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ON SHELAH'S WHITEHEAD GROUPS AND CH 

ALAN H. MEKLER 

ABSTRACT. Assuming that ZFC is consistent, it is consistent with 
GCH that there exists a non-free Whitehead group of cardinality o)x. 
A proof of this result of Shelah is presented. 

In [10] and [11] Shelah showed that the existence of a non-free White­
head group (denoted FP-group) is independent of ZFC. More precisely 
he showed that if the axiom of constructability (V = L) is added to ZFC 
then every W-group is free. However assuming Martin's axiom and not 
CH (—tCH) (CH denotes the assertion that 2m = coi), there is a non-free 
Whitehead group of cardinality coi- The reader should see [6] or [8] for 
a good account of these results. There remained the question of whether 
it is consistent with ZFC and GCH (GCH denotes the assertion that 
2K = K+ for all infinite cardinals K) that there is a non-free FF-group of 
cardinality o)\. This was particularly interesting as it was known that CH 
gave information about W-groups. For instance, Chase [2] showed that 
if CH holds, then every FF-group of cardinality œi is strongly coi-free 
(i.e., every countable subgroup is contained in an c^-pure free subgroup). 
This last result can fail in the absence of CH (cf. [10] or [8]). 

Shelah [12] established the consistency (relative to that of ZFC) of 
ZFC + GCH + "there exists a non-free W-group of cardinality a>{\ The 
general strategy was to find an axiom which approximates MA + —i CH 
but which is consistent with GCH. One then uses this axiom to prove 
the group theoretic result. The proof in [12] that the set-theoretic axiom 
implies the existence of a non-free FF-group is rather cryptic. The purpose 
of this paper is to elaborate this proof. I originally used a modification of 
the axiom in [12]. Following a suggestion of Shelah, the proof will be 
based on a more powerful axiom. The paper begins with set-theoretic 
preliminaries which culminate in the statement of AX(S'). I will then prove 
the desired theorem. 

I would like to thank P.C. Eklof and S. Shelah for their help. 

Set-theoretic preliminaries. If X is a set, 0*m(X) = {Y: F i l and 
1*1 ^ co}. (\Y\ denotes the cardinality of Y.) A set <g g &JX) is closed 
if whenever {Yn: n < œ] E <€ is such that Yn+1 3 7wthen \Jn<(0Yne^. 
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It is unbounded if for all countable 7 i l there is Z e ^ such that Z ü Y. 
A set ^ g ^ / I ) is a cub, if it is closed and unbounded. If \X\ = a>i, an 
corfiltration of I is a cub <g = {Xa: a < coi} g ^ 0 0 such that: if 
ß < a, then 1^ i I a ; and if a is a limit ordinal, then Xa = ( J ^ A ^ . 
Since an ordinal a = {ß: ß < a}, the usual notion of a cub f o r a i s exactly 
that of an cox-filtration by ordinals of c^. Also if \X\ = coi then every cub 
contains an cüi-filtration. So for a>i, the usual notion of a cub and that of 
a cub in ^^(coi) are essentially the same. Recall that a set S g ^m(X) is 
stationary, if for every cub <£,<£ f) S ^ 0. 

Suppose (P, < ) is a partially ordered set (poset). Elements p, q e P 
are compatible, if there exist r e P such that r ^ p and r g #. A set D g P 
is dmse if for all p G P there is q G Z) such that q ^ p. Let ^ (P ) = {Z> g P : 
Z> is dense}. Where there can be no confusion we will let Q) = <3(P). Sup­
pose A g P U ^- An element # G P is A-generic, if for every D e A and 
r ^ q there is/? e Z> fl A such that/? and r are compatible. A partial order 
P is proper, if there is a cub ^ g ^^CP U ^ ) such that for all A e <$ and 
/? e 4̂ there is an y4-generic q ^ p. 

The following theorem (which will not be used) summarizes some facts 
about proper posets. 

THEOREM. (1) If p satisfies the e c c . {i.e., all antichains—sets of pairwise 
incompatible elements—are countable), then P is proper. 

(2) If P is ù)i-closed (i.e., whenever px ^ p2 ^ • • -, there is q ^ pn for 
all n), then P is proper. 

(3) ([13]). P is proper if and only if for every K forcing with P preserves 
stationary subsets ofP^/c). 

(4) ([15]). If proper forcing is iterated with countable support, the resulting 
partial order is proper. 

PROOF. It is well known that (1) and (2) follow from (3). I will prove 
(1) and (2) to help reader become familiar with the définition of proper. 

(1) Choose <€ g 0>m(P U ^ ) such that C G ̂ , if and only if D G C fi @ 
implies D f] C contains a maximal antichain. For Ce<^ and p e P, p is 
C-generic. 

(2) Take V g 0>m(P \J QJ) SO that C e ^ if and only if for all D G C f] ^ , 
D H C is dense in C f| P. Suppose C e ^ and {Dn: n < a>} is an enumera­
tion of Q) fl C. Given /? G C f| P, let /?_! = p. Inductively choose pn+1 ^ 
pn, so that /?„+1 G Dn+1 fi C. If q ^ /?„ for all n, then for all r ^ ^ and 
n < co, r is compatible with (in fact <; ) pn and pneDn f] C. Hence such 
a # is C-generic. 

A poset P is E-closed (E g coj) if there exists a cub ^ g ^ ( P U @ U ^i) 
such that for ^ e C the following implication is true. If A f| Û>I G £, 
{pn: n < co} g P fi ^> /Va = P» anc* for all D e@ () A there is an « 
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such that pn e D, then there is q e P such that q ^ pn for all n. It is now 
possible to define the needed axiom. 

DEFINITION. Assume S g œi. Let AX(»S) denote the following state­
ment: if P is a poset of cardinality coi which is proper and (coi — S)-closed, 
and {Da: a < coi} is a collection of dense subsets of P, then there is a 
directed G g P such that for all a < œ, G f! Ar ^ 0. 

NOTE. G is directed if for all /?, q e G there is an r e G such that r ^ p 
and r ^ q. 

THEOREM 0. (SHELAH [13]). If ZFC is consistent, then so is ZFC + GCH 
4- "there exists a stationary set S E o)\ such that (CUI — S) is stationary" 
and both AX(S) and 0 *(o>i » S) hold. 

REMARK. I will not define 0 *(E) or 0 (E). It suffices to know that 
0 *(Û>I - 5) implies 0 (E) for all E such that £-5 is stationary, (cf. [3]). 

A proof of Theorem 0 can be constructed by combining the iteration 
lemma ((4) of the theorem above) and the techniques of [12]. There are 
other axioms which deal with proper posets. In [1] there is an exposition of 
the proper forcing axiom and its consequences. 

Group Theory. By "group" I shall mean "Abelian group". A group G 
is a W-group, if Ext(G, Z) = 0. This means that whenever 

0-> Z-> H ^ G -+ 0 

is exact, there is a homomorphism 0 : G -> H such that ad = Id. The 
identity function (on any domain) will always be denoted "Id". In studying 
potential ^-groups, it is enough to consider ^-free groups (i.e., groups 
where every countable subgroup is free), because of the following result 
of Stein. 

THEOREM. Every countable W-group is free. 

I will now review the structure of c î-free groups of cardinality o)\. If G 
is corfree and H E G is such that G/H is coi-free, then H is corpure. For 
E, E E Û>I, define E = E if there is a cub C i ^ such that E f| C = 
F H C. Let Ë denote the equivalence class of E. Suppose {Ga: a < o)\} 
is an <ai-filtration of an a>i-free group G where \G\ = coi. Define r(G) = É, 
where E = {a: Ga is not an c^i-pure subgroup}. (Note: {a: Ga is a sub­
group} is a cub.) The function T7 was defined in [7] where it was shown 
that r does not depend on the filtration 

THEOREM 1. Let G be an corfree group of cardinality CUI. 

(1) (Eklof [5]). G is free if and only ifT{G) = 0. 
(2) (Eklof [5]). For any E ü o>i, there is an corfree group G' (of cardinality 

coi) such that f(G') = Ë. 
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(3) (Shelah [10]) If E is stationary, 0 (E) holds and r(G) = Ë, then G is 
not a W-group. 

The following theorem not only shows that the existence of non-free 
^-groups is consistent with GCH, but that it is consistent that the HP-
groups of cardinality œ\ are characterized by the value of T7. 

THEOREM 2. 1. If ZFC is consistent then so is ZFC + GCH + "there is 
a non-free W-group of cardinality a>{\ 2. If ZFC is consistent then so is 
ZFC + GCH + "there is a stationary set S ü co\ such that: an corfree 
group G of cardinality o)\ is a W-group if and only if T(G) ü S". 

REMARK. It is known [4] (cf. [8]) that in 2.2 co\ — S is stationary. Also 
if ZFC is consistent then 2.2 is independent of 2.1 ([14]). 

PROOF. Since 2.2 together with 1.2 imply 2.1, it suffices to prove 2.2. For 
the remainder of the proof assume S ü o)\ is a stationary set such that 
GCH + AX(S) + 0 *fa - S) hold, and fa - S) is stationary. 

Suppose G is an co1-free group of cardinality o)\ and r(G) = Ë. If 
Ë $ S, then 0 (E) holds. So by 1.3, G is not a W-group. 

It remains to show that if Ë ü S, then G is a W-group. Assume 

0 - Z-> H ^ G - > 0 

is exact. It must be shown that this sequence "splits". The basic idea is: 
define a poset P of partial splitting maps; show this poset is proper and 
((ai-*S)-closed ; and apply AX(5) to get the desired conclusion. 

Before defining P, it is convenient to choose a "nice" ^-filtration of G. 
I wish to choose {Ga: a < a>i} an coi-filtration of G (by subgroups) such 
that: if E = {a: Ga is not c^-pure} then E ü S and every element of E is 
a limit ordinal. Let {G'a: a < œi} be an oji-filtration of G by subgroups and 
let E' = {a: G'a is not coi-pure}. Let C\ E o)\ be a cub such that C\ fi E' 
Ü S. Let C be the closure (under countable unions) of C1 fl fa — E'). 
Finally let Ga = G'ß where ß is the least element of C ^ a. If a e C, then 
Ga = G'a. If a i C, then Ga = Gß for some ßefa- E'). So if Ga is not 
c^-pure, then aeC [] Ef ^ S. 

Let P = {0: dom(ö) = Ga+1 and ad = Id}. (All maps between groups 
will be assumed to be homomorphisms.) For 0, cjj e P let 0 ^ (p if c/> E 6. 
Since 2W = Û>I, \P\ = CUI. Assume for the moment that P is proper and 
fa — ^-closed. 

CLAIM 1. For each a < coi, Da = {0 e P: dom(0) ü Ga} is dense. 

PROOF OF CLAIM 1. Assume <J) e P and dom(c/>) = Gß+1. If a ^ ß + 1, 
there is nothing to prove. Suppose a > ß + 1. Since Gß+i is coupure, Gß+i 

is a direct summand of Ga+1. So there exists 6 eP such that dom(0) = Ga+1 

and 0 2 0 (cf. [9], Theorem 5, p. 15). 
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By AX(5) there exists a directed subset 0 i ? such that 0 [) Da ^ 0 
for all a < co\. Let <f> = ( J ^ 0. The cp is the desired splitting. 

It remains to show P is proper and (co\ — S)-closed. 

CLAIM 2. The poset P is (coi — S)-closed. 

PROOF OF CLAIM 2. Let <e g &m(P U 0 U <̂ i) be such that for all C e 
# : if a e C, then Da G C; if ̂  e C fi P and Ga g dorn 0, then a e C; and 
if a G C, then (a + 1) e C. Suppose C e # , C fi Û>I = /3 G foi - 5) and 
{0n: n < co] are as in the definition of foi — S)-closed. Let cp = \Jn<(O0n. 
By the choice of <£, dom(0) = Gß and (70 = Id. Since Gß is ^-pure there 
exists d s P such that dom(ö) = Gß+i and 0 ^ cb. 

CLAIM 3. P is proper. 

PROOF OF CLAIM 3. For Ce0>œi(P U ^)> let /3(C) = {a: there exists 
0eC f\ P such that dom(Ö) 2 Ga}, Let C g P ^ P U 0 ) be the cub such 
that C e r if: 

(i) /3(C) is a limit ordinal ; 
(ii) if 0 G C fi P and 0 ^ 0, then 0 G C; 

(iii) a < /3(C) if and only if Da G C; 
(iv) Z>„ fi C is dense in C H P, for ail a < /3(C); 
(v) if 0 G C fi P and 0 g 0, then for all finite X g G^(c) there is 0' G 

C H P such that J s f and for ail x G JT, 0 ' (X) = < (̂x). 
Let <e" = {CG<T : /3(C) £ £ } . Note: <T' is not a cub but it is unbounded 

(as o)i — S is stationary). Let ̂  be the closure (under the union of count­
able chains) of #". 

Suppose C e ^ . If /3(C) £ £, the verification that P is proper is similar 
to the proof of claim 2. Assume /3(C) = ßeE. Suppose 0 eP f] C, and 
{Z>w|rt < co] is an enumeration of Q} f] C. Choose {Cn: n < co] g <g" so 
that for each n < co: Cn+1 2 CM; /3w+i > ft, (where ßn = /3(CW)); /3M # E; 
C = (JM<Û,CM; Z>w G CM; and 0 e C0. Now choose for each« < co groups 
An and Bn such that: 

Gßn ® An= Gß+U 
Gßn ® Bn = Gßn+1', 

An+l ®Bn = An. 

To do this it suffices: to choose A0 a complementary summand (in Gß+i) 
of Gß0; to let B0 = A0 f] Gßl; to choose A\ & complementary summand 
(in AQ) of B0; and so on. 

Let Cß+x = (Gß U {g;'- i < Û)}>. ({Xy denotes the group generated by 
X.) Assume gn G An for all n. Let 7c0 be the projection of Gß+1 on G^ rela­
tive to AQ. Let ^w+1 be the projection of Gß+1 on Bn relative to Gßn © An+1. 
Notice that 7Cn(gm) = 0, if m ^ n. 
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Choose (J) 6 P so that dom(^) = Gß+1 and J g ^ . Let 0_x = 0. Define 
the sequence 6n e Cw inductively as follows : 

(a) choose 0' 3 0W_1? such that 0' G C„ and 0'fr »fem» = <f>(7cn(gm)) for 
all m < a>; 

(b) choose 0W 2 0', such that 0neCn [} Dn. 
It must be shown that the choices above are possible. I will first deal with 
(a). If n = 0, take 0' = 0. Assume n > 0. Choose 0" ü 0W_! such that 
dom(0") = Gßn_1 and o0" = Id. Let cjj' be the unique homorphism whose 
domain is Gß+1 such that ft ü 0" and <})'\An_x = 0|y4B_i (where ^|^4w_i 
denotes the restriction of cp to An_{). Such a 0' exists since Gß+1 = G/3n_1 

© An_x. Note that 0 ' e P. Since {7Cn(gm):m < œ} is finite, (v) of the defini­
tion at <%' guarantees the existence of 0' e Cn Ç] P such that 0W_X g 0' and 
for all m 0'faifem)) = 0'frnfem)) = ^fe*fem))- The choice in (b) is possible, 
since Z>M H Cn is dense in Cn f| P. 

Let p = (J n<(ßn. By the choice of {0n: n < œ], if p E p' and p' e P then 
p' is C-generic. (For all p" ^ p and all «, p" is compatible with 0n e Dn 

n c.) 
Note that p: Gß -+ H and <7p = Id. Further for all m, n < œ, p(ftn(gm)) 

= (p(7Zn(gm)). The following claim is used to complete the proof. 

CLAIM 4. If 2?=o0^« = 8>8 e G/3> « ^ fl* e z / 0 / * ' ^ "î *AÉ?« L M I ^ I ) 
= pfc). 

Assume Claim 4. So there exists a unique homorphism p : G^+1 -> / / 
such that p ^ p and p'(gw) = 0(gn) for all «. 

PROOF OF CLAIM 4. Choose m such that g e Gßm. So 

2 aigi = g = I ] 2] û,-ff*(&). 
i=0 Ar=0 1=0 

Hence 

pfe) = L L aip(xk(gi)) 

m n 

= 2 2 «««£,)) 
n 

= S ^fe*)-
«=0 

Appendix. For those readers who demand that theorems follow only 
from results whose proofs are accessible, I will present a modified version 
of the axiom in [12]. From this new axiom theorems 2.1 and 2.2 follow as 
above. The proof that the new axiom is consistent is similar to the proofs 
in [12]. Since this appendix is intended as a supplement to [12], several 
definitions will be omitted. 
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In the following S will always be a set of limit ordinals contained in cop 

DEFINITION. A tree (T, < ) is defined to be S-fair if 
(1) the height of Tis coi, 
(2) every node of 7" has successors of arbitrarily large height < œ\9 

(3) \T\ = coh 

(4) for each ô e coi — S, every 5-branch in T has a successor in Td, and 
(5) if <Xa : a < OUI) is an coi-filtration of T9 then there exists a cub C E 

o)i such that for all ö e C fi S and x e T\ö there is 0 T* g JT|<? such that 
(i) x e T*9 

(ii) every element of T* has successors in T* of arbitrarily large height 

(iii) if 5 e (C fi 5 - S) and a e (3T*|3 fl **)> then there exists* G (JT*| 
5 H ^ ) such that a < b and {c|c e r | 5 and b < c) c r*, and 

(iv) every 5-branch in T* has an extension in T§. 
Let SAM be the statement: There is a stationary set S ^ coi such that: 
every S-fair tree has an a^-branch; (ÛJI — S) is stationary and 0*(Û>I~ «S) 
holds. 

THEOREM. If ZFC is consistent, then so is ZFC + GCH + SAM. 

The theorem above is a special case of Theorem 0. 
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