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ON THE EXISTENCE OF UNIQUE EIGENSETS OF 
MONOTONE PROCESSES 

WEI SHEN HSIA* AND BALAKRISH R. NATARAJAN 

ABSTRACT. A Sufficient condition is given to guarantee the exist­
ence of a unique eigenset of a monotone process. Then, a special 
class of monotone processes is proved to have unique eigensets 
through this condition and the Perron-Frobenius Theorem. 

1. Introduction. Rockafellar [4, p. 69, Theorem 4] proved a theorem 
which provides necessary and sufficient conditions for the existence of 
unique eigensets of monotone processes. Since those necessary and suf­
ficient conditions must be satisfied by every pair of non-singular monotone 
sets in Pn and P*, it is almost impossible to verify that a certain monotone 
process actually satisfies these conditions. In this paper, a sufficient condi­
tion in a simpler form is given to guarantee the existence of a unique 
eigenset. This sufficient condition in fact is a modification of Rockafellar's 
conditions. Then, a special class of monotone processes is proved to have 
unique eigensets through this modified condition and the Perron-Fro­
benius Theorem [2]. 

We shall only give the definitions of monotone sets, monotone pro­
cesses, and eigensets of a monotone process. For more detailed definitions 
(e.g., positively homogeneous, sub-additive, non-singular, etc.), examples, 
and properties of monotone processes see [3], [4], and the references 
therein. 

DEFINITION 1.1. [4, p. 11]. A monotone set of concave type in Pn, the 
nonnegative orthant of Rn, is a non-empty closed bounded convex set C 
such that O ^ ^ ^ e C implies ^ e C . A monotone set of convex 
type is a non-empty closed convex set such that yx ^ y2 e C implies y1 e C. 

DEFINITION 1.2. [4, p. 9]. A monotone process of concave type from 
Pn to Pm is a nonnegative process T which is positively homogeneous, 
sub-additive, closed, and satisfies 

(a) T(x) is a monotone set of concave type for all xePn, and 
(b) 0 ^ x1 ^ x2 implies T(xx) g T(x2). 
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Dually, T is a monotone process of convex type if conditions (a) and (b) 
are replaced by 

(a') T(x) is a monotone set of convex type for all x e Pn, and 
(b') xx ^ x2 è 0 implies T(x{) g T(x2). 

DEFINITION 1.3. [4, p. 58]. Let T be a non-singular monotone process 
from Pn to Pn. A non-singular monotone set C in Pn (of the same type 
as T) will be termed an eigenset of Tif, for some X > 0, T(C) = XC. 

Since this paper is mainly an extension of Rockafellar's result, we will 
adopt his notation and terminology freely. 

2. Existence of unique eigensets of monotone processes. Let C and D be 
two monotone sets in Pn. We say C ^ D if and only if <C, x*> ^ 
<Z), x*> for all x* e P*, where P J is the set of all nonegative linear func­
tional on Rn [4, p. 16]. It is known that if C and D are monotone of con­
cave type, then C ti D if and only if C E D; and if both are of convex 
type, then C ^ D if and only if C ^ D. 

We now define uniform convergence of a sequence of monotone sets. 
It is essentially the same as Rockafellar's Definition [4, p. 69], but it 
covers both concave and convex types. 

DEFINITION 2.1. A sequence Q , C2, . . . of non-singular monotone sets 
of the same type in Pn converges uniformly to a set C0 of the same type 
as each Ck if for every e > 0 there exists a kQ = k0(e) such that 

(1) (1 + e)-iC0 ?i Ckti (1 + e)C0 

for all k ^ k0. 

If the sets Ck are of concave type, then (1) is equivalent to (1 + e)~l 

C0 £ Q £ (1 + e)C0 for all k ^ Jfc0 as given by Rockafellar [4, p. 69]. 
If the sets Ck are of convex type, then (1) is equivalent to (1 + e)C0 E 
Q i ( l + £)-1C() for all k ^ &0. In either case, we shall write 
linVooQ = C0. 

LEMMA 2.1. 7f lim^«, Q = C0, /Ae/i lim^00<Q, >>*> = <C0, y*y for 
ally* e P*. 

PROOF. Assume that the sets Ck and C0 are of concave type. Then, given 
any e < 0, there exists &0 = kQ(e) such that (1 H- £)_1C0 i Q i 
(1 + e)C0, for all A: ^ kQ. Therefore, for any y* e P*9 and for all k ^ kQ9 

(1 + e)-1 sup <j, j*> ^ sup <j, >>*> ^ (1 + e) sup <j , >>*>. 

Hence, for all y* e P% and all k ^ kQi we have 

(1 + *)-i <C0, >>*> ^ <Q, >>*> ^ (1 + e) <C0, >>*>• 
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Thus, l i n v ^ Q , y > = <C0, j>*> for all y* G i>*. 
The same argument holds with the change of the direction of inequalities 

if Ck and C0 are of convex type. 

DEFINITION 2.2. A sequence TÌ9 T2, . . . of monotone processes of the 
same type from Pn to Pn is said to converge uniformly to a monotone 
process T0 of the same type if, given any e > 0, there exists a k0 = A:0(e) 
such that 

(1 + e)- i r 0 ^ rA g (1 + c)r0 , for all fc §; k0, 

where r , ^ 7 / if and only if Tt(x) ^ T,{x) [4, p. 17] for all x G Pn. 

In this event we write l i n v ^ Tk = T0. It is to be noted that in Definition 
2.2, k0 is independent of x G Pn. 

Let T be a non-singular monotone process of either type from Pn to 
Pff. Let C be a non-singular monotone set of the same type as T and J5* 
be a non-singular monotone set of type opposite to C. Define a process 
r 0 from Pnto Pn by 7o(x) = <x, 2)*>C; then T0 is a non-singular mo­
notone process of the same type as T [4]. 

LEMMA 2.2. Let T9 T0, C, Z>* be given as above. Let Tk be defined induc­
tively by Tk(x) = [JyeTk-iw T(y). If Km^ T* = T0, then 

(a) lim^oo Tk(x) = <x, 5*> C,/^r a//x G Pm and 
(b) l i m , _ <r*(C), #*> = <C, />*> • <C, 5*>, 

/or a// non-singular monotone sets C and D* of types the same as C and D*, 
respectively. 

PROOF. Given any e > 0, there exists k0 = k0(e) such that for all x G Pn 

and for all A: ̂  A:0>
 w e have 

(2) (1 + *)-i r0(x) <; TKx) £ (1 + e)Io(x). 

By Definition 2.1, (2) implies lim^«, r*(x) = T0(x) = <JC, 5*> C, for 
all x G Pn. 

Let C be any non-singular monotone set in Pn of the same type as C. 
Then from (2), we have 

(1 + e)"1 U W ^ (J^W ^ (1 + e) U W , 

for all k ^ k0. This implies (1 + e) "^„(C) £ T*(C) £ (1 + e) T0(C), 
for all k ^ k0. Hence, l i m ^ Tk{C) = r0(C). But, in [4, p. 69], it is shown 
that T0(C) = <C, D*} • C. Therefore, 

(3) lim T*(C) = (C, £>*->•€. 

Now, let D* be any non-singular monotone set in P * of the same type 
as 5*. Then, (3) implies 
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<Hm r*(c), D*y = <c, 5*>-<c, /)*>. 

Applying Lemma 2.1 to the left hand side of this equation, we have 

lim<r*(C), Z>*> = <C, 5*>-<C, £*> 

The conclusions (a) and (b) in Lemma 2.2 are equivalent to the neces­
sary and sufficient conditions given by Rockafellar [4, p. 69, Theorem 4] 
for the existence of a unique eigenset of a monotone process. Lemma 2.2 
actually shows that uniform convergence of the sequence T, T2, . . . to T0 

guarantees the existence of a unique eigenset for T. This conclusion can 
be rewritten as the following theorem. 

THEOREM 2.1. Let T be a non-singular monotone process of either type 
from Pn to Pn. If there exist non-singular monotone sets C and 5 * of suitable 
types and there exists a scalar X > 0 such that 

(4) HTTÏ = T-
where TQ(>) = <•, 2)*>C, then, aside from positive multiples, C and D* 
are the unique non-singular eigensets of T and the adjoint of T, T*, res­
pectively. This means T(C) = XC, and r*(2)*) = XD*. 

The scalar X is known as the growth rate in the literature (e.g., [4]). 
Since a monotone process is possitively homogeneous, we can replace 
[(l/X)T] by Tand assume À = 1. For this reason, (4) is the sufficient condi­
tion in Lemma 2.2. 

In the next section, we shall describe a special class of monotone pro­
cesses satisfying (4) whose members therefore have unique eigensets. 

3. Application. Let A be an n x n matrix such that none of its rows is 
identical to the zero vector. Define a process A" from Pn to Pn by A"(x) = 
(Ax)" = {>>|0 ^ y ^ Ax}. Then A" is a monotone process of concave 
type, and the adjoint of A", (A~)*9 is a monotone process of convex type 
where 0O*(x)* = (A'x+Y = {y*\y ^ ,4'x*} [4, p. 9]. 

In this section, we shall prove that the monotone process A" defined by 
a nonnegative matrix A has unique eigenset. 

First let us cite several known results in matrix theory. 

LEMMA 3.1. [1]. Let Pbeann x n irreducible stochastic matrix. Then 
(a) P°° = \imk^00P

k exists, i.e., for every e > 0, there exists k0 — k°(e) 
such that for all k ^ k0andi,j = 1, . . . , « , 

(1 - e)PTj è P*j è (1 + e)Pfj 

(b) Furthermore, there exists a vector % = (%\, .. ., 7Cn), where 2 y=i %j = 
1 andiZj > Oforj = 1, . . . , « , such that each row ofP°° is equal to %. 
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THEOREM 3.1. (PERRON-FROBENIUS THEOREM [2]). Let Abe an n x n 

irreducible nonnegative matrix. Then A has a "maximal"positive eigenvalue 
XQ that is a simple root of the characteristic equation such that \X\ ^ XQ 
for other eigenvalues X of A. Furthermore, to this XQ, there corresponds an 
eigenvector z° = (zj, . . ., zj|) such that each component ofz° is greater than 
zero. 

Now, if A is an n x n irreducible nonnegative matrix, then A is similar 
to some matrix (XQP), where ^0 is the "maximal" eigenvalue of A given in 
Theorem 3.1, and F is an irreducible probability matrix. In fact, cf. [2], 
we have 

(5) A = Z(X0P)Z-\ 

where Z is a diagonal matrix with diagonal elements z?, . . . , z% and 
(z?, . . . , z°) is a positive eigenvector of A corresponding to ^0. 

From (5), we have [(l/Xo)A]k = ZPkZ~l, for all positive integers k. 
Therefore, 

<6> HiA)k<-hAT=zp^ 
exists. 

If we apply (a) of Lemma 3.1 to (6), it is not difficult to prove that, 
given e > 0, there exists k0 = k0(e) such that for all k ^ kQ and /, 7 = 1 , 

If A is an n x n irreducible nonnegative matrix, then so is AK By the 
Perron-Frobenius Theorem, there exists a vector w° with all components 
positive such that A'w0 = XQw°. Therefore ([(\/X0]A)ky w° = w°, for all 
integers k. Hence, we have 

(8) ((^)7„o = wo. 

Applying (6) in (8), using the representation of P°° described in Lemma 
3.1 and then equating the components on both sides in (8), we get 
<z0, w0> . Xjfâ = H,Q fory = 1, . . . , n. 
Hence, 

(9) 7ÜJ = zM/<*°. "°>> fory = 1, . . . , n. 

Now, we are ready to prove the main result of this section. 

THEOREM 3.2. Let A be an n x n irreducible non-negative matrix. Then 
the monotone process T = A~ defined by A and its adjoint, T*, have unique 
non-singular eigensets, expect for positive scalar multiples. 
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PROOF. Let z° and w° be positive eigenvectors of A and A* corresponding 
to the "maximal" eigenvalue, Xo of A, respectively. 

Since T((zT) = {T(y) \0 ^ y ^ z} = T(zf>) = (AzT = J0(*°r, WT 
is an eigenset of T. Similarly, (w0)^ is an eigenset of T*. Denote <z°, w°>1/2 

by s. If we let C = (l/s)(z0)" and 5 * = (l/s)(w°y, then it is easy to see 
that <C, Z)*> = 1, and C and D* are eigensets of T and J*, respectively. 

It is clear that for each integer k, Tk(x) = (AkxY for all x e Pn. 
If we let T0(x) = ( [ ( l / ^ F W r , and use (6) and (9), we have T0(x) = 
«JC, w°>/^2)(z0)^ for all x e P„. On the other hand, 

<*, 5*> C = « x , (wT>/s)'(lls)(zT 
= « x , (wO)>/*2)(zor> 

for all x G Pn. Hence, we conclude that T0(x) = <JC, J5*> C for all x G />„. 
From (7) and the fact that Tk{x) = (Akx)~, it follows that for any given 

e > 0, there exists fc0 = jfc0($) such that (1 - e)T0 ^ [(l/^0) T]* ^ 
(1 + e)T0, for all k ^ fc0. 

Hence, 

iim(-j-rY = r0 = <-,5*>c. 

From Theorem 2.1, C, 5 * are the unique eigensets of Tand J* respec­
tively. 
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