ON SHELAH'S WHITEHEAD GROUPS AND CH

ALAN H. MEKLER

ABSTRACT. Assuming that ZFC is consistent, it is consistent with GCH that there exists a non-free Whitehead group of cardinality ω_1 . A proof of this result of Shelah is presented.

In [10] and [11] Shelah showed that the existence of a non-free White-head group (denoted W-group) is independent of ZFC. More precisely he showed that if the axiom of constructability (V = L) is added to ZFC then every W-group is free. However assuming Martin's axiom and not CH (\neg CH) (CH denotes the assertion that $2^{\omega} = \omega_1$), there is a non-free Whitehead group of cardinality ω_1 . The reader should see [6] or [8] for a good account of these results. There remained the question of whether it is consistent with ZFC and GCH (GCH denotes the assertion that $2^{\kappa} = \kappa^+$ for all infinite cardinals κ) that there is a non-free W-group of cardinality ω_1 . This was particularly interesting as it was known that CH gave information about W-groups. For instance, Chase [2] showed that if CH holds, then every W-group of cardinality ω_1 is strongly ω_1 -free (i.e., every countable subgroup is contained in an ω_1 -pure free subgroup). This last result can fail in the absence of CH (cf. [10] or [8]).

Shelah [12] established the consistency (relative to that of ZFC) of ZFC + GCH + "there exists a non-free W-group of cardinality ω_1 ". The general strategy was to find an axiom which approximates $MA + \neg CH$ but which is consistent with GCH. One then uses this axiom to prove the group theoretic result. The proof in [12] that the set-theoretic axiom implies the existence of a non-free W-group is rather cryptic. The purpose of this paper is to elaborate this proof. I originally used a modification of the axiom in [12]. Following a suggestion of Shelah, the proof will be based on a more powerful axiom. The paper begins with set-theoretic preliminaries which culminate in the statement of AX(S). I will then prove the desired theorem.

I would like to thank P.C. Eklof and S. Shelah for their help.

Set-theoretic preliminaries. If X is a set, $\mathscr{P}_{\omega_1}(X) = \{Y : Y \subseteq X \text{ and } |Y| \leq \omega\}$. (|Y| denotes the cardinality of Y.) A set $\mathscr{C} \subseteq \mathscr{P}_{\omega_1}(X)$ is closed if whenever $\{Y_n : n < \omega\} \subseteq \mathscr{C}$ is such that $Y_{n+1} \supseteq Y_n$ then $\{Y_n : n < \omega\} \subseteq \mathscr{C}$.

It is unbounded if for all countable $Y \subseteq X$ there is $Z \in \mathscr{C}$ such that $Z \supseteq Y$. A set $\mathscr{C} \subseteq \mathscr{P}_{\omega_1}(X)$ is a cub, if it is closed and unbounded. If $|X| = \omega_1$, an ω_1 -filtration of X is a cub $\mathscr{C} = \{X_\alpha : \alpha < \omega_1\} \subseteq \mathscr{P}_{\omega_1}(X)$ such that: if $\beta < \alpha$, then $X_\beta \subseteq X_\alpha$; and if α is a limit ordinal, then $X_\alpha = \bigcup_{\beta < \alpha} X_\beta$. Since an ordinal $\alpha = \{\beta : \beta < \alpha\}$, the usual notion of a cub for ω_1 is exactly that of an ω_1 -filtration by ordinals of ω_1 . Also if $|X| = \omega_1$ then every cub contains an ω_1 -filtration. So for ω_1 , the usual notion of a cub and that of a cub in $\mathscr{P}_{\omega_1}(\omega_1)$ are essentially the same. Recall that a set $S \subseteq \mathscr{P}_{\omega_1}(X)$ is stationary, if for every cub \mathscr{C} , $\mathscr{C} \cap S \neq 0$.

Suppose (P, <) is a partially ordered set (poset). Elements $p, q \in P$ are compatible, if there exist $r \in P$ such that $r \leq p$ and $r \leq q$. A set $D \subseteq P$ is dense if for all $p \in P$ there is $q \in D$ such that $q \leq p$. Let $\mathcal{D}(P) = \{D \subseteq P: D \text{ is dense}\}$. Where there can be no confusion we will let $\mathcal{D} = \mathcal{D}(P)$. Suppose $A \subseteq P \cup \mathcal{D}$. An element $q \in P$ is A-generic, if for every $D \in A$ and $r \leq q$ there is $p \in D \cap A$ such that p and r are compatible. A partial order P is proper, if there is a cub $\mathcal{C} \subseteq \mathcal{P}_{\omega_1}(P \cup \mathcal{D})$ such that for all $A \in \mathcal{C}$ and $p \in A$ there is an A-generic $q \leq p$.

The following theorem (which will not be used) summarizes some facts about proper posets.

THEOREM. (1) If p satisfies the c.c.c. (i.e., all antichains—sets of pairwise incompatible elements—are countable), then P is proper.

- (2) If P is ω_1 -closed (i.e., whenever $p_1 \ge p_2 \ge \cdots$, there is $q \le p_n$ for all n), then P is proper.
- (3) ([13]). P is proper if and only if for every κ forcing with P preserves stationary subsets of $P_{\omega_1}(\kappa)$.
- (4) ([15]). If proper forcing is iterated with countable support, the resulting partial order is proper.

PROOF. It is well known that (1) and (2) follow from (3). I will prove (1) and (2) to help reader become familiar with the definition of proper.

- (1) Choose $\mathscr{C} \subseteq \mathscr{P}_{\omega_1}(P \cup \mathscr{D})$ such that $C \in \mathscr{C}$, if and only if $D \in C \cap \mathscr{D}$ implies $D \cap C$ contains a maximal antichain. For $C \in \mathscr{C}$ and $p \in P$, p is C-generic.
- (2) Take $\mathscr{C} \subseteq \mathscr{P}_{\omega_1}(P \cup \mathscr{D})$ so that $C \in \mathscr{C}$ if and only if for all $D \in C \cap \mathscr{D}$, $D \cap C$ is dense in $C \cap P$. Suppose $C \in \mathscr{C}$ and $\{D_n : n < \omega\}$ is an enumeration of $\mathscr{D} \cap C$. Given $p \in C \cap P$, let $p_{-1} = p$. Inductively choose $p_{n+1} \leq p_n$, so that $p_{n+1} \in D_{n+1} \cap C$. If $q \leq p_n$ for all n, then for all $r \leq q$ and $n < \omega$, r is compatible with (in fact \leq) p_n and $p_n \in D_n \cap C$. Hence such a q is C-generic.

A poset P is E-closed $(E \subseteq \omega_1)$ if there exists a cub $\mathscr{C} \subseteq \mathscr{P}_{\omega_1}(P \cup \mathscr{D} \cup \omega_1)$ such that for $A \in C$ the following implication is true. If $A \cap \omega_1 \in E$, $\{p_n : n < \omega\} \subseteq P \cap A$, $p_{n+1} \subseteq p_n$ and for all $D \in \mathscr{D} \cap A$ there is an n

such that $p_n \in D$, then there is $q \in P$ such that $q \le p_n$ for all n. It is now possible to define the needed axiom.

DEFINITION. Assume $S \subseteq \omega_1$. Let AX(S) denote the following statement: if P is a poset of cardinality ω_1 which is proper and $(\omega_1 - S)$ -closed, and $\{D_{\alpha}: \alpha < \omega_1\}$ is a collection of dense subsets of P, then there is a directed $G \subseteq P$ such that for all $\alpha < \omega$, $G \cap D_{\alpha} \neq 0$.

NOTE. G is directed if for all $p, q \in G$ there is an $r \in G$ such that $r \leq p$ and $r \leq q$.

THEOREM 0. (SHELAH [13]). If ZFC is consistent, then so is ZFC + GCH + "there exists a stationary set $S \subseteq \omega_1$ such that $(\omega_1 - S)$ is stationary" and both AX(S) and $\diamond *(\omega_1 - S)$ hold.

REMARK. I will not define $\lozenge *(E)$ or $\lozenge (E)$. It suffices to know that $\lozenge *(\omega_1 - S)$ implies $\lozenge (E)$ for all E such that E-S is stationary, (cf. [3]).

A proof of Theorem 0 can be constructed by combining the iteration lemma ((4) of the theorem above) and the techniques of [12]. There are other axioms which deal with proper posets. In [1] there is an exposition of the proper forcing axiom and its consequences.

Group Theory. By "group" I shall mean "Abelian group". A group G is a W-group, if Ext(G, Z) = 0. This means that whenever

$$0\to \mathbf{Z}\to H\overset{\sigma}{\to} G\to 0$$

is exact, there is a homomorphism $\theta \colon G \to H$ such that $\sigma\theta = \text{Id}$. The identity function (on any domain) will always be denoted "Id". In studying potential W-groups, it is enough to consider ω_1 -free groups (i.e., groups where every countable subgroup is free), because of the following result of Stein.

THEOREM. Every countable W-group is free.

I will now review the structure of ω_1 -free groups of cardinality ω_1 . If G is ω_1 -free and $H \subseteq G$ is such that G/H is ω_1 -free, then H is ω_1 -pure. For $E, F \subseteq \omega_1$, define $E \equiv F$ if there is a cub $C \subseteq \omega_1$ such that $E \cap C = F \cap C$. Let E denote the equivalence class of E. Suppose $\{G_\alpha : \alpha < \omega_1\}$ is an ω_1 -filtration of an ω_1 -free group G where $|G| = \omega_1$. Define $\Gamma(G) = E$, where $E = \{\alpha : G_\alpha \text{ is not an } \omega_1$ -pure subgroup}. (Note: $\{\alpha : G_\alpha \text{ is a subgroup}\}$ is a cub.) The function Γ was defined in [7] where it was shown that Γ does not depend on the filtration

Theorem 1. Let G be an ω_1 -free group of cardinality ω_1 .

- (1) (Eklof [5]). G is free if and only if $\Gamma(G) = \tilde{0}$.
- (2) (Eklof [5]). For any $E \subseteq \omega_1$, there is an ω_1 -free group G' (of cardinality ω_1) such that $\Gamma(G') = \tilde{E}$.

(3) (Shelah [10]) If E is stationary, $\Diamond(E)$ holds and $\Gamma(G) = \tilde{E}$, then G is not a W-group.

The following theorem not only shows that the existence of non-free W-groups is consistent with GCH, but that it is consistent that the W-groups of cardinality ω_1 are characterized by the value of Γ .

Theorem 2. 1. If ZFC is consistent then so is ZFC + GCH + "there is a non-free W-group of cardinality ω_1 ". 2. If ZFC is consistent then so is ZFC + GCH + "there is a stationary set $S \subseteq \omega_1$ such that: an ω_1 -free group G of cardinality ω_1 is a W-group if and only if $\Gamma(G) \subseteq \tilde{S}$ ".

REMARK. It is known [4] (cf. [8]) that in 2.2 $\omega_1 - S$ is stationary. Also if ZFC is consistent then 2.2 is independent of 2.1 ([14]).

PROOF. Since 2.2 together with 1.2 imply 2.1, it suffices to prove 2.2. For the remainder of the proof assume $S \subseteq \omega_1$ is a stationary set such that $GCH + AX(S) + \diamondsuit *(\omega_1 - S)$ hold, and $(\omega_1 - S)$ is stationary.

Suppose G is an ω_1 -free group of cardinality ω_1 and $\Gamma(G) = \tilde{E}$. If $\tilde{E} \nsubseteq \tilde{S}$, then $\Diamond(E)$ holds. So by 1.3, G is not a W-group.

It remains to show that if $\tilde{E} \subseteq \tilde{S}$, then G is a W-group. Assume

$$0 \to \mathbb{Z} \to H \stackrel{\sigma}{\to} G \to 0$$

is exact. It must be shown that this sequence "splits". The basic idea is: define a poset P of partial splitting maps; show this poset is proper and $(\omega_1$ -S)-closed; and apply AX(S) to get the desired conclusion.

Before defining P, it is convenient to choose a "nice" ω_1 -filtration of G. I wish to choose $\{G_\alpha\colon \alpha<\omega_1\}$ an ω_1 -filtration of G (by subgroups) such that: if $E=\{\alpha\colon G_\alpha \text{ is not } \omega_1\text{-pure}\}$ then $E\subseteq S$ and every element of E is a limit ordinal. Let $\{G'_\alpha\colon \alpha<\omega_1\}$ be an ω_1 -filtration of G by subgroups and let $E'=\{\alpha\colon G'_\alpha \text{ is not } \omega_1\text{-pure}\}$. Let $C_1\subseteq \omega_1$ be a cub such that $C_1\cap E'\subseteq S$. Let G be the closure (under countable unions) of G (G is not G is finally let G is the least element of G is G is not G if G if G is not G if G if G is not G if G is not G if G if G is not G if G if G is not G if G is not G if G is not G if G if G if G is not G if G if G if G if G is not G if G if G if G is not G if G is not G if G if

Let $P = \{\theta : \text{dom}(\theta) = G_{\alpha+1} \text{ and } \sigma\theta = \text{Id}\}$. (All maps between groups will be assumed to be homomorphisms.) For θ , $\phi \in P$ let $\theta \leq \phi$ if $\phi \subseteq \theta$. Since $2^{\omega} = \omega_1$, $|P| = \omega_1$. Assume for the moment that P is proper and $(\omega_1 - S)$ -closed.

CLAIM 1. For each $\alpha < \omega_1$, $D_{\alpha} = \{\theta \in P : \text{dom}(\theta) \supseteq G_{\alpha}\}$ is dense.

PROOF OF CLAIM 1. Assume $\psi \in P$ and $\operatorname{dom}(\psi) = G_{\beta+1}$. If $\alpha \leq \beta + 1$, there is nothing to prove. Suppose $\alpha > \beta + 1$. Since $G_{\beta+1}$ is ω_1 -pure, $G_{\beta+1}$ is a direct summand of $G_{\alpha+1}$. So there exists $\theta \in P$ such that $\operatorname{dom}(\theta) = G_{\alpha+1}$ and $\theta \supseteq \psi$ (cf. [9], Theorem 5, p. 15).

By AX(S) there exists a directed subset $\Phi \subseteq P$ such that $\Phi \cap D_{\alpha} \neq 0$ for all $\alpha < \omega_1$. Let $\psi = \bigcup_{\theta \in \Phi} \theta$. The ψ is the desired splitting.

It remains to show P is proper and $(\omega_1 - S)$ -closed.

CLAIM 2. The poset P is $(\omega_1 - S)$ -closed.

PROOF OF CLAIM 2. Let $\mathscr{C} \subseteq \mathscr{P}_{\omega_1}(P \cup \mathscr{D} \cup \omega_1)$ be such that for all $C \in \mathscr{C}$: if $\alpha \in C$, then $D_{\alpha} \in C$; if $\psi \in C \cap P$ and $G_{\alpha} \subseteq \text{dom } \psi$, then $\alpha \in C$; and if $\alpha \in C$, then $(\alpha + 1) \in C$. Suppose $C \in \mathscr{C}$, $C \cap \omega_1 = \beta \in (\omega_1 - S)$ and $\{\theta_n \colon n < \omega\}$ are as in the definition of $(\omega_1 - S)$ -closed. Let $\psi = \bigcup_{n < \omega} \theta_n$. By the choice of \mathscr{C} , $\text{dom}(\psi) = G_{\beta}$ and $\sigma \psi = \text{Id}$. Since G_{β} is ω_1 -pure there exists $\theta \in P$ such that $\text{dom}(\theta) = G_{\beta+1}$ and $\theta \supseteq \psi$.

CLAIM 3. P is proper.

PROOF OF CLAIM 3. For $C \in \mathscr{D}_{\omega_1}(P \cup \mathscr{D})$, let $\beta(C) = \{\alpha : \text{there exists } \theta \in C \cap P \text{ such that } \text{dom}(\theta) \supseteq G_{\alpha} \}$. Let $C' \subseteq P_{\omega_1}(P \cup \mathscr{D})$ be the cub such that $C \in \mathscr{C}'$ if:

- (i) $\beta(C)$ is a limit ordinal;
- (ii) if $\theta \in C \cap P$ and $\theta \leq \phi$, then $\phi \in C$;
- (iii) $\alpha < \beta(C)$ if and only if $D_{\alpha} \in C$;
- (iv) $D_{\alpha} \cap C$ is dense in $C \cap P$, for all $\alpha < \beta(C)$;
- (v) if $\theta \in C \cap P$ and $\theta \subseteq \phi$, then for all finite $X \subseteq G_{\beta(C)}$ there is $\phi' \in C \cap P$ such that $\theta \subseteq \phi'$ and for all $x \in X$, $\phi'(x) = \phi(x)$.

Let $\mathscr{C}'' = \{C \in \mathscr{C}' : \beta(C) \notin E\}$. Note: \mathscr{C}'' is not a cub but it is unbounded (as $\omega_1 - S$ is stationary). Let \mathscr{C} be the closure (under the union of countable chains) of \mathscr{C}'' .

Suppose $C \in \mathscr{C}$. If $\beta(C) \notin E$, the verification that P is proper is similar to the proof of claim 2. Assume $\beta(C) = \beta \in E$. Suppose $\theta \in P \cap C$, and $\{D^n | n < \omega\}$ is an enumeration of $\mathscr{D} \cap C$. Choose $\{C_n : n < \omega\} \subseteq \mathscr{C}''$ so that for each $n < \omega : C_{n+1} \supseteq C_n$; $\beta_{n+1} > \beta_n$ (where $\beta_n = \beta(C_n)$); $\beta_n \notin E$; $C = \bigcup_{n < \omega} C_n$; $D^n \in C_n$; and $\theta \in C_0$. Now choose for each $n < \omega$ groups A_n and B_n such that:

$$G_{\beta_n} \oplus A_n = G_{\beta+1};$$

 $G_{\beta_n} \oplus B_n = G_{\beta_{n+1}};$
 $A_{n+1} \oplus B_n = A_n.$

To do this it suffices: to choose A_0 a complementary summand (in $G_{\beta+1}$) of G_{β_0} ; to let $B_0 = A_0 \cap G_{\beta_1}$; to choose A_1 a complementary summand (in A_0) of B_0 ; and so on.

Let $C_{\beta+1} = \langle G_{\beta} \cup \{g_i : i < \omega\} \rangle$. $(\langle X \rangle \text{ denotes the group generated by } X.)$ Assume $g_n \in A_n$ for all n. Let π_0 be the projection of $G_{\beta+1}$ on G_{β_0} relative to A_0 . Let π_{n+1} be the projection of $G_{\beta+1}$ on B_n relative to $G_{\beta_n} \oplus A_{n+1}$. Notice that $\pi_n(g_m) = 0$, if $m \ge n$.

Choose $\psi \in P$ so that $dom(\psi) = G_{\beta+1}$ and $\theta \subseteq \psi$. Let $\theta_{-1} = \theta$. Define the sequence $\theta_n \in C_n$ inductively as follows:

- (a) choose $\theta' \supseteq \theta_{n-1}$, such that $\theta' \in C_n$ and $\theta'(\pi_n(g_m)) = \phi(\pi_n(g_m))$ for all $m < \omega$;
- (b) choose $\theta_n \supseteq \theta'$, such that $\theta_n \in C_n \cap D^n$. It must be shown that the choices above are possible. I will first deal with (a). If n = 0, take $\theta' = \theta$. Assume n > 0. Choose $\theta'' \supseteq \theta_{n-1}$ such that $dom(\theta'') = G_{\beta_{n-1}}$ and $\sigma\theta'' = \text{Id}$. Let ψ' be the unique homorphism whose domain is $G_{\beta+1}$ such that $\psi' \supseteq \theta''$ and $\psi'|A_{n-1} = \psi|A_{n-1}$ (where $\psi|A_{n-1}$ denotes the restriction of ψ to A_{n-1}). Such a ψ' exists since $G_{\beta+1} = G_{\beta_{n-1}}$.

 \bigoplus A_{n-1} . Note that $\phi' \in P$. Since $\{\pi_n(g_m) : m < \omega\}$ is finite, (v) of the definition at \mathscr{C}' guarantees the existence of $\theta' \in C_n \cap P$ such that $\theta_{n-1} \subseteq \theta'$ and for all $m \theta'(\pi_n(g_m)) = \phi'(\pi_n(g_m)) = \phi(\pi_n(g_m))$. The choice in (b) is possible, since $D^n \cap C_n$ is dense in $C_n \cap P$.

Let $\rho = \bigcup_{n < \omega} \theta_n$. By the choice of $\{\theta_n : n < \omega\}$, if $\rho \subseteq \rho'$ and $\rho' \in P$ then ρ' is C-generic. (For all $\rho'' \subseteq \rho'$ and all n, ρ'' is compatible with $\theta_n \in D^n \cap C$.)

Note that $\rho: G_{\beta} \to H$ and $\sigma \rho = \text{Id}$. Further for all $m, n < \omega$, $\rho(\pi_n(g_m)) = \phi(\pi_n(g_m))$. The following claim is used to complete the proof.

CLAIM 4. If $\sum_{i=0}^n a_i g_i = g$, $g \in G_\beta$, and $a_i \in \mathbb{Z}$ for $i \leq n$; then $\sum_{i=0}^n a_i \psi(g_i) = \rho(g)$.

Assume Claim 4. So there exists a unique homorphism $\rho' \colon G_{\beta+1} \to H$ such that $\rho \subseteq \rho'$ and $\rho'(g_n) = \phi(g_n)$ for all n.

Proof of Claim 4. Choose m such that $g \in G_{\beta_m}$. So

$$\sum_{i=0}^{n} a_{i} g_{i} = g = \sum_{k=0}^{m} \sum_{i=0}^{n} a_{i} \pi_{k}(g_{i}).$$

Hence

$$\rho(g) = \sum_{k=0}^{m} \sum_{i=0}^{n} a_i \rho(\pi_k(g_i))$$
$$= \sum_{k=0}^{m} \sum_{i=0}^{n} a_i \psi(\pi_k(g_i))$$
$$= \sum_{i=0}^{n} a_i \psi(g_i).$$

Appendix. For those readers who demand that theorems follow only from results whose proofs are accessible, I will present a modified version of the axiom in [12]. From this new axiom theorems 2.1 and 2.2 follow as above. The proof that the new axiom is consistent is similar to the proofs in [12]. Since this appendix is intended as a supplement to [12], several definitions will be omitted.

In the following S will always be a set of limit ordinals contained in ω_1 .

DEFINITION. A tree (T, <) is defined to be S-fair if

- (1) the height of T is ω_1 ,
- (2) every node of T has successors of arbitrarily large height $< \omega_1$,
- (3) $|T| = \omega_1$,
- (4) for each $\delta \in \omega_1 S$, every δ -branch in T has a successor in T_{δ} , and
- (5) if $\langle X_{\alpha} : \alpha < \omega_1 \rangle$ is an ω_1 -filtration of T, then there exists a cub $C \subseteq \omega_1$ such that for all $\delta \in C \cap S$ and $x \in T | \delta$ there is $a T^* \subseteq T | \delta$ such that (i) $x \in T^*$,
- (ii) every element of T^* has successors in T^* of arbitrarily large height $< \delta$.
- (iii) if $\bar{\delta} \in (C \cap \delta S)$ and $a \in (T^*|\bar{\delta} \cap X_{\bar{\delta}})$, then there exists $b \in (T^*|\bar{\delta} \cap X_{\bar{\delta}})$ such that a < b and $\{c | c \in T|\bar{\delta} \text{ and } b < c\} \subset T^*$, and
 - (iv) every δ -branch in T^* has an extension in T_{δ} .

Let SAM be the statement: There is a stationary set $S \le \omega_1$ such that: every S-fair tree has an ω_1 -branch; $(\omega_1 - S)$ is stationary and $\lozenge *(\omega_1 - S)$ holds.

THEOREM. If ZFC is consistent, then so is ZFC + GCH + SAM.

The theorem above is a special case of Theorem 0.

REFERENCES

- 1. J. Baumgartner, *The proper forcing axiom*, notes from the C.M.S. Summer Research Workshop on Set Theory and Set Theoretic Topology, 1980.
- 2. S. Chase, On group extensions and a problem of J. H. C. Whitehead, in Topics in Abelian Groups, Scott, Foresman and Co., 1963, 173–197.
 - 3. K. Devlin, *Variations on* \Diamond , J. Symbolic Logic 44 (1979), 51–58.
- **4.** K. Devlin and S. Shelah, A weak version of \diamondsuit which follows from $2^{\aleph_0} < 2^{\aleph_1}$. Is. J. Math. **29** (1978), 234–247.
- 5. P. Eklof, On the existence of κ -free abelian groups, Proc. Amer. Math. Soc. 47 (1975), 65–72.
- **6.** —, Whitehead's problem is undecidable, Amer. Math. Monthly **83** (1976), 775–788.
- 7. ——, Methods of logic in Abelian group theory, Abelian Group Theory, Springer-Verlag Lecture Notes in Math. 616, 1977, 251-269.
- 8. —, Set Theortic Methods In Homological Algebra and Abelian Groups, Les Presses de l'Université de Montréal, Montréal, 1980.
 - 9. I. Kaplansky, Infinite Abelian Groups, Michigan Press, Ann Arbor, 1969.
- 10. S. Shelah, *Infinite Abelian Groups, Whitehead problem and some constructions*, IS. J. Math. 18 (1974), 243–256.
- 11. ——, A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals, Is. J. Math. 21 (1975), 319–349.
- 12. —, Whitehead groups may be not free, even assuming CH I., Is. J. Math. 28 (1977), 193-204.

278

A.H. MEKLER

- 13. ——, Handwritten notes on proper forcing, 1978.
 14. ——, Whitehead groups may not be free even assuming CH II, Is. J. Math. 35 (1980), 257-285.
 - 15. _____, Independence results, J. Symbolic Logic 45 (1980), 563-573.

DEPARTMENT OF MATHEMATICS, SIMON FRASER UNIVERSITY, BURNABY, BRITISH COLUMBIA, CANADA V5A 1S6