STEFFENSEN TYPE INEQUALITIES

A. M. FINK

Dedicated to Professor Lloyd K. Jackson on the occasion of his sixtieth birthday.

1. Introduction. Stephensen's inequality has a long and varied history, see Mitrinović [3, pg. 107-119], for example. The simplest version is the following theorem.

Theorem A. Let F be non-decreasing and $0 \leqq g \leqq 1$, both functions continuous. Then

$$
\begin{equation*}
\int_{0}^{a} f d x \leqq \int_{0}^{1} f g d x \leqq \int_{1-a}^{1} f d x \tag{1}
\end{equation*}
$$

where $a=\int_{0}^{1} g d x$.
Recently Milovanović and Pečarič [2] have shown that the same conclusions hold if $0 \leqq g \leqq 1$ is replaced by

$$
\begin{equation*}
\int_{x}^{1} g d t \geqq 0 \text { and } \int_{0}^{x} g d t \leqq x, x \in[0,1] \tag{i}
\end{equation*}
$$

for the left hand inequality of (1) and for the right hand inequality

$$
\begin{equation*}
\int_{x}^{1} g d t<1-x, \quad \int_{0}^{x} g d t \geqq 0, x \in[0,1] . \tag{ii}
\end{equation*}
$$

They further prove versions of (1) with f satisfying a higher monotonicity.
In this paper we show that Theorem A as well as the versions of Theorem A proved in [2] are simple corollaries of Theorem \mathbf{D} and its extensions proved in this paper.

Theorem B. Let M_{0} be the class of non-negative non-decreasing integrable functions, and μ a (signed) regular Borel measure. Then

$$
\begin{equation*}
\int_{0}^{1} f d \mu \geqq 0 \tag{2}
\end{equation*}
$$

holds for all $f \in M_{0}$ if and only if

$$
\begin{equation*}
\int_{x}^{1} d \mu \geqq 0 \text { for } x \in[0,1] . \tag{3}
\end{equation*}
$$

If M_{0}^{*} is the class of non-decreasing functions, then the necessary and sufficient condition for (2) is (3) and

$$
\begin{equation*}
\int_{0}^{1} d \mu=0 \tag{4}
\end{equation*}
$$

Using this result we can prove
Theorem C. Let λ be a regular Borel measure such that $\int_{0}^{1}|d \lambda|<\infty$ and let dx denote Lebesuge measure, then

$$
\begin{equation*}
\int_{0}^{1} f d \lambda \geqq \int_{0}^{a} f d x \tag{5}
\end{equation*}
$$

holds for all $f \in M_{0}$ if and only if

$$
\begin{equation*}
\int_{x}^{1} d \lambda \geqq 0, x \in[0,1] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
a \leqq \min _{0 \leqq t \leqq 1}\left\{t+\int_{t}^{1} d \lambda\right\} \tag{7}
\end{equation*}
$$

Therefore $a=\min _{0 \leq t \leq 1}\left\{t+\int_{t}^{1} d \lambda\right\}$ is the best possible choice.
We prefer to replace $g d x$ by $d \lambda$ in order to include the discrete versions and in order to make our results necessary and sufficient. We will generalize Theorem \mathbf{C} to functions with higher monotonicity as well as getting an upper bound for $\int_{0}^{1} f d \lambda$ which does not appear in [2]. Furthermore, our methods also give multi-dimensional versions of Steffensen's inequalities which appear to be completely new.
2. Preliminaries. Let f be a non-negative non-decreasing function. Then $f(x)=\int_{0}^{x} d v(t)$ for some non-negative Borel measure. If $f(0)>0$, then this includes an atom at 0 . In order to facilitate the arithmetic we introduce the notation $x_{+}=\max (x, 0)$. Also x_{+}^{n} means $\left(x_{+}\right)^{n}$ except that 0^{0} will be interpreted as 1 . Thus the characteristic function of $[t, \infty)$ is $(x-t)_{+}^{0}$. Now the above formula for $f \in M_{0}$ may be written

$$
\begin{equation*}
f(x)=\int_{0}^{1}(x-t)_{+}^{0} d v(t) \tag{8}
\end{equation*}
$$

The class of functions which we consider generalize this formula. Let M_{k} denote the class of functions f with the representation

$$
\begin{equation*}
f(x)=\int_{0}^{1}(x-t)_{+}^{k} d v(t), x \in[0,1] \tag{9}
\end{equation*}
$$

for v some non-negative regular Borel measure.
Note that k need not be an integer, although the integral case is the most important. M_{1} is the class of increasing convex functions with a zero at 0 . More generally, if $f \in C^{(n+1)}(0,1)$ with $f^{(i)}(0)=0, i=0, \ldots$, $n-1$, and $f^{(n)} \geqq 0, f^{(n+1)} \geqq 0$ on $[0,1]$, then $f \in M_{n}$.

It is for the class M_{k} that we prove a theorem which has Theorem B as the special case $k=0$.

Theorem D. Let μ be a (signed) regular Borel measure such that $\int_{0}^{1}|d \mu|<$ ∞. Then

$$
\begin{equation*}
\int_{0}^{1} f d \mu \geqq 0 \text { for all } f \in M_{k} \tag{10}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\int_{0}^{1}(x-t)_{+}^{k} d \mu(x) \geqq 0 \text { for } t \in[0,1] \tag{11}
\end{equation*}
$$

Proof. Using the representation (9) in (10) and Fubini's Theorem, (10) is equivalent to

$$
\int_{0}^{1} d v(t) \int_{0}^{1}(x-t)_{+}^{k} d \mu(x) \geqq 0
$$

for all non-negative Borel measures \boldsymbol{v}. This holds if and only if (11).
Corollary 1. Let M_{k}^{*} be the function $f \in C^{(k+1)}(0,1)$ with $f^{(k+1)}(x) \geqq 0$ on $[0,1]$. Then $\int_{0}^{1} f d \mu \geqq 0$ for all $f \in M_{k}^{*}$ if and only if (11) holds and

$$
\begin{equation*}
\int_{0}^{1} x^{j} d \mu=0, \quad j=0, \ldots, k \tag{12}
\end{equation*}
$$

Proof. Since $\pm x^{j} \in M_{k}^{*}, j=0, \ldots, k,(12)$ is necessary, and thus (11) and (12) are necessary. For the sufficiency, we apply Theorem D to

$$
f(x)-\sum_{j=0}^{k} f^{(j)}(0) x^{j} / j!\in M_{k}
$$

3. One-dimensional Steffensen inequalities. We are now in a position to prove the inequalities for the classes M_{k} and M_{k}^{*}.

Theorem E. Let λ be a (signed) regular Borel measure such that $\int_{0}^{1}|d \lambda|<$ ∞. Then

$$
\begin{equation*}
\int_{0}^{1} f d \lambda \geqq \int_{0}^{a} f d x \tag{13}
\end{equation*}
$$

for all $f \in M_{k}$ if and only if

$$
\begin{equation*}
\int_{0}^{1}(x-t)_{+}^{k} d \lambda(x) \geqq 0, \quad t \in[0,1] \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
a \leqq \min _{0 \leqq t \leqq 1}\left\{t+\left((k+1) \int_{0}^{1}(x-t)^{k} d \lambda(x)\right)^{1 / k}\right\} \tag{15}
\end{equation*}
$$

Therefore the best possible choice is for equality in (15).
Proof. We apply Theorem D to the measure $d \mu=d \lambda-(a-x)_{+}^{0} d x$. Then (13) is equivalent to $\int_{0}^{1} f d \mu \geqq 0$ for all $f \in M_{k}$. Thus the condition is

$$
\begin{equation*}
\int_{0}^{1}(x-t)_{+}^{k} d \lambda(x) \geqq \int_{0}^{1}(x-t)_{+}^{k}(a-x)_{+}^{0} d x \tag{16}
\end{equation*}
$$

Since the right hand side is non-negative, (14) is necessary. Now taking $0 \leqq t \leqq 1$, (16) is

$$
\begin{equation*}
\int_{0}^{1}(x-t)_{+}^{k} d \lambda(x) \geqq(a-t)^{k+1} /(k+1) \tag{17}
\end{equation*}
$$

and in turn

$$
\begin{equation*}
a \leqq t+\left((k+1) \int_{0}^{1}(x-t)_{+}^{k} d \lambda(x)\right)^{1 /(k+1)}, 0 \leqq t \leqq a \tag{18}
\end{equation*}
$$

But since (14) holds, the inequality (18) is true if $t \geqq a$. Thus (15) is necessary and sufficient since we may reverse all of the above steps.

Corollary 2. Inequality (13) holds for all $f \in M_{k}^{*}$ if (14) and (15) hold as well as

$$
\begin{equation*}
\int_{0}^{1} x^{j} d \lambda=a^{j+1} /(j+1), j=0, \ldots, k \tag{19}
\end{equation*}
$$

It is worthwhile to set down conditions which give an exact formula for a. This will give the result of Milovanović and Pečarič [2]. Our further results do not have corresponding results in [2].

Corollary 3. If $\int_{0}^{x} t^{k} d \lambda(t) \leqq x^{k+1} /(k+1)$ and $\int_{x}^{1} t^{k} d \lambda(t) \geqq 0$ and $a=$ $\left[(k+1) \int_{0}^{1} s^{k} d \lambda(s)\right]^{1 /(k+1)}$, then (13) holds for all $f \in M_{k}$.

Proof. We compute the left hand side of (17) as follows. Let $0 \leqq t \leqq a$. Then

$$
\begin{aligned}
\int_{0}^{1}(x-t)_{+}^{k} d \lambda(x) & =\int_{t}^{1}(1-t / x)^{k} x^{k} d \lambda(x) \\
& =\int_{t}^{1}\left(t k / x^{2}\right)(1-t / x)^{k-1} \int_{x}^{1} s^{k} d \lambda(s) d x \\
& \geqq \int_{t}^{a} t k(1-t / x)^{k-1} / x^{2} \int_{x}^{1} s^{k} d \lambda(s) d x \\
& =\int_{t}^{a} t k(1-t / x)^{k-1} / x^{2}\left[a^{k+1} /(k+1)-\int_{0}^{x} s^{k} d \lambda(s)\right] d x
\end{aligned}
$$

$$
\begin{aligned}
& \geqq \int_{t}^{a} t k(1-t / x)^{k-1} / x^{2}\left[a^{k+1} /(k+1)-x^{k+1} /(k+1)\right] d x \\
& =(a-t)^{k+1} /(k+1)
\end{aligned}
$$

Note that according to Corollary 2, (13), holds from all $f \in M_{k}$ only if

$$
\int_{0}^{1} x^{j} d \lambda(x)=\frac{\left((k+1) \int_{0}^{1} x^{k} d \lambda(x)\right)^{(j+1) /(k+1)}}{j+1}, j=0, \ldots, k
$$

In particular, this is true for $k=0$.
Corollary 4. Under the conditions of Corollary 3, (13) holds for $f \in M_{0}$. We turn to deriving upper bounds for $\int_{0}^{1} f d \lambda$.
Theorem F. If $\int_{0}^{1}|d \lambda|<\infty$, then the inequality

$$
\begin{equation*}
\int_{0}^{1} f d \lambda(x) \leqq \int_{a}^{1} f d x \tag{20}
\end{equation*}
$$

holds for all $f \in M_{k}$ if and only if

$$
\begin{equation*}
\int_{0}^{1}(x-t)_{+}^{k} d \lambda(x) \leqq(1-t)^{k+1} /(k+1), t \in[0,1] \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
a \leqq \min _{0 \leqq t \leq 1}\left\{t+\left[(1-t)^{k+1}-(k+1) \int_{0}^{1}(x-t)^{k} d \lambda(x)\right]^{1 /(k+1)}\right\} . \tag{22}
\end{equation*}
$$

In particular, the best choice for a is equality in (22).
Proof. We apply Theorem D to the measure $d \mu=(x-a)_{+}^{0} d x-d \lambda$. The details are the same as in the proof of Theorem E.

In several important instances, as in Corollary 3, the formula for a is given by a specific choice of t, in that case the minimum is attained at $t=0$. These instances can be checked directly by using our ideas. It is shown in Fink and Jodeit [1], that if $f \in M_{k}$, then $f(x) x^{-k} \in M_{0}$. In general, the converse is not true. We offer versions of the Steffensen inequality for this class.

Theorem G. Let $f(x) x^{-1} \in M_{0}$, then

$$
\begin{equation*}
\int_{0}^{a_{1}} f d x \leqq \int_{0}^{1} f d \lambda \tag{i}
\end{equation*}
$$

holds when

$$
\begin{equation*}
\int_{t}^{1} x^{k} d \lambda \geqq 0, t \in[0,1] \tag{23}
\end{equation*}
$$

and

$$
\begin{gather*}
a_{1}=\min _{0 \leq t \leq 1}\left[t^{k+1}+(k+1) \int_{t}^{1} x^{k} d \lambda(x)\right]^{1 /(k+1)} \tag{24}\\
\int_{0}^{1} f d \lambda \leqq \int_{1-a_{2}}^{1} f d x
\end{gather*}
$$

kolds when

$$
\begin{equation*}
\int_{t}^{1} x^{k} d \lambda \leqq\left(1-t^{k+1}\right) /(k+1), t \in[0,1] \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
1-a_{2}=\min _{0 \leq t \leq 1}\left[1-(k+1) \int_{t}^{1} x^{k} d \lambda\right]^{1 /(k+1)} \tag{26}
\end{equation*}
$$

In particular, if

$$
\begin{equation*}
\int_{0}^{t} x^{k} d \lambda \leqq t^{k+1} /(k+1) \tag{27}
\end{equation*}
$$

then

$$
a_{1}=\left[(k+1) \int_{0}^{1} x^{k} d \lambda\right]^{1 /(k+1)}
$$

If (23) holds as well as (25), then

$$
1-a_{2}=\left[1-(k+1) \int_{0}^{1} x^{k} d \lambda\right]^{1 /(k+1)}
$$

Proof. We apply Theorem D with $k=0$ and f replaced by $f(x) x^{-k}$, and $d \mu=x^{k} d \lambda-x^{k}\left(a_{1}-x\right)_{+}^{0} d x$ to prove (i). The equivalent statement is

$$
\int_{t}^{1} x^{k} d \lambda \geqq \int_{t}^{1} x^{k}\left(a_{1}-x\right)_{+}^{0} d x \quad \text { for } \quad t \in[0,1]
$$

which is (23) for $t \geqq 0$ and $a_{1}^{k+1} \leqq t^{k+1}+(k+1) \int_{t}^{1} x^{k} d \lambda$ for $0 \leqq t \leqq a_{1}$. Thus (24) is the best possible choice.

To prove (ii) we use the measure $d \mu=x^{k}\left(x-1+a_{2}\right)_{+}^{0} d x-x^{k} d \lambda$ in Theorem D to get

$$
\int_{t}^{1} x^{k} d \lambda \leqq \int_{t}^{1} x^{k}\left(x-1+a_{2}\right)_{+}^{0} d x
$$

This is

$$
\left(1-a_{2}\right)^{k+1}-t^{k+1} \leqq 1-(k+1) \int_{t}^{1} x^{k} d \lambda-t^{k+1}, t \leqq 1-a_{2}
$$

and

$$
0 \leqq 1-(k+1) \int_{t}^{1} x^{k} d \lambda-t^{k+1}, t \geqq 1-a_{2}
$$

Since $\left(1-a_{2}\right)^{k+1}-t^{k+1} \leqq 0$ for $t \geqq 1-a_{2}$, the first of these holds for all t. Thus (25) and (26) imply the validity of the inequalities.

If both (23) and (25) hold, then by (23)

$$
\left[1-(k+1) \int_{t}^{1} x^{k} d \lambda\right]^{1 /(k+1)} \geqq\left[1-(k+1) \int_{0}^{1} x^{k} d \lambda\right]^{1 /(k+1)}
$$

so

$$
1-a_{2}=\left[1-(k+1) \int_{0}^{1} x^{k} d \lambda\right]^{1 /(k+1)} .
$$

Furthermore, using (27),

$$
\begin{aligned}
t^{k+1}+(k+1) \int_{t}^{1} x^{k} d \lambda & =t^{k+1}+(k+1) \int_{0}^{1} x^{k} d \lambda-(k+1) \int_{0}^{t} x^{k} d \lambda \\
& \geqq(k+1) \int_{0}^{1} x^{k} d \lambda
\end{aligned}
$$

Note that $a_{1}=a_{2}$ if $k=0$. Furthermore, if $d \lambda=g(x) d x$ for $0 \leqq$ $g(x) \leqq 1$, then the hypotheses of Theorem G are satisfied.
4. Multi-dimensional inequalities. To derive a multi-dimensional version of Steffensen's inequality we need a counterpart to Theorem D. If $x \in \mathbf{R}^{n}$ with non-negative components then $\int_{0}^{x} d v(t)$ means the multiple integral

$$
\iint_{0 \leqq t_{i} \leq x_{i}} \ldots \int d v\left(t_{1}, \ldots, t_{n}\right) .
$$

Let $\overline{M_{0}}$ be the functions which have the representation

$$
\begin{equation*}
f(x)=\int_{0}^{x} d v(t) \tag{28}
\end{equation*}
$$

for some non-negative regular Borel measure v. A function $f \in \overline{M_{0}}$ if it "increases away from 0 ". For example in \mathbf{R}^{2}, if $f_{1} \geqq 0, f_{2} \geqq 0$ and $f_{12} \geqq 0$, then

$$
f(x, y)=f(0,0)+\int_{0}^{x} f_{1}(s, 0) d s+\int_{0}^{y} f_{2}(0, t) d t+\int_{0}^{x} \int_{0}^{y} f_{12}(s, t) d s d t
$$

so $f \in M_{0}$ if $f(0,0) \geqq 0$ and

$$
d v=f(0,0) \delta_{00}(x, y)+\delta_{0}(y) f_{1}(x, 0) d x+\delta_{0}(x) f_{2}(0, y) d y+f_{12}(x, y) d x d y
$$

Let $1=(1, \ldots, 1)$.
Theorem H. (See [1].) Let μ be a (signed) regular Borel measure with $\int_{0}^{1}|d \mu|<\infty$. Then

$$
\begin{equation*}
\int_{0}^{1} f d \mu \geqq 0 \text { for all } f \in \overline{M_{0}} \tag{29}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\int_{x}^{1} d \mu \geqq 0 \text { for all } x \in[0,1]^{n} \tag{30}
\end{equation*}
$$

Proof. If one writes (28) as

$$
f(x)=\int_{0}^{1} \prod_{1}^{n}\left(x_{i}-t_{i}\right)_{+}^{0} d v(t)
$$

and inserts this into (29), changes order of integration by Fubini's Theorem, then

$$
\int_{0}^{1} f d \mu=\int_{0}^{1} d v(t) \int_{0}^{1} \prod_{1}^{n}\left(x_{i}-t_{i}\right)_{+}^{0} d \mu(x)=\int_{t}^{1} d v(t) \int_{t}^{1} d \mu(x) .
$$

The result easily follows since $d v$ is an arbitrary non-negative measure.
Theorem I. Let $f \in \overline{M_{0}}$ and λ be a regular Borel measure such that $\int_{0}^{1}|d \lambda|<$ ∞ and for every union of cubes $E \int_{E} d \lambda \leqq$ volume (E). If $\int_{t}^{1} d \lambda \geqq 0$ for all $t \in[0,1]^{n}$, then

$$
\begin{equation*}
\int_{0}^{a} f d x \leqq \int_{0}^{1} f d \lambda \tag{31}
\end{equation*}
$$

where a is the vector (c, c, \ldots, c) for $c=1-\left(1-\int_{0}^{1} d \lambda\right)^{1 / n}$.
Proof. We apply Theorem H to the measure $d \mu=d \lambda-\prod_{1}^{n}\left(c-x_{i}\right)_{+}^{0}$ $d x_{1} \ldots d x_{n}$. Then (31) is equivalent to

$$
\begin{equation*}
\int_{x}^{1} d \lambda \geqq \prod_{1}^{n}\left(c-x_{i}\right)_{+} \tag{32}
\end{equation*}
$$

If some $x_{i}>c$, then this is true so we may assume $x \leqq a$. Now $\int_{x}^{1} d \lambda=$ $\int_{0}^{1} d \lambda-\int_{E} d \lambda$ where E is a union of cubes whose volume is $1-\Pi_{1}^{n}\left(1-x_{i}\right)$. Thus

$$
\int_{x}^{1} d \lambda \geqq \int_{0}^{1} d \lambda-1+\prod_{1}^{n}\left(1-x_{i}\right)
$$

The inequality (32) is valid if $\int_{0}^{1} d \lambda-1+\Pi_{1}^{n}\left(1-x_{i}\right) \geqq \Pi_{1}^{n}\left(c-x_{i}\right)_{+}$. Since $1-\int_{0}^{1} d \lambda=(1-a)^{n}$ we may write this as $\prod_{1}^{n}\left(1-x_{i}\right) \geqq \prod_{1}^{n}\left(a-x_{i}\right)$ $+\Pi_{1}^{n}(1-a)$. Since $1-x_{i}=1-a+\left(a-x_{i}\right)$, the product on the left is the sum of the two terms on the right plus many more non-negative terms. Hence (31) follows.

To get an upper bound seems to be more difficult.
Theorem J. Assume $\int_{t}^{1} d \lambda \leqq \prod_{1}^{n}\left(1-t_{i}\right)$ and $f \in \overline{M_{0}}$. Then

$$
\begin{equation*}
\int_{0}^{1} f d \lambda \leqq \int_{a}^{1} f d x \tag{33}
\end{equation*}
$$

if

$$
\sup _{0 \leq t_{i} \leq 1} \prod_{1}^{n}\left(1-t_{i}\right)^{-1} \int_{t}^{1} d \lambda \leqq(1-c)^{n}, a=(c, c, \ldots, c) .
$$

Proof. We apply Theorem H to get the equivalent condition,

$$
\begin{equation*}
\int_{t}^{1} d \lambda \leqq \prod_{1}^{n} \int_{t_{i}}^{1}(x-c)_{+}^{0} d x=\prod_{1}^{n} \min \left(1-t_{i}, 1-c\right) . \tag{34}
\end{equation*}
$$

Let $S=\left\{i \mid 1-t_{i}<1-c\right\}, S^{c}=\left\{i \mid 1-t_{i} \geqq 1-c\right\}$, with S having k elements. Then

$$
\begin{aligned}
\int_{t}^{1} d \lambda & \leqq(1-c)^{n} \prod_{1}^{n}\left(1-t_{i}\right)=\left[\prod_{S}\left(1-t_{i}\right) \prod_{S C}(1-c)\right]\left[(1-c)^{k} \prod_{S^{c}}\left(1-t_{i}\right)\right] \\
& \leqq \prod_{S}\left(1-t_{i}\right) \prod_{S C}(1-c)=\prod_{1}^{n} \min \left(1-t_{i}, 1-c\right)
\end{aligned}
$$

References

1. A. M. Fink and Max Jodeit Jr., Chebyshev inequalities for higher monotonicities, to appear.
2. G. V. Milovanović, and J. E. Pečarič, The Steffensen Inequality for convex function of order n, Univ. Beogad. Publ. Elektrotehn. Fak., Ser. Mat. Fiz No. 634-No. 677 (1979), 97-100.
3. D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, New York, 1970.

Mathematics Department, Iowa State University, Ames, IA 50011

