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on the occasion of his sixtieth birthday. 

1. Introduction. Stephensen's inequality has a long and varied history, 
see Mitrinovic [3, pg. 107-119], for example. The simplest version is the 
following theorem. 

THEOREM A. Let F be non-decreasing and 0 ̂  g ^ 1, both functions 
continuous. Then 

0) ['fdxg Vfgdx* P fdx 
J0 J0 Jl-a 

where a = Jj g dx. 

Recently Milovanovic and Pecaric [2] have shown that the same con
clusions hold if 0 S g ^ 1 is replaced by 

(i) P g dt ^ 0 and P g dt g x,xe [0, 1]; 

for the left hand inequality of (1) and for the right hand inequality 

(ii) Fgdt<\-x9 Vgdt ̂  0,xe[0,1]. 

They further prove versions of (1) with /satisfying a higher monotonicity. 
In this paper we show that Theorem A as well as the versions of Theorem 

A proved in [2] are simple corollaries of Theorem D and its extensions 
proved in this paper. 

THEOREM B. Let M0 be the class of non-negative non-decreasing integrable 
functions, and p a {signed) regular Borei measure. Then 

(2) fcdp è 0 

holds for allfe M0 if and only if 
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(3) ^d^^OforxelO, 1]. 

If M$ is the class of non-decreasing functions, then the necessary and suf
ficient condition for (2) is (3) and 

(4) J> = 0. 
Using this result we can prove 

THEOREM C. Let X be a regular Borei measure such that JJI^I < °° 
and let dx denote Lebesuge measure, then 

(5) fcdX * l\fdx 

holds for allfe M0 if and only if 

(6) VdX ^ 0, * G [ 0 , 1] 

and 

(7) a ^ min it + f * dx) 
o^t^i I J t ) 

Therefore a = min0^^i{^ 4- §}dX} is the best possible choice. 

We prefer to replace g dx by dX in order to include the discrete versions 
and in order to make our results necessary and sufficient. We will gen
eralize Theorem C to functions with higher monotonicity as well as 
getting an upper bound for \lfdX which does not appear in [2]. Further
more, our methods also give multi-dimensional versions of Steffensen's 
inequalities which appear to be completely new. 

2. Preliminaries. Let/be a non-negative non-decreasing function. Then 
f(x) = Jo^v(0 f°r some non-negative Borei measure. If /(0) > 0, then 
this includes an atom at 0. In order to facilitate the arithmetic we introduce 
the notation x+ = max(#, 0). Also x% means (x+)n except that 0° will be 
interpreted as 1. Thus the characteristic function of [t, oo) is (x — *)+• 
Now the above formula for/e M0 may be written 

(8) fix) = \\x - if, dv(t). 

The class of functions which we consider generalize this formula. Let 
Mk denote the class of functions/with the representation 

(9) f(x) = fax - t)% dv{t\ x e [0, 1], 

file:///lfdX
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for v some non-negative regular Borei measure. 
Note that k need not be an integer, although the integral case is the 

most important. Mx is the class of increasing convex functions with a 
zero at 0. More generally, if fe C(w+1>(0,1) with/«>(0) = 0, i = 0, . . . , 
n - 1, and/(w> ^ 0,/(w+1> ^ 0 on [0, 1], t h e n / e Mn. 

It is for the class Mk that we prove a theorem which has Theorem B 
as the special case k = 0. 

THEOREM D. Let fibea (signed) regular Borei measure such that JJI^I < 
oo. Then 

(10) ^fdfi^OforallfeM, 

if and only if 

(11) £ ( * - tftdpix) è Ofor t e [0, 1]. 

PROOF. Using the representation (9) in (10) and Fubini's Theorem, (10) 
is equivalent to 

for all non-negative Borei measures v. This holds if and only if (11). 

COROLLARY 1. Let M£ be the function f e C(*+1>(0, 1) with/(*+1>(*) è 0 
on [0, 1]. Then ftfd/t ^ Ofor allfe M£ if and only if (11) holds and 

(12) £ ^ J/i = 0, y = 0, ...,k. 

PROOF. Since ±x' e M$,j = 0, . . . , k, (12) is necessary, and thus (11) 
and (12) are necessary. For the sufficiency, we apply Theorem D to 

Rx)-fkfW<P)x!lJ\eMk. 

3. One-dimensional Steffensen inequalities. We are now in a position to 
prove the inequalities for the classes Mk and Mf, 

THEOREM E. Let À be a (signed) regular Borei measure such that §l\dX\ < 
oo. Then 

(13) VfdX ^ t'fdx 
Jo Jo 

for allfe Mk if and only if 

(14) P ( J C - t)%dX(x)^0, fe[0, 1]; 
Jo 
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and 

(15) a ^ min {/ + Uk + 1 ) P ( J C - t)% d^x))1"}. 

Therefore the best possible choice is for equality in (15). 

PROOF. We apply Theorem D to the measure dju = dX — {a — x)\dx. 
Then (13) is equivalent to JS/rf/i è 0 for a l l / e Mk. Thus the condition is 

(16) P ( x - 0+ dike) è f *(* - t)%{a - x)% dx. 
Jo Jo 

Since the right hand side is non-negative, (14) is necessary. Now taking 
0 ^ t £ 1,(16) is 

(17) [\x - t)\dl(x) ^(a- t)^!(k + 1) 
Jo 

and in turn 

/ pi XI/GH-D 

(18) a g / + ( (k + 1)1 (x - t)\dX{x)\ ,0gt£a. 

But since (14) holds, the inequality (18) is true if / ^ a. Thus (15) is neces
sary and sufficient since we may reverse all of the above steps. 

COROLLARY 2. Inequality (13) holds for allfe Mf //(14) and (15) hold 
as well as 

(19) f * MX = tf'+VO* + IX J = 0, . . . , k. 
Jo 

It is worthwhile to set down conditions which give an exact formula 
for a. This will give the result of Milovanovic and Pecaric [2]. Our further 
results do not have corresponding results in [2]. 

COROLLARY 3. If fakdÀ(t) ^ xk+lj{k + 1) and $tkdk(t) ^ 0 and a = 
[(k + l^dXisW^+v, then (13) holds for allfe Mk. 

PROOF. We compute the left hand side of (17) as follows. Let 0 ^ t ^ a. 
Then 

i\x - t)\dX{x) = f \ \ - tjx)kxkdX{x) 

= f V / * 2 ) 0 - t/xy-41 skdX(s)dx 

^ f%A;(l - tlx)k-1ljfi[1s"dX(s)dx 

= prifc(i - //*)^V^*m/(* + 1) - [*s*dl(s) dx 
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^ f* tk(l - t/xy-yx^a^Kk + 1) - **+i/(Jfc + 1)] dx 

= (a - ty+y(k + i). 

Note that according to Corollary 2, (13), holds from a l l / e Mk only if 

/(*+D / /n \ ( /+D/( 
« ((* + 1)1 x*dX(x)) 

MUX) = ^ J o / , 7 = 0, . . . , k. 
Jo J + i 

In particular, this is true for k = 0. 

COROLLARY 4. C/ŵ fer //ze conditions of Corollary 3, (13) holds for f e M0. 

We turn to deriving upper bounds for §fdl. 

THEOREM F. If\l\dX\ < oo, then the inequality 

(20) J o / d A W - J ! / J X 

holds for allfe Mk if and only if 

(21) j \ x - O W * ) £ (1 - 0*+1/(fc + 1), * e[0, 1]; 

and 

(22) a ^ mini* + [(1 - t)k+1 - (k + l)(\x - f)yA(x)]1/(*+1)j. 
o^^i I Jo J 

/« particular, the best choice for a is equality in (22). 

PROOF. We apply Theorem D to the measure d/j, = (x — a)\dx — rfA. 
The details are the same as in the proof of Theorem E. 

In several important instances, as in Corollary 3, the formula for a is 
given by a specific choice of t, in that case the minimum is attained at 
t = 0. These instances can be checked directly by using our ideas. It is 
shown in Fink and Jodeit [1], that iff e Mk, then/(x)x~Ä e M0. In general, 
the converse is not true. We offer versions of the Steffensen inequality 
for this class. 

THEOREM G. Letf(x)x~1 e M0, then 

(i) ^fdx g ^fdX 

holds when 

(23) Vx'dX^O, fe[0, 1], 
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and 

(24) ax = min [tk+1 + (k + lrf1**^*)]1'«*™; 
o^^i J t 

(ii) fV^ g f1 fdx 
JO J l-a2 

Aö/öfe when 

(25) JX jc*£tt £ (1 - f*+1)/(fc + 1), f e [0, 1], 

(26) 1 - a2 = min [1 - (* + l ) P ; c W / a + 1 ) . 

In particular, if 

(27) f' x*dX ̂  /*+V(* + 1), 
Jo 

then 

ax = P + \)[lxkdX]lnk+1K 
Jo 

If (23) holds as well as (25), fAe« 

1 - a2 = [1 - (k + 1) PxWil]1'**1'-Jo 

PROOF. We apply Theorem D with k = 0 and/replaced by/(jc)x~*, and 
d/i = xÄ*/A — xk(a1 — x)% dx to prove (i). The equivalent statement is 

fl x*dX ^ fl x*(flx - xft <& for f e [0, 1] 

which is (23) for t^ 0 and ap1 g tk+l + (k + \)\}xkdX for 0 ^ f ^ av 

Thus (24) is the best possible choice. 
To prove (ii) we use the measure dfi = xk(x — 1 + a2)\ dx — xkdX in 

Theorem D to get 

fl xkdX ^ f1 xk(x - 1 + a2)+ dx. 

This is 

(1 _ a2y+i - /*+i ^ 1 - (k + 1) P**<tt - tk+\ t^l - a2; 

and 
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0 ^ 1 - (k + 1) T a w - /*+1, f ^ 1 - a2. 

Since (1 - a2)
k+1 - /*+1 ^ 0 for t ^ 1 - a2, the first of these holds for 

all /. Thus (25) and (26) imply the validity of the inequalities. 
If both (23) and (25) hold, then by (23) 

[1 - (fc + 1) Vx*dX]ln^ £ [1 - (* + 1) f1**««]1"*™ 

so 

1 - a2 = [1 - (A: + 1) [lxkdX]lnk+l). 
Jo 

Furthermore, using (27), 

**+1 + (it + 1)P **<« = /*+1 + (* + 1) P**<« - (* + l)P**<tt 

^(A: + 1) (lx*dX. 

Note that ^ = a2 if A: = 0. Furthermore, if dX = g(x)rfx for 0 ^ 
g(x) ^ 1, then the hypotheses of Theorem G are satisfied. 

4. Multi-dimensional inequalities. To derive a multi-dimensional version 
of Steffensen's inequality we need a counterpart to Theorem D. If x e Rn 

with non-negative components then \fjdv{i) means the multiple integral 

J J j W i , ...,*M). 

Let M0 be the functions which have the representation 

(28) fix) = fcdvit) 

for some non-negative regular Borei measure v. A function/e M0 if it 
"increases away from 0". For example inR2, if/i ^ 0,/2 ^ 0and/12 ^ 0, 
then 

Ax, y) =/(0, 0) + f'/ifo 0)<ft + fV2(0, 0* + rfVi2(^ 0 &Ä 
Jo Jo J o J o 

so/eM0 i f / (0, 0) ^ Oand 

dv = /(0, 0)500(*, y) + *oCv)/i(*,0>& + 50(*)/2(0, y)dy +f12(x, y)dxdy. 

Let 1 = 0 , . . . ,1) . 

THEOREM H. (See [1].) Let n be a {signed) regular Borei measure with 
Jo \dfi\ < oo. Then 
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(29) f 1 / ^ ^ O/o»- « # / « ^ o 

if and only if 

(30) f * <fy ^ 0 /or a// x e [0, 1]». 

PROOF. If one writes (28) as 

/(*) = Pn(*,-'.)Vv(» 
Jo i 

and inserts this into (29), changes order of integration by Fubini's Theo
rem, then 

llfd/i = j / v ( 0 £ ft (*,• - tt)\dfi{x) = ^dv(t)^dM(x). 

The result easily follows since dv is an arbitrary non-negative measure. 

THEOREM I. Letfe MQ and Xbea regular Borei measure such that \\\dX\ < 
oo and for every union of cubes E \EdX ^ volume (E). If \}dX ^ Ofor all 
t e [0, \]n, then 

(31) [fax ^ P fdX 
Jo Jo 

where a is the vector (c, c, . . . , c) for c = 1 — (1 — §odX)1/n. 

PROOF. We apply Theorem H to the measure dy. = dX — T[i(c — **)+ 
dxi ... dxn. Then (31) is equivalent to 

(32) e1«« e f t (*-*,)+. 
J X 1 

If some x{ > c, then this is true so we may assume x ^ a. Now QdX = 
\\dX — \EdX where .Eis a union of cubes whose volume is 1 — n ? 0 — **)• 
Thus 

Vdk* P<tt- 1 + n 0 -Xi). 
J x JO 1 

The inequality (32) is valid if Jfcfil - 1 + IlîO - *,•) ^ \[\{c - *,-)+. 
Since 1 — Jjt/A = (1 — a)n we may write this as [JïO — xt) ^ fi i(a — xt) 
+ riï(l — d). Since 1 — xtr = 1 — a + (a — JC,), the product on the left is 
the sum of the two terms on the right plus many more non-negative terms. 
Hence (31) follows. 

To get an upper bound seems to be more difficult. 

THEOREM J. Assume $)dl ^ Ili(l — tt) andfe~Mo. Then 
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(33) j^fdk ^ jffdx 

if 

sup n O - tf)'1 VdX £ (1 - c)«, a = (c9 c, . . . , c). 
O^ti^l 1 Jt 

PROOF. We apply Theorem H to get the equivalent condition, 

(34) f1 dl ^ f\ V (x - c)\dx = ft min(l - ti9 1 - c). 
Jt i J ti l 

Let S = {i|l - ti < 1 - c}, Sc = {/|1 - tt^ 1 - c}, with 5 having k 
elements. Then 

Vdx ^ (i - cy ft(i - o = [ri(i - *,)nu - c)][(i - c)*nd - m 
Jt 1 S SC Sc 

^ rrci - o n o - c> = n ^ o - ** » - <o. 
s sc i 
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