma_{n, 1}\right.$ is the orbit of $p^{n} \mathbf{Z}+0$ under $\left\langle x_{n, 1}\right\rangle$). Since $\left\langle x_{n, 1}\right\rangle$ is transitive on $\Gamma_{n, 1}$, we see that there is an integer k such that $g x_{n, 1}^{k}$ fixes $p^{n} \mathbf{Z}+0$. Hence $g x_{n, 1}^{k} \in Q_{n}$. Since $x_{n, 1} \in K_{n}$, we find that

$$
\tau_{n}(g)=\tau_{n}\left(g x_{n, 1}^{k}\right) \in \tau_{n}\left(Q_{n}\right) .
$$

Since $Q_{n-1} \leqq \tau_{n}\left(P_{n}\right)$, this implies that $Q_{n-1}=\tau_{n}\left(Q_{n}\right)$. If $g \in G_{n}$ and $\tau_{n}(g) \in H_{n-1}$, then as before, there is an integer k such that $g x_{n, 1}^{k} \in H_{n}$. This implies that $\tau_{n}(g) \in \tau_{n}\left(H_{n}\right)$. Since $H_{n-1} \leqq \tau_{n}\left(G_{n}\right)$, we conclude that $H_{n-1}=\tau_{n}\left(H_{n}\right)$. This finishes the proof of the lemma.

Corollary 3.4. (1) The exponent of G_{n} is p^{n}.
(2) The exponent of H_{n} is $\operatorname{Max}\left\{1, p^{n-e}\right\}$.
(3) If $n \geqq 2$, then $G_{n}=C_{G_{n}}\left(x_{n, 2}\right)\left(G_{n} \cap K_{n}\right)$.

Proof. Since G_{n} is a p-subgroup of the symmetric group of degree p^{n} and since G contains an element of order p^{n}, part (1) is clear. If $n \leqq e$, then $H_{n}=1$. Assume now that $n>e$. Then $H_{n-1}=\tau_{n}\left(H_{n}\right)$ has exponent p^{n-e-1} by induction. Since $A_{n, n-e}$ contains elements of order p^{n-e} and since the kernel of τ_{n} has exponent p, we see that H_{n} has exponent p^{n-e}.

Now suppose $n \geqq 2$. From Lemma 3.1 (4), we obtain

$$
C_{G_{n}}\left(x_{n, 2}\right) \geqq\left\langle x_{n}, A_{n, m} \mid 2 \leqq m \leqq n-e\right\rangle .
$$

But $A_{n, 1} \leqq G_{n} \cap K_{n} \leqq G_{n}$. This immediately implies (3).
Eventually, we will show that H_{n} is a permutable subgroup of G_{n} and that $K_{n} \cap G_{n}=\Omega_{1}\left(G_{n}\right)$. The proof of this will be by induction on n. To begin the induction, we need to know the structure of G_{n} when $n \leqq e+1$. If $n \leqq e$, then $G_{n}=\left\langle x_{n}\right\rangle$ and $H_{n}=1$. Thus, if $1<n \leqq e$, then it follows from Lemma $3.3(4,9)$ that $K_{n} \cap G_{n}=\left\langle x_{n, 1}\right\rangle$. This leaves G_{3} when $p=2$ and G_{2} when $p>2$. We consider these separately.

Lemma. 3.5. Assume $p=2$. Then G_{3} has order 16 , class 2, and exponent 8. $H_{3}=A_{3,1}$ is a permutable subgroup of $G_{3}, G_{3} \cap K_{3}=\Omega_{1}\left(G_{3}\right)=\left\langle x_{3,1}\right\rangle$ $\times A_{3,1}, \Omega_{1}\left(G_{3}\right)$ has order 4 , and $\delta^{2}\left(G_{3}\right)=\left\langle x_{3,1}\right\rangle$.
Proof. By direct computation, $x_{3}=\left(\begin{array}{ll}0 & 1234567)\end{array}\right)$ and $A_{3,1}=\langle y\rangle$ where $y=(15)(37)$ where we have written i instead of $2^{3} \mathbf{Z}+\mathbf{i}$. Now $y^{-1} x_{3} y=x_{3}^{5}$ and so $G_{3}=\left\langle x_{3}, y\right\rangle=\left\langle x_{3}\right\rangle\langle y\rangle$. Hence $H_{3}=\langle y\rangle$. The permutability of H_{3} follows from Lemma 4.1 of [2]. The rest of the lemma follows by a direct calculation and from Lemma 2.2 (5).

Lemma 3.6. Assume $p>2$. Then G_{2} has order p^{p}, class $p-1$, and exponent $p^{2} . H_{2}=A_{2,1}$ is a permutable sungroup of G_{2},

$$
G_{2} \cap K_{2}=\Omega_{1}\left(G_{2}\right)=\left\langle x_{2,1}\right\rangle \times A_{1,2},
$$

$\Omega_{1}\left(G_{2}\right)$ has order p^{p-1}, and $\nabla^{1}\left(G_{2}\right)=\left\langle x_{2,1}\right\rangle$.
Proof. $G_{2}=\left\langle x_{2}, A_{2,1}\right\rangle$. Let π_{0} be the permutation induced by $x_{2,1}$ on $\Gamma_{2,1}$ and have π_{0} fix all the elements of Γ_{2} not in $\Gamma_{2,1}$. Then

$$
x_{2,1}=\pi_{0} \prod_{i=1}^{p-1} \pi_{2,1, i} .
$$

Now $\pi_{0}^{k}=\pi_{0}^{(1-p) k}$ for any integer k and

$$
(1-p) k+\sum_{i=1}^{p-1}\left(c_{i}+k\right)=\sum_{i=1}^{p-1} c_{i} .
$$

It follows from this, letting $\pi_{i}=\pi_{2,1, i}$ if $1 \leqq i \leqq p-1$, that

$$
\left\langle x_{2,1}\right\rangle A_{2,1} \leqq\left\{\prod_{i=0}^{p-1} \pi_{i}^{c_{i}} \mid \sum_{i=0}^{p-1} c_{i}=0\right\} .
$$

The right-hand-side has order p^{p-1} since $\left|\pi_{i}\right|=p$ for all i. But $\left|A_{2,1}\right|=p^{p-2}$ from Lemma 3.1 and so the left-hand-side has order p^{p-1}. Thus

$$
\left\langle x_{2,1}\right\rangle A_{2,1}=\left\{\prod_{i=0}^{p-1} \pi_{i}^{c_{i}} \mid \sum_{i=0}^{p-1} c_{i}=0\right\} .
$$

Since conjugation by x_{2} permutes $\pi_{0}, \ldots, \pi_{p-1}$ among themselves, this implies that $\left\langle x_{2,1}\right\rangle A_{2,1}$ is a normal subgroup of G_{2}. Then

$$
G_{2}=\left\langle x_{2}, A_{2,1}\right\rangle=\left\langle x_{2}\right\rangle\left(\left\langle x_{2,1}\right\rangle A_{2,1}\right)=\left\langle x_{2}\right\rangle A_{2,1} .
$$

It follows from this that $H_{2}=A_{2,1}$ and that $\left|G_{2}\right|=p^{p}$. Then $c\left(G_{2}\right) \leqq p-1$ which implies that $\Omega_{1}\left(G_{2}\right)$ has exponent p. It follows from this that $\Omega_{1}\left(G_{2}\right)=\left\langle x_{2,1}\right\rangle A_{2,1}$. Since K_{2} is elementary abelian and since $K_{2} \geqq$ $\left\langle x_{2,1}\right\rangle A_{2,1}$ from Lemma 3.3 (10), we obtain $G_{2} \cap K_{2}=\Omega_{1}\left(G_{2}\right)$. Now Lemma 2.2 (1) implies that

$$
C_{G_{2}}\left(x_{2}\right) \cap \Omega_{1}\left(G_{2}\right)=\left\langle x_{2,1}\right\rangle .
$$

Thus, the linear transformation induced by x_{2} acting on $\Omega_{1}\left(G_{2}\right)$ written additively has a single Jordan block. Since $\left|\Omega_{1}\left(G_{2}\right)\right|=p^{p-1}$, it follows that

$$
\left[\Omega_{1}\left(G_{2}\right),\left\langle x_{2}\right\rangle ; p-2\right] \neq 1 .
$$

This implies that G_{2} has class $p-1$.
Since $G_{2} / \Omega_{1}\left(G_{2}\right)$ is abelian, we see that the p-th power of any commutator in G_{2} is the identity. Since $\mathrm{c}\left(G_{2}\right)<p$, Corollary 12.3.1 of [5] now implies that

$$
\sigma^{1}\left(G_{2}\right)=\sigma^{1}\left(\left\langle x_{2}\right\rangle \Omega_{1}\left(G_{2}\right)\right)=\sigma^{1}\left(\left\langle x_{2}\right\rangle\right)=\left\langle x_{2,1}\right\rangle .
$$

It only remains to show that H_{2} is a permutable subgroup of G_{2}. Let
T be any subgroup of G. If T has exponent $\leqq p$, then $T \leqq \Omega_{1}\left(G_{2}\right)$ and $T H_{2}=H_{2} T$ since $H_{2} \leqq \Omega_{1}\left(G_{2}\right)$ and $\Omega_{1}\left(G_{2}\right)$ is abelian. If T has exponent exceeding p, then $\sigma^{1}(T) \neq 1$. This implies that $T \geqq\left\langle x_{2,1}\right\rangle$ and so

$$
T H_{2}=T\left\langle x_{2,1}\right\rangle H_{2}=T \Omega_{1}\left(G_{2}\right)=G_{2}
$$

(since $\left|G_{2}: \Omega_{1}\left(G_{2}\right)\right|=p$ and $T \Omega_{1}\left(G_{2}\right) \neq \Omega_{1}\left(G_{2}\right)$). Hence $T H_{2}=H_{2} T$ in all cases and the lemma is proved.

To proceed further, we need another homomorphism ρ_{n} which will $\operatorname{map}\left\langle x_{n, n-1}\right\rangle Q_{n}$ onto P_{n-1}.

Lemma 3.7. Assume $n>$ 1. Then
(1) If $0 \leqq k \leqq n$, then $\left\langle x_{n, k}\right\rangle Q_{n}$ and $\left\langle x_{n, k}\right\rangle H_{n}$ are subgroups of P_{n}.
(2) $\left\langle x_{n, n-1}\right\rangle Q_{n}$ and $\left\langle x_{n, n-1}\right\rangle H_{n}$ are normal subgroups of P_{n} and G_{n}, respectively.
(3) There is a homomorphism ρ_{n} of $Q_{n}\left\langle x_{n, n-1}\right\rangle$ onto P_{n-1} such that for all $g \in\left\langle x_{n, n-1}\right\rangle Q_{n}$ and $a, b \in \mathbf{Z},\left(p^{n-1} \mathbf{Z}+a\right) \rho_{n}(g)=p^{n-1} \mathbf{Z}+b$ if and only if $\left(p^{n} \mathrm{Z}+p a\right) g=p^{n} \mathbf{Z}+p b$.
(4) $\rho_{n}\left(x_{n, k}\right)=x_{n-1, k} i f 0 \leqq k \leqq n-1$.
(5) $\rho_{n}\left(A_{n, m}\right)=A_{n-1, m}$ if $0 \leqq m \leqq n-e-1$.
(6) $\rho_{n}\left(A_{n, n-e}\right)=1$.
(7) $\rho_{n}\left(Q_{n}\right)=Q_{n-1}$.

Proof. Since $P_{n}=\left\langle x_{n}\right\rangle Q_{n}$ is a p-group and $\left|P_{n}: Q_{n}\right|=p^{n}$, there must be a subgroup of P_{n} containing Q_{n} and of order $p^{k}\left|Q_{n}\right|$ for every k satisfying $0 \leqq k \leqq n$. But such a subgroup would have to be $\left\langle x_{n, k}\right\rangle Q_{n}$. $\left|P_{n}:\left\langle x_{n, n-1}\right\rangle Q_{n}\right|=p$ and so $\left\langle x_{n, n-1}\right\rangle Q_{n}$ is normal in P. Since $G_{n} \cap$ $\left\langle x_{n, k}\right\rangle Q_{n}=\left\langle x_{n, k}\right\rangle H_{n}$, we have proved (1) and (2).
Now the orbit of ($p^{n} \mathbf{Z}+0$) under $Q_{n}\left\langle x_{n, n-1}\right\rangle$ is $\Gamma_{n, n-1}$. The mapping $p^{n-1} \mathbf{Z}+a \rightarrow p^{n} \mathbf{Z}+p a$ establishes a one-to-one correspondence between Γ_{n-1} and $\Gamma_{n, n-1}$. Thus, we obtain a representation ρ_{n} of $Q_{n}\left\langle x_{n, n-1}\right\rangle$ as a permutation group on Γ_{n-1} where

$$
\left(p^{n-1} \mathbf{Z}+a\right) \rho_{n}(g)=p^{n-1} \mathbf{Z}+b
$$

if and only if

$$
\left(p^{n} \mathbf{Z}+p a\right) g=p^{n} \mathbf{Z}+p b
$$

for all $g \in Q_{n}\left\langle x_{n, n-1}\right\rangle$ and $a, b \in \mathbf{Z}$. This certainly implies that $\rho_{n}\left(x_{n, n-1}\right)=$ x_{n-1}. Since $\rho_{n}\left(Q_{n}\left\langle x_{n, n-1}\right\rangle\right)$ must be a p-group and since P_{n-1} is the only Sylow p-subgroup of the symmetric group of degree p^{n-1} which contains x_{n-1}, we find that $\rho_{n}\left(Q_{n}\left\langle x_{n, n-1}\right\rangle\right) \leqq P_{n-1}$.

Now let T be the kernel of ρ_{n}. Then T fixes every element of $\Gamma_{n, n-1}$. Since $\left|\Gamma_{n}-\Gamma_{n, n-1}\right|=p^{n}-p^{n-1}$ and since T is a p-group, we conclude that $|T| \leqq p^{N-1}$ where $N=p^{n-1}$.

But

$$
\left|P_{n-1}\right| \geqq \rho_{n}\left(Q_{n}\left\langle x_{n, n-1}\right\rangle\right)\left|=\left|P_{n}\right|\right| p|T| \geqq\left|P_{n}\right| / p^{N} .
$$

However, $\left|P_{n-1}\right|=\left|P_{n}\right| / p^{N}$ and so ρ_{n} must map $Q_{n}\left\langle x_{n, n-1}\right\rangle$ onto P_{n}. We now have proved (3) and the rest of the lemma follows by direct computation.

From parts (4), (5), and (6) of the previous lemma, we immediately conclude that $G_{n-1} \leqq \rho_{n}\left(H_{n}\left\langle x_{n, n-1}\right\rangle\right)$. To assert that this inclusion is an equality, we need to know generators for $H_{n}\left\langle x_{n, n-1}\right\rangle$. This is done in the next lemma. If $n>1$, let R_{n} be the intersection of $H_{n}\left\langle x_{n, n-1}\right\rangle$ and the kernel of ρ_{n}.

Lemma 3.8. Assume $n \geqq e$. Then the following are true:
(1) R_{n} is the core of H_{n} in $H_{n}\left\langle x_{n, n-1}\right\rangle$.
(2) $x_{n}^{-i} A_{n, m} x_{n}^{i} \leqq\left\langle x_{n, n-1}, A_{n,} \mid 0 \leqq!\leqq n-e-1\right\rangle R_{n}$ for all integers i and $0 \leqq m \leqq n-e$.
(3) $H_{n}\left\langle x_{n, n-1}\right\rangle=\left\langle x_{n, n-1}, A_{n, 1} \mid 0 \leqq!\leqq n-e-1\right\rangle R_{n}$.
(4) $\rho_{n}\left(H_{n}\left\langle x_{n, n-1}\right\rangle\right)=G_{n-1}$.
(5) $\rho_{n}\left(H_{n}\right)=H_{n-1}$.

Proof. R_{n} consists of those elements of $H_{n}\left\langle x_{n, n-1}\right\rangle$ which fix every element of $\Gamma_{n, n-1}$. But $H_{n}\left\langle x_{n, n-1}\right\rangle$ is transitive on $\Gamma_{n, n-1}$ and H_{n} is the stabilizer of a point. Hence, R_{n} is the core of H_{n} in $H_{n}\left\langle x_{n, n-1}\right\rangle$.
Now let

$$
L=\left\langle x_{n, n-1}, A_{n, 2} \mid 0 \leqq \iota \leqq n-e-1\right\rangle R_{n}
$$

and

$$
\left.M=\left\langle x_{n, n-1}, x_{n}^{-i} A_{n, m} x_{n}^{i}\right| 0 \leqq m \leqq n-e, \text { all } i\right\} .
$$

Then M and L are both contained in $H_{n}\left\langle x_{n, n-1}\right\rangle$. Since M is normalized by x_{n} and $\left\langle x_{n}, M\right\rangle=G_{n}$, we conclude that $M \triangleleft G_{n}=M\left\langle x_{n}\right\rangle$. Since $x_{n}^{p} \in M$ and since $\left|G_{n}: H_{n}\left\langle x_{n, n-1}\right\rangle\right|=p$, we obtain $M=H_{n}\left\langle x_{n, n-1}\right\rangle$. Assume now that (2) holds. Then $H_{n}\left\langle x_{n, n-1}\right\rangle \geqq L \geqq M$. Hence $L=$ $H_{n}\left\langle x_{n, n-1}\right\rangle$. This together with Lemma 3.7 implies (4) and (5). Thus the lemma will be proved once we verify (2).

Now $A_{n, m} \leqq L$ for $0 \leqq m \leqq n-e$ (recall that $A_{n, n-e} \leqq R_{n}$ by Lemma 3.7 (6)) and $x_{n}^{p} \in L$. Hence it suffices to prove (2) when $1 \leqq i \leqq p-1$. We now consider 3 cases.

CASE $1.0 \leqq m \leqq n-e-1$. Since $A_{n, m}$ fixes any element of Γ_{n} which does not have order p^{m+e} and since $p^{m+e}<p^{n}$, we see that $A_{n, m}$ fixes $p^{n} \mathbf{Z}$ $+p a-i$. for all $a \in \mathbf{Z}$. (Recall that we are assuming $1 \leqq i \leqq p-1$.) This implies that

$$
x_{n}^{-i} A_{n, m} x_{n}^{i} \leqq R_{n} \leqq L .
$$

CASE 2. $m=n-e$ and $p>2$. Then $A_{n, n-1} \leqq C_{G}\left(x_{n, n-1}\right)$ by Lemma 3.1 (4). Then

$$
x_{n}^{-i} A_{n, n-1} x_{n}^{i} \leqq C_{G_{n}}\left(x_{n, n-1}\right) \cap H_{n}\left\langle x_{n, n-1}\right\rangle=\left\langle x_{n, n-1}\right\rangle C_{H_{n}}\left(x_{n, n-1}\right)
$$

But (1) implies that

$$
R_{n}=\bigcap_{i} x_{n, n-1}^{-i} H_{n} x_{n, n-1}^{i} \geqq C_{H_{n}}\left(x_{n, n-1}\right)
$$

It follows from this that

$$
x_{n}^{-i} A_{n, n-1} x_{n}^{i} \leqq\left\langle x_{n, n-1}\right\rangle R_{n} \leqq L
$$

Case 3. $m=n-e$ and $p=2$. In this case $e=2$ and $i=1$. If $1 \leqq$ $k \leqq n-2$, then define the permutation U_{k} on Γ_{n} by

Then, as may be verified by a straight-forward calculation, $\left\langle U_{k}\right\rangle=$ $A_{n, n-1-k}$. Thus it suffices to prove that $x_{n}^{-1} U_{1} x_{n} \in L$.
Define v_{k} by

$$
v_{k}=x_{n}^{\left(2^{k-1}-2\right)} U_{k} x_{n}^{-\left(2^{k-1}-2\right)}
$$

Then $v_{1}=x_{n}^{-1} U_{1} x_{n}$ and, by case $1, v_{k} \in L$ if $2 \leqq k \leqq n-2$. For $1 \leqq$ $k \leqq n-2$, we have

$$
\left(2^{n} \mathbf{Z}+a\right) v_{k}=\left\{\begin{array}{l}
2^{n} \mathbf{Z}+a+2^{k+1} \text { if } a \equiv 2\left(\bmod 2^{k+1}\right) \\
2^{n} \mathbf{Z}+a-2^{k+1} \text { if } a \equiv 2+2^{k}\left(\bmod 2^{k+1}\right) \\
2^{n} \mathbf{Z}+a \quad \text { otherwise }
\end{array}\right.
$$

Now

$$
\left(2^{n} \mathbf{Z}+a\right) x_{n}^{4} v_{1}=\left\{\begin{array}{l}
2^{n} \mathbf{Z}+a+8 \text { if } a \equiv 2(\bmod 4) \\
2^{n} \mathbf{Z}+a+4 \text { if } a \text { is odd } \\
2^{n} \mathbf{Z}+a \quad \text { otherwise }
\end{array}\right.
$$

It is now an easy induction to verify that, if $1 \leqq!\leqq n-2$, then

$$
\left(2^{n} \mathbf{Z}+a\right) x_{n}^{4} v_{1} v_{2} \cdots v_{\prime}= \begin{cases}2^{n} \mathbf{Z}+a+2^{\kappa+2} & \text { if } a \equiv 2\left(\bmod 2^{\kappa+1}\right) \\ 2^{n} \mathbf{Z}+a+4 & \text { if } a \text { is odd } \\ 2^{n} \mathbf{Z}+a & \text { otherwise }\end{cases}
$$

Since x_{n}^{4} and v_{k} belong to $H_{n}\left\langle x_{n, n-1}\right\rangle$ for all k, this implies that

$$
x_{n}^{4} v_{1} v_{2} \cdots v_{n-2} \in R_{n} \leqq L
$$

Since x_{n}^{4} and v_{2}, \ldots, x_{n-2} all belong to L, we conclude that $v_{1} \in L$ and the lemma is proved.

Corollary 3.9. If $n>1$, then $\left\langle x_{n, n-1}\right\rangle H_{n}$ is a subdirect product of p copies of G_{n-1}.

Proof. If $n \leqq e$, then $H_{n}=1$ and this is trivial. Now suppose $n>e$. Then, for all i,

$$
\left\langle x_{n, n-1}\right\rangle H_{n} /\left(x_{n}^{-i} R_{n} x_{n}^{i}\right) \cong\left\langle x_{n, n-1}\right\rangle H_{n} / R_{n} \cong G_{n-1} .
$$

Now $R_{n} \leqq H_{n}$ and $H_{n}\left\langle x_{n}^{p}\right\rangle$ normalizes R_{n}. Hence

$$
1=\left(H_{n}\right)_{G_{n}}=\left(R_{n}\right)_{G_{n}}=\bigcap_{i=0}^{p-1} x_{n}^{-i} R_{n} x_{n}^{i}
$$

The corollary now follows.
Before proving that H_{n} is a permutable subgroup of G_{n}, we first need to show that $\Omega_{1}\left(G_{n}\right)=K_{n} \bigcap G_{n}$ and that $\mathscr{g}^{n-1}\left(G_{n}\right)=\left\langle x_{n, 1}\right\rangle$. This is done in the next two lemmas.

Lemma. 3.10. $\Omega_{1}\left(G_{n}\right)=\Omega_{1}\left(\left\langle x_{n}\right\rangle\right) \Omega_{1}\left(H_{n}\right)=K_{n} \cap G_{n}$. In particular, $\Omega_{1}\left(G_{n}\right)$ is elementary abelian.

Proof. If $n \leqq e+1$, this follows from previous results. Now assume $n>e+1$ and let g be an element of order p in G_{n}. Then $\tau_{n}(g) \in \Omega_{1}\left(G_{n-1}\right)$. By induction, $\Omega_{1}\left(G_{n-1}\right) \leqq K_{n-1}$. This implies that $\tau_{n}(g)$ fixes all the orbits of $\left\langle x_{n-1,1}\right\rangle=\left\langle\tau_{n}\left(x_{n, 2}\right)\right\rangle$. Since an orbit of $\left\langle x_{n, 2}\right\rangle$ is the union of orbits of $\left\langle x_{n, 1}\right\rangle$, this implies that g fixes all the orbits of $\left\langle x_{n, 2}\right\rangle$. In particular, g fixes $\Gamma_{n, 2}$. Then there is an integer k such that $g x_{n, 2}^{k} \in H_{n}$. It follows from this that $g \in H_{n}\left\langle x_{n, 2}\right\rangle \leqq H_{n}\left\langle x_{n, n-1}\right\rangle$ since $n-1 \geqq e+1 \geqq 2$.

From the above argument, we see that $\Omega_{1}\left(G_{n}\right) \leqq H_{n}\left\langle x_{n}^{p}\right\rangle$. Hence $\Omega_{1}\left(G_{n}\right)=\Omega_{1}\left(H_{n}\left\langle x_{n}^{p}\right\rangle\right)$. By induction, $\Omega_{1}\left(G_{n-1}\right)$ is elementary abelian. Corollary 3.9 now implies that $\Omega_{1}\left(H_{n}\left\langle x_{n}^{p}\right\rangle\right)$ is elementary abelian. Hence $\Omega_{1}\left(G_{n}\right)$ is elementary abelian.

Clearly, $\rho_{n}\left(\Omega_{1}\left(G_{n}\right)\right) \leqq \Omega_{1}\left(G_{n-1}\right)$ and, by induction,

$$
\Omega_{1}\left(G_{n-1}\right)=\left\langle x_{n-1,1}\right\rangle \Omega_{1}\left(H_{n-1}\right) \leqq \rho_{n}\left(\left\langle x_{n, 1}\right\rangle H_{n}\right)
$$

Since $R_{n} \leqq H_{n}$, this implies that $\Omega_{1}\left(G_{n}\right) \leqq\left\langle x_{n, 1}\right\rangle H_{n}$. From the fact that $x_{n, 1} \in Z\left(G_{n}\right)$, we conclude that

$$
\Omega_{1}\left(G_{n}\right)=\Omega_{1}\left(\left\langle x_{n, 1}\right\rangle H_{n}\right)=\left\langle x_{n, 1}\right\rangle \times \Omega_{1}\left(H_{n}\right) .
$$

Now $\left\langle x_{n, 1}\right\rangle \leqq K_{n} \cap G_{n} \leqq \Omega_{1}\left(G_{n}\right)=\left\langle x_{n, 1}\right\rangle \Omega_{1}\left(H_{n}\right)$. Hence $H_{n}\left(K_{n} \cap\right.$ $\left.G_{n}\right) \geqq \Omega_{1}\left(G_{n}\right) \geqq\left(K_{n} \cap G_{n}\right)$. But $H_{n-1}=\tau_{n}\left(H_{n}\right)$ is core-free in $G_{n-1}=$ $\tau_{n}\left(G_{n}\right)$ and K_{n} is the kernel of τ_{n}. This implies that $H_{n}\left(K_{n} \cap G_{n}\right) /\left(K_{n} \cap G_{n}\right)$
is core-free in $G_{n} /\left(K_{n} \cap G_{n}\right)$. It follows from this that $\Omega_{n}\left(G_{n}\right)=K_{n} \cap G_{n}$ and the lemma is proved.

Corollary 3.11. If $0 \leqq k \leqq n$, then $\Omega_{k}\left(G_{n}\right)$ has exponent p^{k} and $\Omega_{k}\left(G_{n}\right)=\Omega_{k}\left(\left\langle x_{n}\right\rangle\right) \Omega_{k}\left(H_{n}\right)$.

Proof. If $k \leqq 1$, this has been done. Now $G_{n} \cap K_{n}$ has exponent p. Hence $\tau_{n}\left(\Omega_{k}\left(G_{n}\right)\right)=\Omega_{k-1}\left(G_{n-1}\right)$. Similarly, $\tau_{n}\left(\Omega_{k}\left(H_{n}\right)\right)=\Omega_{k-1}\left(H_{n-1}\right)$ and $\tau_{n}\left(\Omega_{k}\left(\left\langle x_{n}\right\rangle\right)\right)=\Omega_{k-1}\left(\left\langle x_{n-1}\right\rangle\right)$. The corollary now follows by induction on k.
Lemma 3.12. (1) If $n \geqq 2$, then $\left\langle x_{n, 2}\right\rangle \Omega_{1}\left(G_{n}\right)$ has class $\leqq p-1$.
(2) If $n \geqq 1$, then $\delta^{n-1}\left(G_{n}\right)=\left\langle x_{n, 1}\right\rangle$.

Proof. If $n \leqq e+1$, this follows from previous work. Assume now that $n>e+1$. Then $n \geqq e+2 \geqq 3$ and so both $\left\langle x_{n, 2}\right\rangle$ and $\Omega_{1}\left(G_{n}\right)$ are contained in $\left\langle x_{n, n-1}\right\rangle H_{n}$. By induction, $\mathrm{c}\left(\Omega_{1}\left(G_{n-1}\right)\left\langle x_{n-1,2}\right\rangle\right) \leqq p-1$. Since $\rho_{n}\left(\Omega_{1}\left(G_{n}\right)\right) \leqq \Omega_{1}\left(G_{n-1}\right)$, this implies that $L_{p}\left(\Omega_{1}\left(G_{n}\right)\left\langle x_{n, 2}\right\rangle\right) \leqq R_{n} \leqq H_{n}$. But x_{n} normalizes $L_{p}\left(\Omega_{1}\left(G_{n}\right)\left\langle x_{n, 2}\right\rangle\right)$ and

$$
\bigcap_{i} x_{n}^{-i} H_{n} x_{n}^{i}=H_{G}=1 .
$$

Hence $L_{p}\left(\Omega_{1}\left(G_{n}\right)\left\langle x_{n, 2}\right\rangle\right)=1$ and (1) is proved.
By , induction,

$$
\delta^{n-2}\left(G_{n-1}\right)=\left\langle x_{n-1,1}\right\rangle .
$$

This implies that

$$
\delta^{n-2}\left(G_{n}\right) \leqq\left\langle x_{n, 2}\right\rangle \Omega_{1}\left(G_{n}\right)
$$

by taking inverse images under τ_{n}. It follows from this that

$$
\delta^{n-1}\left(G_{n}\right) \leqq \delta^{1}\left(\left\langle x_{n, 2}\right\rangle \Omega_{1}\left(G_{n}\right)\right) .
$$

Now $\left\langle x_{n, 2}\right\rangle \Omega_{1}\left(G_{n}\right)$ has class $\leqq p-1$ and the commutator subgroup of $\left\langle x_{n, 2}\right\rangle \Omega_{1}\left(G_{n}\right)$ is contained in the elementary abelian subgroup $\Omega_{1}\left(G_{n}\right)$. Corollary 12.3.1 of [5] now yields

$$
\left.\delta^{n}\left(G_{n}\right) \leqq \delta^{1}\left(x_{n, 2}\right\rangle\right)=\left\langle x_{n, 1}\right\rangle
$$

and the lemma follows.
Finally, we prove part (1) of the theorem in the introduction.
Theorem 3.13. H_{n} is a permutable subgroup of G_{n}.
Proof. If $n \leqq e+1$, this has been done. Now assume $n>e+1$. By induction, H_{n-1} is a permutable subgroup of G_{n-1}. Taking inverse images under ρ_{n} and τ_{n}, we deduce that H_{n} and $H_{n} \Omega_{1}\left(G_{n}\right)$ are permutable subgroups of $H_{n}\left\langle x_{n, n-1}\right\rangle$ and G_{n}, respectively. Suppose now that T is a
subgroup of G_{n} and $H_{n} T \neq T H_{n}$. Then T cannot be contained in $H_{n}\left\langle x_{n, n-1}\right\rangle$. But Corollary 3.11 and Corollary 3.4 imply that $H_{n}\left\langle x_{n, n-1}\right\rangle$ $=\Omega_{n-1}\left(G_{n}\right)$. Hence $\delta^{n-1}(T) \neq 1$. Lemma 3.12 now implies that $\left\langle x_{n, 1}\right\rangle$ $\leqq T$. But then

$$
H_{n} T=H_{n} \Omega_{1}\left(H_{n}\right)\left\langle x_{n, 1}\right\rangle T=H_{n} \Omega_{1}\left(G_{n}\right) T
$$

Since $H_{n} \Omega_{1}\left(G_{n}\right)$ is a permutable subgroup of G_{n}, we see that $H_{n} T$ is a subgroup contrary to $H_{n} T \neq T H_{n}$. Thus the theorem is proved.

We now have proved part (i) of the theorem in the introduction. In the next section, we will prove part (ii). Before doing this however, we wish to derive some additional properties of the groups G_{n} and H_{n}. Specifically, we will derive the order of G_{n} and show that H_{n} decomposes as a direct product: $H_{n} \cong H_{n-1} \times R_{n}$.

Lemma 3.14.
(1) If $n \geqq e+1$, then

$$
\begin{aligned}
& \Omega_{1}\left(G_{n}\right)=\left\langle x_{n}^{-i} A_{n, 1} x_{n}^{i} \mid i=0,1, \ldots\right\rangle \\
& \text { and }\left|\Omega_{1}\left(G_{n}\right)\right|=p^{s} \text { where } s=p^{n-2}(p-1) \\
& \text { (2) } \text { If } 1 \leqq k \leqq n-e, \text { then } \\
& \Omega_{k}\left(G_{n}\right)=\left\langle x_{n}^{-i} A_{n, k} x_{n}^{i} \mid i=0,1, \ldots\right\rangle \Omega_{k-1}\left(G_{n}\right) .
\end{aligned}
$$

Proof. If (1) is valid, then an induction on k using the fact that $\Omega_{k-1}\left(G_{n-1}\right)=\tau_{n}\left(\Omega_{k}\left(G_{n}\right)\right)$ will yield (2). Hence it suffices to prove (1). Now if $n=e+1$, then $\Omega_{1}\left(G_{n}\right)$ has the right order and $\left|\Omega_{1}\left(G_{n}\right): A_{n, 1}\right|=p$ by Lemmas 3.5 and 3.6. Since x_{n} does not normalize $A_{n, 1}$ but does normalize $\Omega_{1}\left(G_{n}\right)$ we see that $\Omega_{1}\left(G_{n}\right)$ is generated by the conjugates of $A_{n, 1}$ under $\left\langle x_{n}\right\rangle$. This proves (1) when $n=e+1$.

Now assume $n>e+1$. Then $A_{n, 1}$ fixes each element of $\Delta_{n, n}$ by Lemma 3.1. Define B by

$$
B=\left\langle x_{n, n-1}^{-i} A_{n, 1} x_{n, n-1}^{i} \mid i=0,1, \ldots\right\rangle
$$

Then, since $\left\langle x_{n, n-1}\right\rangle$ fixes the set $\Delta_{n, n}, B$ must fix every element of $\Delta_{n, n}$. If $0 \leqq k \leqq p-1$, let $B_{k}=x_{n}^{-k} B x_{n}^{k}$. Then, since $\Gamma_{n}-\Delta_{n, n}=\Gamma_{n, n-1}$, the points moved by B_{k} must belong to $\Gamma_{n, n-1} x_{n}^{k}$. But if $j \not \equiv k(\bmod p)$, then $\Gamma_{n, n-1} x_{n}^{j}$ and $\Gamma_{n, n-1} x_{n}^{k}$ are disjoint. It follows from this that $\mid\left\langle B_{k}\right| 0 \leqq k$ $\leqq p-1\rangle\left|=|B|^{p}\right.$. Now, by induction and by Lemma 3.7,

$$
\left|\rho_{n}(B)\right|=\left|\left\langle x_{n-1}^{-i} A_{n-1,1} x_{n-1}^{i} \mid i=0.1, \ldots\right\rangle\right|=p^{t}
$$

where $t=p^{n-3}(p-1)$. This implies that

$$
\left|\left\langle x_{n}^{-i} A_{n, 1} x_{n}^{i} \mid i=0,1, \ldots\right\rangle\right| \geqq p^{p t}=p^{s}
$$

Since $A_{n, 1} \leqq \Omega_{1}\left(G_{n}\right)$ and since, by Lemma $3.1(d)$ of $[2],\left|\Omega_{1}\left(G_{n}\right)\right| \leqq p^{s}$, the desired result now follows.

Corollary 3.15. $\left|G_{n}\right|=p^{\left(p^{n-1}\right)}$.
Proof. This has been verified if $n \leqq e+1$. Now assume that $n>e+1$ and that

$$
\left|G_{n-1}\right|=p^{\left(p^{n-2}\right)}
$$

Since $G_{n-1}=\tau_{n}\left(G_{n}\right) \cong G_{n} / \Omega_{1}\left(G_{n}\right)$, the corollary follows.
We now look at the relationship between H_{n} and R_{n} leading up to showing that R_{n} is a direct factor of H_{n}. First, let

$$
W_{n}=\bigcap_{i=1}^{p-1} x_{n}^{-i} R_{n} x_{n}^{i}
$$

Lemma 3.16. Assume $n>e$ Then
(1) $W_{n}=\left\{g \in H_{n}\left\langle x_{n, n-1}\right\rangle \mid \alpha g=\alpha\right.$ for all $\left.\alpha \in \Delta_{n, n}\right\}$.
(2) $W_{n} \leqq H_{n}\left\langle x_{n, n-1}\right\rangle$ and $W_{n} R_{n}=W_{n} \times R_{n}$.
(3) $\Omega_{n-e}\left(G_{n}\right)=H_{n}\left\langle x_{n, n-e}\right\rangle \geqq R_{n} \times W_{n} \geqq H_{n}\left\langle x_{n, n-e-1}\right\rangle$.
(4) If $1 \leqq i \leqq p-1$, then $R_{n}\left(x_{n}^{-i} R_{n} x_{n}^{i}\right)=\Omega_{n-e}\left(G_{n}\right)$.

Proof. It follows from the definition of R_{n} that

$$
x_{n}^{-i} R_{n} x_{n}^{i}=\left\{g \in H_{n}\left\langle x_{n, n-1}\right\rangle \mid \alpha g=\alpha \text { for all } \alpha \in \Gamma_{n, n-1} x_{n}^{i}\right\}
$$

Since

$$
\bigcup_{i=1}^{p-1} \Gamma_{n, n-1} x_{n}^{i}=\Delta_{n, n}
$$

(1) follows at once. Since $R_{n} \unlhd H_{n}\left\langle x_{n, n-1}\right\rangle \geqq G_{n}$, we see that $W_{n} \unlhd$ $H_{n}\left\langle x_{n, n-1}\right\rangle$. Now $H_{n}\left\langle x_{n}^{p}\right\rangle$ normalizes R_{n} and so $R_{n} \cap W_{n}$ is the core of R_{n} in G_{n}. Since $R_{n} \leqq H_{n}$ and since H_{n} is core-free in $G_{n}, R_{n} \cap W_{n}=1$. Hence (2) is proved.

Corollaries 3.11 and 3.4 imply that $\Omega_{n-e}\left(G_{n}\right)=H_{n}\left\langle x_{n, n-e}\right\rangle \geqq R_{n}$. Since $\Omega_{n-e}\left(G_{n}\right) \leqq G_{n}$, it follows that $\Omega_{n-e}\left(G_{n}\right)$ contains $x_{n}^{-i} R_{n} x_{n}^{i}$ for all i. But then $\Omega_{n-e}\left(G_{n}\right)$ certainly contains $R_{n} W_{n}$. To complete the proof of (3), we need to show that $R_{n} W_{n} \geqq H_{n}\left\langle x_{n, n-e}\right\rangle$.

Parts (1) and (2) of our lemma together with Lemma 3.1(2) imply that

$$
W_{n} \geqq\left\langle x_{n, n-1}^{-k} A_{n, m} x_{n, n-1}^{k} \mid 0 \leqq m \leqq n-e-1, k \geqq 0\right\rangle
$$

Applying ρ_{n} to both sides of this and using Lemma 3.7 yields

$$
\rho_{n}\left(W_{n}\right) \geqq\left\langle x_{n-1}^{-k} A_{n-1, m} x_{n-1}^{k} \mid 0 \leqq m \leqq n-1-e, k \geqq 0\right\rangle .
$$

Using Lemma 3.14 and induction on m, we obtain $\rho_{n}\left(W_{n}\right) \geqq \Omega_{n-1-e}\left(G_{n-1}\right)$. Using Corollaries 3.11 and 3.4(2) and Lemmas 3.8(5) and 3.7(4), we derive

$$
\rho_{n}\left(W_{n}\right) \geqq \Omega_{n-1-e}\left(G_{n-1}\right)=H_{n-1}\left\langle x_{n-1, n-1-e}\right\rangle=\rho_{n}\left(H_{n}\left\langle x_{n, n-1-e}\right\rangle\right)
$$

Taking inverse images yields $W_{n} R_{n} \geqq H_{n}\left\langle x_{n, n-e-1}\right\rangle$ and so (3) is proved.
Now suppose (4) is false for some $i, 1 \leqq i \leqq p-1$. Then, since

$$
\Omega_{n-e}\left(G_{n}\right) \geqq x_{n}^{-i} R_{n} x_{n}^{i} \geqq W_{n}
$$

and since $\left|H_{n}\left\langle x_{n, n-e}\right\rangle: H_{n}\left\langle x_{n, n-e-1}\right\rangle\right|=p$, it follows from (3) that

$$
\Omega_{n-e}\left(G_{n}\right)>R_{n}\left(x_{n}^{-i} R_{n} x_{n}^{i}\right)=R_{n} W_{n}=H_{n}\left\langle x_{n, n-e-1}\right\rangle .
$$

Now

$$
x_{n}^{-i} W_{n} x_{n}^{i}=\bigcap_{j=1}^{p-1} x_{n}^{-i-j} R_{n} x_{n}^{i+j} \leqq x_{n}^{-p} R_{n} x_{n}^{p}=R_{n}
$$

where the last equality is because R_{n} is normal in $H_{n}\left\langle x_{n, n-1}\right\rangle$. We now see that

$$
x_{n}^{-i}\left(R_{n} W_{n}\right) x_{n}^{i} \leqq\left(x_{n}^{-i} R_{n} x_{n}^{i}\right) R_{n}=R_{n} W_{n}
$$

It follows from this that x_{n} normalizes $R_{n} W_{n}$. But then, since $R_{n} W_{n} \geqq$ $H_{n} \geqq A_{n, m}$ for $0 \leqq m \leqq n-e$, this implies that

$$
R_{n} W_{n} \geqq\left\langle x_{n}^{-k} A_{n, m} x_{n}^{k} \mid 0 \leqq m \leqq n-e, k \geqq 0\right\rangle
$$

Using Lemma 3.14 and induction on m, we obtain $R_{n} W_{n} \geqq \Omega_{n-e}\left(G_{n}\right)$. This proves (4).

Theorem 3.17. Assume $n>1$. For $1 \leqq k \leqq n$, define U_{k} by

$$
U_{k}=\left\{g \in H_{n} \mid \alpha g=\alpha \text { for all } \alpha \notin \Delta_{n, k}\right\} .
$$

Then
(1) $U_{n}=R_{n}$.
(2) H_{n} is the direct sum $U_{1} \times U_{2} \times \cdots \times U_{n}$.
(3) If $1 \leqq k \leqq n$, then U_{k} as a permutation group acting on $\Delta_{n, k}$ is permutation isomorphic to R_{k} acting on $\Delta_{k, k}$.
(4) If $1 \leqq k \leqq n$, then $U_{1} U_{2} \cdots U_{k}$ as a permutation group acting on $\Gamma_{n, k}$ is permutation isomorphic to H_{k} acting on Γ_{k}.

Proof. This is trivially true if $n \leqq e$. Now assume $n>e$. Since $R_{n} \leqq$ H_{n}, the previous lemma implies that $H_{n}=R_{n} \times\left(H_{n} \cap W_{n}\right)$. Now R_{n} fixes every element of $\Gamma_{n, n-1}$ and so R_{n} is faithfully represented as a permutation group on $\Delta_{n, n}$. Similarly, $H_{n} \cap W_{n}$ is faithfully represented as a permutation group on $\dot{\Gamma}_{n, n-1}$. This implies that $H_{n} \cap W_{n}$ acting on $\Gamma_{n, n-1}$ is permutation isomorphic to $\rho_{n}\left(H_{n} \cap W_{n}\right)$ acting on Γ_{n-1}. Since $\rho_{n}\left(R_{n}\right)=1$. we see that $\rho_{n}\left(H_{n} \cap W_{n}\right)=\rho_{n}\left(H_{n}\right)=H_{n-1}$. The theorem now follows by an easy induction proof.

Corollary 3.18. If $n>2$, then $\tau_{n}\left(R_{n}\right)=R_{n-1}$.
Proof. R_{n} moves only points in $\Delta_{n, n}$. It follows that $\tau_{n}\left(R_{n}\right)$ moves only
points in $\Delta_{n-1, n-1}$. Hence, $\tau_{n}\left(R_{n}\right) \leqq R_{n-1}$. Now $H_{n} \cong R_{n} \times H_{n-1}$. This implies both that $\left|R_{n}\right|=\left|H_{n}\right| /\left|H_{n-1}\right|$ and that $\Omega_{1}\left(H_{n}\right) \cong \Omega_{1}\left(R_{n}\right) \times$ $\Omega_{1}\left(H_{n-1}\right)$. But $\Omega_{1}\left(H_{n}\right)$ is the intersection of H_{n} with the kernel of τ_{n}. Hence,

$$
\begin{aligned}
\left|\tau_{n}\left(R_{n}\right)\right| & =\left|R_{n} / \Omega_{1}\left(R_{n}\right)\right|=\left|H_{n} / \Omega_{1}\left(H_{n}\right)\right| /\left|H_{n-1} / \Omega_{1}\left(H_{n-1}\right)\right| \\
& =\left|\tau_{n}\left(H_{n}\right)\right| /\left|\tau_{n-1}\left(H_{n-1}\right)\right|=\left|H_{n-1}\right| /\left|H_{n-2}\right| \\
& =\left|R_{n-1}\right| .
\end{aligned}
$$

This implies that $\tau_{n}\left(R_{n}\right)=R_{n-1}$.
The final result of this section exhibits a relationship between R_{n} and G_{n-e}. This will be of use in the next section in calculating the class and derived lengths of the groups G_{n}, H_{n} and R_{n}.

Lemma 3.19. Assume $n>e$. Then both $\Omega_{n-e}\left(G_{n}\right)$ and R_{n} are subdirect products of copies of G_{n-e}.

PROOF. $R_{n} \unlhd \Omega_{n-e}\left(G_{n}\right) \unlhd G_{n}$ and so

$$
\begin{aligned}
\Omega_{n-e}\left(G_{n}\right) / x_{n}^{-i} R_{n} x_{n}^{i} & \cong \Omega_{n-e}\left(G_{n}\right) / R_{n} \cong H_{n}\left\langle x_{n, n-e}\right\rangle / R_{n} \\
& \cong \rho_{n}\left(H_{n}\left\langle x_{n, n-e}\right\rangle\right)=H_{n-1}\left\langle x_{n-1, n-e}\right\rangle .
\end{aligned}
$$

Since $\bigcap_{i=1}^{p} x_{n}^{-i} R_{n} x_{n}^{i}=1$, this implies that $\Omega_{n-e}\left(G_{n}\right)$ is a subdirect product of copies of $H_{n-1}\left\langle x_{n-1, n-e}\right\rangle$.
Now suppose $1 \leqq i \leqq p-1$. Then Lemma 3.16(4) implies that $R_{n}\left(x_{n}^{-i} R_{n} x_{n}^{i}\right)=\Omega_{n-e}\left(G_{n}\right)$. Then we have

$$
R_{n} /\left(R_{n} \cap x_{n}^{-i} R_{n} x_{n}^{i}\right) \cong \Omega_{n-e}\left(G_{n}\right) / x_{n}^{-i} R_{n} x_{n}^{i} \cong H_{n-1}\left\langle x_{n-1, n-e}\right\rangle .
$$

Since $\bigcap_{p-1}^{i=1}\left(R_{n} \cap x_{n}^{-i} R_{n} x_{n}^{i}\right)=1$, we see that R_{n} is also a subdirect product of copies of $H_{n-1}\left\langle x_{n-1, n-e}\right\rangle$. Thus the lemma will be proved once we show that $H_{n-1}\left\langle x_{n-1, n-e}\right\rangle$ is a subdirect product of copies of G_{n-e}. If $p \neq 2$, then

$$
H_{n-1}\left\langle x_{n-1, n-e}\right\rangle=H_{n-1}\left\langle x_{n-1, n-1}\right\rangle=G_{n-1}=G_{n-e} .
$$

If $p=2$, then $e=2$ and Corollary 3.9 implies that $H_{n-1}\left\langle x_{n-1, n-e}\right\rangle$ is a subdirect product of copies of G_{n-c}. Thus the lemma is proved.

Corollary. 3.20. If $n>e$, then the three groups H_{n}, R_{n} and G_{n-e} have the same class, derived length, and exponent.

Proof. Since $R_{n} \leqq H_{n} \leqq \Omega_{n-e}\left(G_{n}\right)$, this follows from the lemma.
4. The universal property. The second half of the theorem in the introduction will follow from the following result.

Theorem 4.1. Suppose T is a subgroup of Q_{n} such that $T\left\langle x_{n}\right\rangle=\left\langle x_{n}\right\rangle T$ and that T is a permutable subgroup of $T\left\langle x_{n}\right\rangle$. Then $T \leqq H_{n}$.

Proof. T must be core-free in $T\left\langle x_{n}\right\rangle$ since $\left\langle x_{n}\right\rangle$ is transitive and T
stabilizes a point. Thus, by Theorem 5.1 of [1] and by Lemma 3.2 of [3], T must have exponent $\leqq \operatorname{Max}\left\{1, p^{n-e}\right\}$. If $n \leqq e$, then $T=1$ and the theorem is true. Now assume that $n>e$. Lemma 2.2(5) implies that $\Omega_{1}\left(T\left\langle x_{n}\right\rangle\right)$ fixes all orbits of $\left\langle x_{n, 1}\right\rangle$. Hence, $\Omega_{1}\left(T\left\langle x_{n}\right\rangle\right) \leqq K_{n}$. But $T\left\langle x_{n}\right\rangle$ must have class $\leqq p^{n-2}(p-1)$ [3, Theorem 3.4] and so

$$
\left[\Omega_{1}\left(T\left\langle x_{n}\right\rangle\right),\left\langle x_{n}\right\rangle ; p^{n-2}(p-1)\right]=1
$$

Now define U by

$$
U=\left\{u \in K_{n} \mid\left[u, x_{n} ; p^{n-2}(p-1)\right]=1\right\}
$$

Then U is a subgroup of K_{n}. Since

$$
C_{K_{n}}\left(x_{n}\right)=\left\langle x_{n}\right\rangle \cap K_{n}=\left\langle x_{n, 1}\right\rangle
$$

by Lemma 2.2, we find that the linear transformation induced by x_{n} on K_{n} written additively, can have only one Jordan block. Now

$$
\left|K_{n}\right|=p^{\left(p^{n-1}\right)}
$$

by Lemma 3.3(9) and

$$
p^{\left(p^{n-1}\right)}>p^{s}
$$

with $s=p^{n-2}(p-1)$. It follows from all this that $|U|=p^{s}$. But $\left[\Omega_{1}\left(G_{n}\right)\right.$, $\left.\left\langle x_{n}\right\rangle ; s\right]=1$ by Theorem 3.4 of [3]. This implies that U must contain both $\Omega_{1}\left(G_{n}\right)$ and $\Omega_{1}\left(T\left\langle x_{n}\right\rangle\right)$. Since $\left|\Omega_{1}\left(G_{n}\right)\right|=p^{s}$ by Lemma 3.14, we conclude that

$$
\Omega_{1}\left(T\left\langle x_{n}\right\rangle\right) \leqq U=\Omega_{1}\left(G_{n}\right)
$$

This implies that $\Omega_{1}(T) \leqq \Omega_{1}\left(G_{n}\right) \cap Q_{n}=\Omega_{1}\left(H_{n}\right)$.
Now $\tau_{n}(T) \leqq Q_{n-1}$ and $\tau_{n}(T)$ is a permutable subgroup of

$$
\tau_{n}\left(T\left\langle x_{n}\right\rangle\right)=\tau_{n}(T)\left\langle x_{n-1}\right\rangle
$$

Induction now yields $\tau_{n}(T) \leqq H_{n-1}=\tau_{n}\left(H_{n}\right)$. Hence $T \leqq H_{n} K_{n}$. From Corollary 3.4(3) we deduce that

$$
T \leqq C_{G_{n}}\left(x_{n, 2}\right) K_{n}
$$

Now let $g \in T$. Then $g=y z$ with $y \in C_{G_{n}}\left(x_{n, 2}\right)$ and $z \in K_{n}$. Then

$$
\left[g, x_{n, 2}\right]=\left[y z, x_{n, 2}\right]=\left[z, x_{n, 2}\right]
$$

Thus $\left[g, x_{n, 2} ; p-1\right]=\left[z, x_{n, 2} ; p-1\right]$. But Lemma 2.4 then implies that $\left[z, x_{n, 2} ; p-1\right]=1$. Since $z \in K_{n}$ and since

$$
x_{n, 2}=x_{n}^{\left(p^{n-2)}\right)}
$$

it follows that

$$
\left[z, x_{n} ; p^{n-2}(p-1)\right]=1
$$

Hence $z \in U=\Omega_{1}\left(G_{n}\right)$. But then $g=y z \in Q_{n} \cap G_{n}=H_{n}$ and the theorem is proved.

Theorem 4.2. Let $G=H\langle x\rangle$ where x has order p^{n} and H is a core-free permutable subgroup of G. Then there is one and only one monomorphism ψ of G into G_{n} such that $\psi(x)=x_{n}$ and $\psi(H) \leqq H_{n}$.

Proof. G must be a finite p-group by Lemma 2.1. Let Γ be the set of all cosets of H in G and define $f: \Gamma \rightarrow \Gamma_{n}$ by $f\left(H x^{i}\right)=p^{n} \mathbf{Z}+i$. This is a one-to-one correspondence and so we obtain a faithful (since H is core-free) representation ψ of G as a permutation group of Γ_{n} where

$$
\left(p^{n} \mathbf{Z}+i\right) \psi(g)=p^{n} \mathbf{Z}+j \text { if and only if } H x^{i} g=H x^{j}
$$

Then, as is easily computed, $\psi(x)=x_{n}$. Since $\psi(G)$ must be a p-group and $\psi(G)$ contains x_{n}, Corollary 2.3 implies that $\psi(G) \leqq p_{n}$. Since $\psi(H)$ fixes $p^{n} \mathbf{Z}+0, \psi(H) \leqq Q_{n}$. The previous theorem now is applicable with the result that $\psi(H) \leqq H_{n}$.

Now suppose that χ is any monomorphism of G into G_{n} such that $\chi(x)=x_{n}$ and $\chi(H) \leqq H_{n}$. Suppose $h \in H$ and i and j are integers such that

$$
\left(p^{n} \mathbf{Z}+i\right) \chi(h)=p^{n} \mathbf{Z}+j
$$

Since $p^{n} \mathbf{Z}+i$ and $p^{n} \mathbf{Z}+j$ are the images of $p^{n} \mathbf{Z}+0$ under x_{n}^{i} and x_{n}^{j}, respectively, we find that $\chi\left(x^{i} h x^{-j}\right)$ fixes $\left(p^{n} \mathbf{Z}+0\right)$. Hence, since $H_{n} \cap$ $\chi(G)=H_{n} \cap \chi(H\langle x\rangle)=H_{n} \cap \chi(H)\left\langle x_{n}\right\rangle=\chi(H), \chi\left(x^{i} h x^{-j}\right) \in \chi(H)$. This implies that $x^{i} h x^{-j} \in H$. From this follows that $H x^{i} h=H x^{j}$. An immediate consequence of this is $\left(p^{n} \mathbf{Z}+i\right) \psi(h)=p^{n} \mathbf{Z}+j$. We now see that $\chi=\psi$ and the theorem is proved.

As an application of this theorem, we will calculate the class and derived length of the groups G_{n}, H_{n}, and R_{n}. From Corollary 3.20 , we need only do this for G_{n}.

Theorem 4.3.
(1) $\mathrm{c}\left(G_{n}\right)=\operatorname{Max}\left\{1, p^{n-2}(p-1)\right\}$
(2) If $p>2$, then $\mathrm{d}\left(G_{n}\right)=n$.
(3) If $p=2$, then $\mathrm{d}\left(G_{n}\right)=[(n+1) / 2]$.

Proof. Theorem 3.4 of [3] and Lemma 3.2 of [2] imply that $\mathrm{c}\left(G_{n}\right)$ and $\mathrm{d}\left(G_{n}\right)$ are at most the values specified. Thus it sufflces to verify that $\mathrm{c}\left(G_{n}\right)$ and $\mathrm{d}\left(G_{n}\right)$ are at least as big as soecified. If $n=1$ then G_{n} is abelian and the theorem is true. We now assume that $n>1$.

Since $C_{G_{n}}\left(x_{n}\right)=\left\langle x_{n}\right\rangle$ and since $\Omega_{1}\left(G_{n}\right)$ is elementary abelian of order $p^{\left(p^{n-2}(p-1)\right)}$, we see that $\left[\Omega_{1}\left(G_{n}\right),\left\langle x_{n}\right\rangle ; p^{n-2}(p-1)-1\right] \neq 1$. This implies that $\mathrm{c}\left(G_{n}\right) \geqq p^{n-2}(p-1)$ and so (1) is proved.

Let $s=n$ if $p>2$ and $s=[(n+1) / 2]$ if $p=2$. Then in [9] if $p>2$ and in [3] if $p=2$, it is proved that there is a finite p-group G such that $G=\langle x\rangle H$ where x has order p^{n+e} and $\mathrm{d}(H)=s$. It follows from Theorem 4.2 that $\mathrm{d}\left(H_{n+e}\right) \geqq s$. Corollary 3.20 now yields $\mathrm{d}\left(G_{n}\right) \geqq s$ and the theorem is proved.

It should be noted that it is possible to give a direct proof of the value of $\mathrm{d}\left(G_{n}\right)$ without referring to the examples in [9] and [3]. More specifically, it is possible to explicitly find two elements (one of which is x_{n}) in G_{n} such that the subgroup generated by these two elements has derived length greater than or equal to n or $[(n+1) / 2]$ depending on whether $p>2$ or $p=2$, respectively. This proof, however, is longer and more complicated.

The final result to be presented is a technical result required in the study of infinite permutable subgroups in [4].

Lemma 4.4. There is an element $h \in H_{n}$ such that $\left(p^{n} \mathbf{Z}+a\right) h=p^{n} \mathbf{Z}+$ $a\left(p^{e}+1\right)$ for all $a \in \mathbf{Z}$.

Proof. If $n \leqq e$, simply choose $h=1$. Now assume $n>e$ and let G be the group with generators x, y and relations

$$
x^{p^{n}}=y^{p^{n-1}}=x^{-\left(p^{e+1}\right)} y^{-1} x y=1
$$

Then $G=\langle x\rangle\langle y\rangle$ and $\langle y\rangle$ is a core-free permutable subgroup of G [2, Lemma 4.1]. It follows from Theorem 4.2 that there is an element $h \in H_{n}$ such that

$$
h^{-1} x_{n} h=x_{n}^{\left(p^{e}+1\right)}
$$

Let g be the permutation of Γ_{n} given by $\left(p^{n} \mathbf{Z}+a\right) g=p^{n} \mathbf{Z}+a\left(p^{e}+1\right)$. Then $h g^{-1}$ centralizes $\left\langle x_{n}\right\rangle$. Since $\left\langle x_{n}\right\rangle$ is an abelian regular permutation group on Γ_{n}, we must have $h g^{-1} \in\left\langle x_{n}\right\rangle$. But $h g^{-1}$ stabilizes the zero element of Γ_{n}. Hence $h g^{-1}=1$ and the lemma follows.

Glossary

$p \quad$ a prime
$e \quad e=1$ if $p>2, e=2$ if $p=2$
$r \quad r=p-1$ if $p>2, r=2$ if $p=2$
$n \quad$ a positive integer
$\Gamma_{n} \quad \mathbf{Z} / p^{n} \mathbf{Z}$
$x_{n} \quad$ permutation $p^{n} \mathbf{Z}+a \rightarrow p^{n} \mathbf{Z}+a+1$
$x_{n, m} \quad x_{n}^{p^{n-m}}$ if $0 \leqq m \leqq n$
$\Gamma_{n, m} \quad \Omega_{m}\left(\Gamma_{n}\right)$
$\Delta_{n, m} \quad$ set of elements of order p^{m} in Γ_{n}
$\theta_{n, m, i}$ orbit of $\left\langle x_{n, m}\right\rangle$ contained in $\Delta_{n, m+e}$
$\pi_{n, m, i}$ permutation on $\theta_{n, m, i}$ induced by $x_{n, m}$
$A_{n, m} \quad\left\{\prod_{i=1}^{r} \pi_{n, m, i}^{c_{i}} \mid \sum_{i=1}^{r} c_{i}=0\right\}$
$G_{n} \quad\left\langle x_{n}, A_{n, m} \mid 0 \leqq m \leqq n-e\right\rangle$
$H_{n} \quad\left\{g \in G_{n} \mid\left(p^{n} \mathbf{Z}\right) g=p^{n} \mathbf{Z}\right\}$
$P_{n} \quad$ Sylow p-subgroup of the symmetric group of degree $p^{n} ; P_{n}$ contains x_{n}
$Q_{n} \quad\left\{g \in P_{n} \mid\left(p^{n} \mathbf{Z}\right) g=p^{n} \mathbf{Z}\right\}$
$\tau_{n} \quad$ a homomorphism of P_{n} onto P_{n-1} if $n>1$.
$K_{n} \quad$ the kernel of τ_{n}
$\rho_{n} \quad$ a homomorphism of $Q_{n}\left\langle x_{n, n-1}\right\rangle$ onto P_{n-1} if $n>1$
$R_{n} \quad$ the intersection of kernel $\left(\rho_{n}\right)$ and $H_{n}\left\langle x_{n, n-1}\right\rangle$
$W_{n} \quad \bigcap_{i=1}^{p-1} x_{n}^{-i} R_{n} x_{n}^{i}$

References

1. R. Bradway, F. Gross, and W.R. Scott, The nilpotence class of core-free quasinormal subgroups, Rocky Mt. J. Math. 1 (1971), 375-382.
2. F. Gross, p-subgroups of core-free quasinormal subgroups, Rocky Mt. J. Math. 1 (1971), 541-550.
3. -, p-subgroups of core-free quasinormal subgroups II, Rocky Mt. J. Math. 5 (1975), 349-359.
4. -_, Infinite permutable subgroups, Rocky Mtn. J. of Math., 12 (1982), 333-343.
5. M. Hall, Jr., The theory of groups, Macmillan, New York, 1959.
6. N. Itô and J. Szep, Uber die Quasinormalteiler von endlichen Gruppen, Acta Sci. Math. (Szeged) 23 (1962), 168-170.
7. R. Maier and P. Schmid, The embedding of quasinormal subgroups in finite groups, Math. Z. 131 (1973), 269-272.
8. S.E. Stonehewer, Permutable subgroups of infinite groups, Math. Z. 125 (1972), 1-16.
9. ——, Permutable subgroups of some finite permutation groups, Proc. London Math. Soc. (3) 28 (1974), 222-236.

Department of mathematics, University of Utah, Salt Lake City, UT 84112
School of Mathematics, University of Minnesota, Minneapolis, MN 55455

