ON THE EXISTENCE OF UNIQUE EIGENSETS OF MONOTONE PROCESSES

WEI SHEN HSIA* AND BALAKRISH R. NATARAJAN

ABSTRACT. A Sufficient condition is given to guarantee the existence of a unique eigenset of a monotone process. Then, a special class of monotone processes is proved to have unique eigensets through this condition and the Perron-Frobenius Theorem.

1. Introduction. Rockafellar [4, p. 69, Theorem 4] proved a theorem which provides necessary and sufficient conditions for the existence of unique eigensets of monotone processes. Since those necessary and sufficient conditions must be satisfied by every pair of non-singular monotone sets in P_n and P_n^* , it is almost impossible to verify that a certain monotone process actually satisfies these conditions. In this paper, a sufficient condition in a simpler form is given to guarantee the existence of a unique eigenset. This sufficient condition in fact is a modification of Rockafellar's conditions. Then, a special class of monotone processes is proved to have unique eigensets through this modified condition and the Perron-Frobenius Theorem [2].

We shall only give the definitions of monotone sets, monotone processes, and eigensets of a monotone process. For more detailed definitions (e.g., positively homogeneous, sub-additive, non-singular, etc.), examples, and properties of monotone processes see [3], [4], and the references therein.

DEFINITION 1.1. [4, p. 11]. A monotone set of concave type in P_n , the nonnegative orthant of R^n , is a non-empty closed bounded convex set C such that $0 \le y_1 \le y_2 \in C$ implies $y_1 \in C$. A monotone set of convex type is a non-empty closed convex set such that $y_1 \ge y_2 \in C$ implies $y_1 \in C$.

DEFINITION 1.2. [4, p. 9]. A monotone process of concave type from P_n to P_m is a nonnegative process T which is positively homogeneous, sub-additive, closed, and satisfies

- (a) T(x) is a monotone set of concave type for all $x \in P_n$, and
- (b) $0 \le x_1 \le x_2$ implies $T(x_1) \subseteq T(x_2)$.

AMS (MOS) subject classification (1970): Primary 15A18, 90A99.

^{*}Sponsored by the University of Alabama under Project Number 951.

Received by the editors on March 25, 1980, and in revised form on Dec. 20, 1980.

Dually, T is a monotone process of convex type if conditions (a) and (b) are replaced by

- (a') T(x) is a monotone set of convex type for all $x \in P_n$, and
- (b') $x_1 \ge x_2 \ge 0$ implies $T(x_1) \subseteq T(x_2)$.

DEFINITION 1.3. [4, p. 58]. Let T be a non-singular monotone process from P_n to P_n . A non-singular monotone set C in P_n (of the same type as T) will be termed an eigenset of T if, for some $\lambda > 0$, $T(C) = \lambda C$.

Since this paper is mainly an extension of Rockafellar's result, we will adopt his notation and terminology freely.

2. Existence of unique eigensets of monotone processes. Let C and D be two monotone sets in P_n . We say $C \subseteq D$ if and only if $\langle C, x^* \rangle \subseteq \langle D, x^* \rangle$ for all $x^* \in P_n^*$, where P_n^* is the set of all nonegative linear functional on R^n [4, p. 16]. It is known that if C and D are monotone of concave type, then $C \subseteq D$ if and only if $C \subseteq D$; and if both are of convex type, then $C \subseteq D$ if and only if $C \subseteq D$.

We now define uniform convergence of a sequence of monotone sets. It is essentially the same as Rockafellar's Definition [4, p. 69], but it covers both concave and convex types.

DEFINITION 2.1. A sequence C_1, C_2, \ldots of non-singular monotone sets of the same type in P_n converges uniformly to a set C_0 of the same type as each C_k if for every $\varepsilon > 0$ there exists a $k_0 = k_0(\varepsilon)$ such that

$$(1) (1 + \varepsilon)^{-1}C_0 \le C_k \le (1 + \varepsilon)C_0$$

for all $k \ge k_0$.

If the sets C_k are of concave type, then (1) is equivalent to $(1 + \varepsilon)^{-1}$ $C_0 \subseteq C_k \subseteq (1 + \varepsilon)C_0$ for all $k \ge k_0$ as given by Rockafellar [4, p. 69]. If the sets C_k are of convex type, then (1) is equivalent to $(1 + \varepsilon)C_0 \subseteq C_k \subseteq (1 + \varepsilon)^{-1}C_0$ for all $k \ge k_0$. In either case, we shall write $\lim_{k \to \infty} C_k = C_0$.

LEMMA 2.1. If $\lim_{k\to\infty} C_k = C_0$, then $\lim_{k\to\infty} \langle C_k, y^* \rangle = \langle C_0, y^* \rangle$ for all $y^* \in P_n^*$.

PROOF. Assume that the sets C_k and C_0 are of concave type. Then, given any $\varepsilon < 0$, there exists $k_0 = k_0(\varepsilon)$ such that $(1 + \varepsilon)^{-1}C_0 \subseteq C_k \subseteq (1 + \varepsilon)C_0$, for all $k \ge k_0$. Therefore, for any $y^* \in P_n^*$, and for all $k \ge k_0$,

$$(1 + \varepsilon)^{-1} \sup_{y \in C_0} \langle y, y^* \rangle \leq \sup_{y \in C_k} \langle y, y^* \rangle \leq (1 + \varepsilon) \sup_{y \in C_0} \langle y, y^* \rangle.$$

Hence, for all $y^* \in P_n^*$ and all $k \ge k_0$, we have

$$(1 + \varepsilon)^{-1} \langle C_0, y^* \rangle \leq \langle C_k, y^* \rangle \leq (1 + \varepsilon) \langle C_0, y^* \rangle.$$

Thus, $\lim_{k\to\infty}\langle C_k, y^*\rangle = \langle C_0, y^*\rangle$ for all $y^*\in P_n^*$.

The same argument holds with the change of the direction of inequalities if C_k and C_0 are of convex type.

DEFINITION 2.2. A sequence T_1 , T_2 , ... of monotone processes of the same type from P_n to P_n is said to converge uniformly to a monotone process T_0 of the same type if, given any $\varepsilon > 0$, there exists a $k_0 = k_0(\varepsilon)$ such that

$$(1+\varepsilon)^{-1}T_0 \leq T_k \leq (1+\varepsilon)T_0$$
, for all $k \geq k_0$,

where $T_i \leq T_j$ if and only if $T_i(x) \leq T_j(x)$ [4, p. 17] for all $x \in P_n$.

In this event we write $\lim_{k\to\infty} T_k = T_0$. It is to be noted that in Definition 2.2, k_0 is independent of $x \in P_n$.

Let T be a non-singular monotone process of either type from P_n to P_n . Let \bar{C} be a non-singular monotone set of the same type as T and \bar{D}^* be a non-singular monotone set of type opposite to \bar{C} . Define a process T_0 from P_n to P_n by $T_0(x) = \langle x, \bar{D}^* \rangle \bar{C}$; then T_0 is a non-singular monotone process of the same type as T [4].

LEMMA 2.2. Let T, T_0 , \bar{C} , \bar{D}^* be given as above. Let T^k be defined inductively by $T^k(x) = \bigcup_{y \in T^{k-1}(x)} T(y)$. If $\lim_{k \to \infty} T^k = T_0$, then

- (a) $\lim_{k\to\infty} T^k(x) = \langle x, \bar{D}^* \rangle \bar{C}$, for all $x \in P_n$, and
- (b) $\lim_{k\to\infty} \langle T^k(C), D^* \rangle = \langle \bar{C}, D^* \rangle \cdot \langle C, \bar{D}^* \rangle$,

for all non-singular monotone sets C and D^* of types the same as \bar{C} and \bar{D}^* , respectively.

PROOF. Given any $\varepsilon > 0$, there exists $k_0 = k_0(\varepsilon)$ such that for all $x \in P_n$ and for all $k \ge k_0$, we have

$$(1 + \varepsilon)^{-1} T_0(x) \leq T^k(x) \leq (1 + \varepsilon) T_0(x).$$

By Definition 2.1, (2) implies $\lim_{k\to\infty} T^k(x) = T_0(x) = \langle x, \bar{D}^* \rangle \bar{C}$, for all $x \in P_n$.

Let C be any non-singular monotone set in P_n of the same type as \bar{C} . Then from (2), we have

$$(1 + \varepsilon)^{-1} \bigcup_{x \in C} T_0(x) \leq \bigcup_{x \in C} T^k(x) \leq (1 + \varepsilon) \bigcup_{x \in C} T_0(x),$$

for all $k \ge k_0$. This implies $(1 + \varepsilon)^{-1}T_0(C) \le T^k(C) \le (1 + \varepsilon) T_0(C)$, for all $k \ge k_0$. Hence, $\lim_{k \to \infty} T^k(C) = T_0(C)$. But, in [4, p. 69], it is shown that $T_0(C) = \langle C, \bar{D}^* \rangle \cdot \bar{C}$. Therefore,

(3)
$$\lim_{k \to \infty} T^k(C) = \langle C, \bar{D}^* \rangle \cdot \bar{C}.$$

Now, let D^* be any non-singular monotone set in P_n^* of the same type as \bar{D}^* . Then, (3) implies

$$\langle \lim_{k \to \infty} T^k(C), D^* \rangle = \langle C, \bar{D}^* \rangle \cdot \langle \bar{C}, D^* \rangle.$$

Applying Lemma 2.1 to the left hand side of this equation, we have

$$\lim_{k \to \infty} \langle T^k(C), D^* \rangle = \langle C, \bar{D}^* \rangle \cdot \langle C, D^* \rangle$$

The conclusions (a) and (b) in Lemma 2.2 are equivalent to the necessary and sufficient conditions given by Rockafellar [4, p. 69, Theorem 4] for the existence of a unique eigenset of a monotone process. Lemma 2.2 actually shows that uniform convergence of the sequence T, T^2 , ... to T_0 guarantees the existence of a unique eigenset for T. This conclusion can be rewritten as the following theorem.

THEOREM 2.1. Let T be a non-singular monotone process of either type from P_n to P_n . If there exist non-singular monotone sets \bar{C} and \bar{D}^* of suitable types and there exists a scalar $\lambda > 0$ such that

$$\lim_{k\to\infty} \left(\frac{1}{\lambda} T\right)^k = T_0,$$

where $T_0(\cdot) = \langle \cdot, \bar{D}^* \rangle \bar{C}$, then, aside from positive multiples, \bar{C} and \bar{D}^* are the unique non-singular eigensets of T and the adjoint of T, T^* , respectively. This means $T(\bar{C}) = \lambda \bar{C}$, and $T^*(\bar{D}^*) = \lambda \bar{D}^*$.

The scalar λ is known as the growth rate in the literature (e.g., [4]). Since a monotone process is possitively homogeneous, we can replace $[(1/\lambda)T]$ by T and assume $\lambda = 1$. For this reason, (4) is the sufficient condition in Lemma 2.2.

In the next section, we shall describe a special class of monotone processes satisfying (4) whose members therefore have unique eigensets.

3. Application. Let A be an $n \times n$ matrix such that none of its rows is identical to the zero vector. Define a process $A^{\hat{}}$ from P_n to P_n by $A^{\hat{}}(x) = (Ax)^{\hat{}} = \{y|0 \le y \le Ax\}$. Then $A^{\hat{}}$ is a monotone process of concave type, and the adjoint of $A^{\hat{}}$, $(A^{\hat{}})^*$, is a monotone process of convex type where $(A^{\hat{}})^*(x)^* = (A^tx^*)^{\hat{}} = \{y^*|y \ge A^tx^*\}$ [4, p. 9].

In this section, we shall prove that the monotone process $A^{\hat{}}$ defined by a nonnegative matrix A has unique eigenset.

First let us cite several known results in matrix theory.

LEMMA 3.1. [1]. Let P be an $n \times n$ irreducible stochastic matrix. Then

(a) $P^{\infty} = \lim_{k \to \infty} P^k$ exists, i.e., for every $\varepsilon > 0$, there exists $k_0 = k^0(\varepsilon)$ such that for all $k \ge k_0$ and $i, j = 1, \ldots, n$,

$$(1 - \varepsilon)P_{ii}^{\infty} \leq P_{ii}^{k} \leq (1 + \varepsilon)P_{ii}^{\infty}$$

(b) Furthermore, there exists a vector $\pi = (\pi_1, \ldots, \pi_n)$, where $\sum_{j=1}^n \pi_j = 1$ and $\pi_j > 0$ for $j = 1, \ldots, n$, such that each row of P^{∞} is equal to π .

THEOREM 3.1. (PERRON-FROBENIUS THEOREM [2]). Let A be an $n \times n$ irreducible nonnegative matrix. Then A has a "maximal" positive eigenvalue λ_0 that is a simple root of the characteristic equation such that $|\lambda| \leq \lambda_0$ for other eigenvalues λ of A. Furthermore, to this λ_0 , there corresponds an eigenvector $z^0 = (z_1^0, \ldots, z_n^0)$ such that each component of z^0 is greater than zero.

Now, if A is an $n \times n$ irreducible nonnegative matrix, then A is similar to some matrix $(\lambda_0 P)$, where λ_0 is the "maximal" eigenvalue of A given in Theorem 3.1, and P is an irreducible probability matrix. In fact, c.f. [2], we have

$$A = Z(\lambda_0 P) Z^{-1},$$

where Z is a diagonal matrix with diagonal elements z_1^0, \ldots, z_n^0 and (z_1^0, \ldots, z_n^0) is a positive eigenvector of A corresponding to λ_0 .

From (5), we have $[(1/\lambda_0)A]^k = ZP^kZ^{-1}$, for all positive integers k. Therefore,

(6)
$$\lim_{k \to \infty} \left(\frac{1}{\lambda_0} A \right)^k = \left(\frac{1}{\lambda_0} A \right)^{\infty} = Z P^{\infty} Z^{-1}$$

exists.

If we apply (a) of Lemma 3.1 to (6), it is not difficult to prove that, given $\varepsilon > 0$, there exists $k_0 = k_0(\varepsilon)$ such that for all $k \ge k_0$ and $i, j = 1, \ldots, n$,

(7)
$$(1 - \varepsilon) \left(\frac{1}{\lambda_0} A\right)_{ij}^{\infty} \leq \left(\frac{1}{\lambda_0} A\right)_{ij}^{k} \leq (1 + \varepsilon) \left(\frac{1}{\lambda_0} A\right)_{ij}^{\infty}$$

If A is an $n \times n$ irreducible nonnegative matrix, then so is A^t . By the Perron-Frobenius Theorem, there exists a vector w^0 with all components positive such that $A^t w^0 = \lambda_0 w^0$. Therefore $([(1/\lambda_0]A)^k)^t w^0 = w^0$, for all integers k. Hence, we have

(8)
$$\left(\left(\frac{1}{\lambda_0}A\right)^{\infty}\right)^t w^0 = w^0.$$

Applying (6) in (8), using the representation of P^{∞} described in Lemma 3.1 and then equating the components on both sides in (8), we get $\langle z^0, w^0 \rangle \cdot \pi_j / z_j^0 = w_j^0$ for $j = 1, \ldots, n$. Hence,

(9)
$$\pi_j = z_j^0 w_j^0 / \langle z^0, w^0 \rangle$$
, for $j = 1, ..., n$.

Now, we are ready to prove the main result of this section.

THEOREM 3.2. Let A be an $n \times n$ irreducible non-negative matrix. Then the monotone process $T = A^{\hat{}}$ defined by A and its adjoint, T^* , have unique non-singular eigensets, expect for positive scalar multiples.

PROOF. Let z^0 and w^0 be positive eigenvectors of A and A^t corresponding to the "maximal" eigenvalue, λ_0 of A, respectively.

Since $T((z^0)^{\hat{}}) = \{T(y) \mid 0 \le y \le z\} = T(z^0) = (Az^0)^{\hat{}} = \lambda_0(z^0)^{\hat{}}, (z^0)^{\hat{}}$ is an eigenset of T. Similarly, $(w^0)^{\hat{}}$ is an eigenset of T^* . Denote $\langle z^0, w^0 \rangle^{1/2}$ by s. If we let $\bar{C} = (1/s)(z^0)^{\hat{}}$ and $\bar{D}^* = (1/s)(w^0)^{\hat{}}$, then it is easy to see that $\langle \bar{C}, \bar{D}^* \rangle = 1$, and \bar{C} and \bar{D}^* are eigensets of T and T^* , respectively.

It is clear that for each integer k, $T^k(x) = (A^k x)^n$ for all $x \in P_n$. If we let $T_0(x) = ([(1/\lambda_0)A]^{\infty}(x))^n$, and use (6) and (9), we have $T_0(x) = (\langle x, w^0 \rangle / s^2)(z^0)^n$ for all $x \in P_n$. On the other hand,

$$\langle x, \bar{D}^* \rangle \bar{C} = (\langle x, (w^0)^{\hat{}} \rangle / s) \cdot (1/s)(z^0)^{\hat{}}$$

= $(\langle x, (w^0) \rangle / s^2)(z^0)^{\hat{}}$,

for all $x \in P_n$. Hence, we conclude that $T_0(x) = \langle x, \bar{D}^* \rangle \bar{C}$ for all $x \in P_n$.

From (7) and the fact that $T^k(x) = (A^k x)^n$, it follows that for any given $\varepsilon > 0$, there exists $k_0 = k_0(\varepsilon)$ such that $(1 - \varepsilon)T_0 \le [(1/\lambda_0)T]^k \le (1 + \varepsilon)T_0$, for all $k \ge k_0$.

Hence,

$$\lim_{k\to\infty} \left(\frac{1}{\lambda_0} T\right)^k = T_0 = \langle \cdot, \bar{D}^* \rangle \bar{C}.$$

From Theorem 2.1, \bar{C} , \vec{D}^* are the unique eigensets of T and T^* respectively.

REFERENCES

- 1. U.N. Bhat, *Elements of Applied Stochastic Process*, John Wiley & Sons, New York, N.Y., 1972.
- 2. F.R. Gantmacher, *The Theory of Matrices*, II, Chelsea Publishing Co., New York, N.Y., 1959.
- 3. R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1970.
- 4. R.T. Rockafellar, Monotone Processes of Concave and Convex Types, American Mathematical Society Memoirs 77 (1967), 1-74.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, UNIVERSITY, AL 35486.