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1. Introduction. The system of ordinary differential equations 

x[ = (*! + (l/2)x2)2/*2) B(x) - (A(x) + yP^x, y))(Xllx) 

*2 = (2(*i + (l/2)x2)(x3 + (1I2)X2)/X
2)B(X) 

- (A(x) + yP2(x,y)(x2/x) 

0-1) x'3 = ((x3 + (l/2)x2)2/*2) B(x) - (J(x) + yP3(x, y))(x,/x) 

y' =y(-s + k^P^y)) 

xf<0) = xi0 > 0,X0) = Jo > 0, x = xi + x2 + x3 

was investigated in [11] as a model of a predator, denoted by y, feeding on 
a prey, denoted by x, which consists of three genotypes, denoted by xÌ9 

x2, x3, corresponding to a one locus, two allele, genetic model. Without 
the predator, this system of equations also appears in [1] and [5]. In the 
genetics literature these three genotypes are frequently denoted by AA, Aa, 
aa, emphasizing the two choices for each allele at the distinguished loca
tion. If one of the genetic characteristics is recessive, the organism will 
appear as two varieties, called phenotypes, and the resulting difference, 
say color [3], may affect the susceptibility of the organism to prédation. 

Standard hypotheses to model the predator-prey relationship (inter
mediate type models in the language of [9]) are : 

(H-l) A(x) ^ 0, B(0) = J(0) = 0, £'(0) > J'(0) è 0. 
If y > 0, Pt{x, y) = 0 o x = 0, Pix{x, y) > 0. 
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(H-2) There exists a unique positive number K, (the 
carrying capacity) such that B(K) = J(K) > 0 
and B'{K) < d'(K). If y(t) were not present, i.e., 
y(t) = 0, the system (1.1) would reduce to 

x' = B(x) - J(x) 

a standard growth model. In [11] the following 
two additional assumptions were made: 

(H-4) P.ix, y) = P2(x9 y) â 0, 

inf pi(*>y)-p*x>y) ^d(M)> 0. 
K^x>0 X 
M^y>0 

(H-5) The system 

x' = B(x) - A{x) - yP3(x, y)9 

y' = y(-s + kP£x9y))9 

has a globally (with respect to the open positive 
quadrant) asymptotically stable critical point 
(A:*, y*)9 x* > 0, y* > 0. 

(H-5) expresses the fact that the predator can survive on the most difficult 
to capture (in view of H-4) prey. Such a hypothesis holds, for example, in 
[8] [10] [13]. With these assumptions it was shown that lim^oo^,-(0 = 0, 
i = 1,2, l im^oo^O = x% > 0 and lim,_>ooX0 = y* > 0. 

In this paper we replace (H-4) and (H-5) by 

(H-4)' Px(x9 y) = P2(x9 y)9 

inf P^9y)-Pl(x9y) ^ §(M) > Q 

K^x>0 X 
M^y>y* 

where y* is defined in (H-5)', below. 

(H-5)' The system 

x' = B(x) - A(x) - yPx{x9 y\ 

y = X - +sfcP1(x,;0), 
(1.2) 

has a globally (with respect to the open positive 
quadrant) asymptotically stable critical point 
(x*9 y*)9 x* > 0, 7* > 0. 

The reversed inequality in (H-4)' makes jq the more difficult to capture 
prey while retaining the hypothesis that Xi and x2 are the same phenotype 
(H-5)' has the same biological interpretation as before—the roles of 
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Xi and x3 are merely reversed. Note that in (H-4)' the infimum is being 
taken over a smaller set than in (H-4). This allows for a wider class of 
prédation functions. In particular it allows for a polynomial in y which is 
precluded in (H-4). 

With the reversal of the inequality in (H-4) one anticipates that the 
phenotype given by the dominant gene will survive, although the proof 
given in [11] breaks down. We, in fact, show more—that the inequality 
(H-4)' leads to the survival of only the homozygote, xi. Thus prédation 
inequalities like (H-4) or (H-4)' lead to the evolution of a "pure strain". 
Stated in another way, one has that if a polymorphism evolves, it is not 
due to only the influence of greater susceptibility to prédation in that 
habitat. 

Other papers involving both a genetic and an ecological component may 
be found in [4], [6], [12]. 

2. Results. Our principal result may now be stated. 

THEOREM 1. Suppose (H-l),(H-2), (H-4)', H(5)' hold. Then 

lim xi(t) = x* > 0, 
/—>oo 

lim Xi(t) = 0, i = 2, 3, 
t-*oo 

lim y(t) = y* > 0, 
/->oo 

where (x*, y*) is the critical point given in (H-5)'. 

Before beginning the proof we note that in [11] it was assumed a priori 
that the predator survived, i.e., lim sup^ooXO > 0. We show that (H-4)' 
is sufficient for this purpose, so that this assumption need not be made. 
Denote the right hand side of (1.2) by f(x, y), g(x. y), i.e., 

x' =f(x,y)9 

y' = g(x,y). 

Using (H-4)', adding equations in (1.1), and denoting x and y there by 
x, y, one has 

y è g(x,y). 

Let z = —y,z= —y. The two systems become 

x' =f(x,-z), 

z' = - g ( x , - z ) . 

and 
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x';S/(x, - z ) , 

z' ^ -g(x9 -z). 

Now df/dy = -P^x, y) < 0 and d(-g)/dx = kx(dPiJdx) < 0 for z < 0, 
or the right hand sides satisfy condition K [7, p. 27] and hence, if the 
initial conditions are the same, x(t) ^ x(t), z(t) ^ z(t) for all t > 0. There
fore >>(0 ^ X 0 a n d s i n c e Hm^ooXO = 7* > 0, it cannot be the case that 
lim sup^ooXO = 0. 

This particular device can be used in general to yield a component-wise 
corollary of Kamke's Theorem for general systems, as general for example, 
as given in [7, p. 29]. 

For reference, we state our result as follows. 

LEMMA 1. lim inf^oojKO à y*-

A portion of the proof of the theorem follows that given in [11]. We 
begin with four lemmas, the first three of which follow as in [11] since they 
involve only (H-l)-(H-2). 

LEMMA 2. All solutions Ö / ( 1 . 1 ) with initial conditions in the region T = 
{(*!, x2, x3, y) \Xi ^ 0, i = 1, 2, 3, y ^ 0, x\ + x2 + x3 è K) are bounded 
and hence can be continued to a half line. 

LEMMA 3. There are no interior (to the positive cone) critical points for 
(l.i). 

LEMMA 4. No trajectory Ö / ( 1 . 1 ) has an omega limit point of the form 
(*!, x2, 0, y) with x2 > 0. 

LEMMA 5. Let(x1(t),x2(t),x3(t), y(t)) be a solution of (I A). If x3y $ Li(R+), 
this solution has the asymptotic behavior described in the theorem. 

PROOF. Suppose (x3y)(t) 4 Li(R+) and let 

u(t) = xx{i) + -jx2(t\ 

v(0 = x3(t) + ±-2x2(t). 

Then 

v'/v - u'/u = (yxs/xvXP^x, y) - P3(x, y)) 

and hence, using (H-4)' 

0 ^ v(0 S c t / (0exp((-5/ /0f x3(s)y(s)ds) 
J to 
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for t0 sufficiently large. If x3y $ Li(R+), then l i m ^ ^ f ) = 0. The remainder 
of the proof follows that of Lemma 3.3 of [11]. 

PROOF OF THEOREM 1. Let T(t) = (xi(0> x&)9 x3(y), y(t)). In view of 
Lemma 5 one may suppose that (x^y)(t) e L1(R+). Since (xzy)'(t) is 
bounded, lim^oo(x3#y)(0 = 0. 

If lim sup<_,oox3(0 = a > 0, then there is a subsequence tn such that 
linv+ooXaCO = a > 0. Therefore lim^ooX^) = 0 or lim inf^ooKO = 0. 
This is impossible by Lemma 1. If lim sup^ooX3(0 = 0, then, in view of 
Lemma 4, l i m ^ ^ O ) = 0. The omega limit set is two dimensional—it 
lies in the xl5 y plane—and hence must consist of trajectories of (1.2). 
However, by (H-5)' all trajectories in the positive quadrant tend to the 
critical point (x*, y*). This completes the proof. 

We note that similar improvement can be made on Theorem 3.1 of [11]. 
We state this as follows. 

THEOREM 2. Suppose (H-l)-(H-2), (H-5) holds and that 

(H4)" inf f * f o y) ~~ P^x> ^ ^ Ö(M) > 0. 
Kïzx>0 

Then 

lim xt(t) = 0, / = 1, 2, 
f->oo 

lim x3(t) = x* > 0, 
t—*oo 

lim t(y) = x* > 0. 
£->oo 

PROOF. In view of Lemma 1 the hypothesis that the predator survives 
is not necessary. The change in the proof of Lemma 5 above can be made 
in Lemma 3.3 of [11]. The proof can then follow as in [11]. 
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