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We will be concerned with the differential equation 

where we will make some or all of the assumptions : 
(A) / i s continuous on / x R* ( / a subinterval of the reals, R). 
(B) solutions of initial value problems (IVP's) are unique and exist on 

the whole interval / . 
(C) if {yn} is a sequence of solutions which is uniformly bounded on a 

nondegenerate compact interval [c, d] a J, then there exists a sub
sequence {ynk} such that each of the sequences {y^}, i = 0, . . . , 
n — 1, converges uniformly on compact subintervals of/. 

(D)ft(x, y , . . .,3><*-i>) = 0 / W ( * > y, -. ^y{n~n / = o , . . . , « - i is 
continuous on / x Rw. 

For information concerning the compactness condition (C) see [6] and 
the references given there. 

We now introduce much of the same notation used by Muldowney 
[9]. Let z = (fi, . . . , tn). We say that y(x) has n zeros at z provided 
y(tt) = 0, 1 S i S n, and y(tt) = y'(tt) = • • • = ^ (m_1)(^) = 0 if a point 
tj occurs m times in z. A partition ( n ; . . . ; z,) of the ordered «-tuple 
(fl5 . . . ,*„) is obtained by inserting / - l semicolons in the expression. 
Let mt- — \zt] be the number of components of z, (so TtU\ mi = n)- We 
allow nii = 0 (in which case we might think of z{ as being a zero tuple 
or the empty set). We say that ( n ; . . . ; z>) is an increasing partition of 
(tl9 . . . , tn) provided tx ^ t2 ^ • • • ^ tn and if r i s a component of zt-
and 5 is a component of ry with i < j then either t < s or t = s and 
i + m S j where m is the multiplicity of t in T,-. 

We say that (1) is right (m^ . . . ; m^-disfocal on / , tt^ + • • • + m / = 
n, 0 ^ rrij^ n — j + 1, provided there do not exist distinct solutions of 
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(1) whose difference u(x) satisfies w('_1)(x) has ntj zeros at Zj, 1 g y ' ^ / 
where ( n ; . . . ; z>) is any increasing sequence of n points in / with mj = 
\zjl 1 ^ j' 5J / . Semicolons appear in (m^ . . . ; m,) instead of comas 
to distinguish our concept from a similar but different concept used by 
Henderson [4], [5]. 

Let {nj}<=1 be a sequence of integers satisfying 

(2) « = « 1 > « 2 > " • > « ^ 1 -

Then let {mj} be a sequence of nonnegative integers such that 

n = mi + • • • -f m/9 m2 + • • • + m/ g n2, 

• • •, m,-Y + m/ Û «/-l, m/ â "/• 

We now define the disfocality function ß(t) as done by Muldowney [9]. 
Let {«/}£=! be a sequence of integers satisfying (2), then define for / e / 

ß(t) = sup{ft > t: Lis right (m^ . . . ; ra,)-

disfocal on [t, b] for all sequences 

{wy}<=1 satisfying (3)}. 

Examples. 1. If the sequence {«/}£=i is the singleton sequence {«! = «}, 
then ß(t) = ^x(0 the first conjugate point function. 

2. If the sequence {«/}y=i is the sequence {n — k + l}j=i, then /3(0 = 
vi(0 the first right focal point of t (see [8]). 

The concept of disfocality and right focal point given here disagrees 
with that first used in the calculus of variations [1]. This change was 
initiated by Nehari [10]. Now in most of the literature right focal point 
is defined as Nehari did. 

Let y(x) be a solution of (1) and assume that (D) holds, then the linear 
differential equation 

(4) z<"> = g j / f o y(x\ . . . , j,<*-i>(*))z«> 

is called [2] the variational equation (V.E.) of (1) along y(x). We will 
use ß(t) when referring to equation (1) and we will use ß(t; y(x)) when 
referring to equation (4). In [11] the author proved that if (A)-(D) hold 
and aeJthen 

7)i(a) = inf{7)i(a; y(x)): y(x) is a solution of (1)}. 

The natural question is does (A)-(D) and aeJ imply 

(5) ß(a) = M{ß(a; y(x)): y(x) is a solution of (1)}? 

Shortly we will give an example to show that this result is not true. One 
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of our main results (Theorem 3) is that with an additional assumption 
(5) does hold. Sometimes we will denote the right hand side of (5) by 

mfß(a;y(x)). 

We now develop our example where (5) does not hold. In this example 
we will see that /3(0) = 2 but inf ß(0; y(x)) = 1. We start out by looking 
at a linear equation used by Muldowney [8]. Choose ^(x) and fax) 
so that 

ft(2) = 0 , # ( x ) < 0 , x e ( - l , 3 ) , 

faO) = #(1) = fai) = 0, #(*) > 0, x e ( - 1 , 1) U (1, 2), 

$ ( * ) < 0 , j t e ( 2 , 3). 

Define a(x) and b(x) on / = ( — 1, 2) by 

W[fa fa yVmfa fa = y" ~ <x)y* - b(x)y 

where this equation involves Wronskians. 
Muldowney [9] gave the differential equation y" = a(x)y' 4- b(x)y as 

an example where /3(0) = 1 but /3(0 + ) = 2. In our example this differ
ential equation will turn out to be the V.E. along the trivial solution. 

Now consider the nonlinear differential equation 

(6) y" = a{x)y' + b(x)y + Arctan ( / ) 3 + Arctan j 3 . 

In (2), let n = n^ = 2 > n2 = 1 and consider the corresponding /3(0) for 
(6) (which would be the same as the first right focal point vi(0)). It can 
be shown that (6) satisfies (A)-(D) with / = ( — 1, 3). Let y(x) be a solution 
of (6), then the variational equation along y(x) is 

z" = a{x)z' + b(x)z + (3[/(x)]2/(l + [y'(x)f)z' 

+ (3W*)]2/0 + M*)!6))*. 

Note y(x) = 0 is a solution of (6) and /3(0; 0) = 1. We claim that if 
y(x) is not the trivial solution of (6), then /3(0; y(x)) ^ 2. 

Assume that our claim is not true, that is, there is a nontrivial solution 
y(x) of (1) and /3(0; X*)) < 2- This implies there are points 0 ^ c < d < 
2 such that the solution z(x; y(x)) of the IVP (4), z(c) = 0, z\c) = 1 
satisfies z'(d\ y(x)) = 0. Without loss of generality z\x\ y(x)) > 0 on 
[c, d). It follows that z(x\ y(x)) > 0 on (c, d], 

Since z(x; y(x)) is a solution of the nonhomogeneous linear differential 
equation 

z" = a{x)z' 4- b(x)z 4- h(x) 

where 
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h(x) = (3[/(x)P/(l + [y'(x)f)z'(x; y(x)) 

+ (3[jWl2/(l + Wx)Rz(x; X*)) 

and if we let z(x; 0) be the solution of the corresponding homogeneous 
equation satisfying the same initial conditions at c we have that 

(8) z(x; y(x)) = z(x; 0) + f* ®(x, s) h(s)ds 

where S(x, s) is the Cauchy function for the D.E. z" = a(jc)z' + ò(x)z. 
Since y(x) is a nontrivial solution we have that h(x) > 0 on (c, d). Differ
entiating both sides of (8) and evaluating at d we get that 

z\d\ y(x)) = z'(d, 0) + J* £,(</, s)h(s)ds, 

It follows from this that z'(d\ y(x)) > 0 which is a contradiction. 
Since /3(0; 0) = 1 and /3(0; y(x)) ^ 2 for all nontrivial solutions y(x) 

of (1) we have that infy(x) /3(0; X*)) = 1-
But we now show that /3(0) = 2. To this end we will first show that 

/3(0) ^ 2. To see this assume /3(0) < 2. Then there are distinct solutions 
yi(x)9 y2(x) of (6) and points 0 ^ c < d < 2 such that y^c) = y2(c) and 
y[(d) = J^O- Without loss of generality we can assume that y2(x) > y[(x) 
on [c, d). It follows that y2(x) > yx(x) on (c, d], 

Set w(x) = y2{x) — Ji(x), then W(JC) is a solution of 

w" = a(x)w' + 6(x)w + k(x) 

where 

A:(x) = (Arctan [j^*)]3 - Arctan [y{(x)f) 

+ (Arctan y\{x) — Arctan y\(x)). 

Since 

w(c) = 0, 

w'(<0 = y&c) - y[(c) = 5 > 0, 

we have that 

(9) W(JC) = <?zc(x; 0) + fXS(x, 5) *($)& 

where zc(x\ 0) is the solution of z" = a(x)z' + b(x)z with zc(c; 0) = 0, 
zc{c\ 0) = 1. By differentiating both sides of (9) and letting x = d it is 
easy to see that w'(d) > 0 which is a contradiction. Hence /3(0) ^ 2. 

To see that /3(0) = 2 let 1 > e > 0 be given. For h > 0 sufficiently 
small we get that hfa — <j>2 has an odd ordered zero in a small right hand 
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neighborhood of 0 and h<j)[ — $ has an odd ordered zero in (2, 2 + e). 
Now let yô(x) be the solution of (6) such that 

^ ( 0 ) = 8[hfa(0) - <f>2(0)] 

y'o(0) = *[A#(0) - ^(0)]. 

It follows from Theorem V-3.1, [2], that 

timyLp(x)lö = hpo(x) - 4<$(x) 

uniformly on compact subintervals of (—1, 3) for / = 0, 1. Hence for 
ö 7* 0, sufficiently small, y§(x) is a solution of (6) with a zero in a small 
right hand neighborhood of 0 and y§(x) has a zero in (2, 2 + e). Hence 
/3(0) < 2 + e. It follows that /3(0) = 2. Thus we have shown for the 
differential equation (6) that 2 = /3(0) > infy(x)/3(0; y(x)) = 1. 

We will see in Theorem 3 that for (A)-(D) to imply (5) we will want 
to rule out the possibility of one of the variational equations having a 
solution like <f>d(x) in the above example. Before we state and prove our 
main result we have a preliminary lemma. As defined by Muldowney 
[9] we say that the linear differential equation 

y{n) = g A W 0 

has property / on an interval / x with respect to the sequence {«/}y=i satisfy
ing (2) provided there is a sequence of solutions wl9 . . . , un satisfying 

W(ul9 ... ,uk) >0, k = 1, . . . , « ! = n, 

for y = 2, . . . , / - l we have that 

W{u[^\ ... , «£>-») > 0, fc = 1, ...,nm 

W(i$-l\ . . . , !#-») â 0, k = *y+1 + 1, . . . , nj 

and 

Wfâ-», ... , ttf-») * 0, k= 1, . . . , * , 

on / j . 

LEMMA 1. Assume (A)-(D) /zo/J and that for each solution y(x) of (I) 
the V.E. (4) has property Ion / , then (1) is right (m^ . . . ; m,,) — disfocal 
on J for all sequences {mj}j=:i satisfying (3). 

PROOF. By Theorem 1, [9] we get that for each solution y(x) of (1) the 
corresponding V.E. (4) is right (m^ . . . ; m,) — disfocal on / for all 
sequences {/W/}y=i satisfying (3). We will show that this implies the con
clusion of Lemma 1. 

Assume not. Then there is a sequence {wy}J=1 satisfying (3) such that 



746 A.C. PETERSON 

(1) is not right (mx; . . . ; m,) — disfocal on / . Order the allowable such 
sequences {mj]^ by the lexicographic ordering. Without loss of generality 
{mjYj=i is the maximum sequence satisfying (3) such that (1) is not right 
(mi; . . . ; m,) — disfocal on / . It follows that there are distinct solutions 
yi(x), y2(x) of (1) and an increasing partition ( n ; . . . ; z>) of n points 
(tl9 ... , tn) in J such that m{ = \T{\9 1 g i g / , y^~l) - y$~v has 
m{ zeros at TÌ9 1 ^ i ^ / . By Theorem 1, [11], (n; 0; . . . ; 0) > 
(»lij . . . ; ra,). We break the remainder of this proof into the two 
cases of mi = n — 1 and mi < n — 1. 

Assume mx = « — 1. Then there is a &, 2 :§ & :g / , such that m^ = 1 
and mj = 0,2 <zj ^ /,j ^ k. In this case n = (tl9 ... , tn_i)9 zk = (tn), 
and n = <f> (or zero tuple) for 2 g z 5̂  / , / # & and yx — j>2 has n — 1 
zeros at T\ and J4*_1) — j ^ _ 1 ) has a zero at /„. Let u(x, s) be the solution 
of (1) such that u(x9 s) — yx{x) has n — 1 zeros at T\ and w(a) (*„_!, s) = s 
where a is the number of times tn^x occurs in T\ (If a = « — 1, then the 
existence and uniqueness of u(x, s) is guaranteed by (A), (B), otherwise 
the existence and uniqueness of y(x9 s) is guaranteed by the disconjugacy 
o f ( l ) o n / ) . 

Now set K = {s: there is such a solution y(x9 s) of (1)}. If tx = • • • = 
tn__x (the IVP case) then K is the real line. If tx < tn-\, then the disconju
gacy and (A)-(D) gives that Kis the real line (see [3]). 

Let sÌ9 s2 be the distinct real numbers st = y[a\tn_{) and s2 = 
j4a)('„-i)- If h = • • • = *»-i (the I V P c a s e ) the following steps follow 
from Theorem V-3.1, [1]; while if tx < tn^ the following steps follow 
from Theorem 8 [12]. 

0 = ^- 1 )(O-^" 1 )(O 
= u^(tn9s2)-uik-V(tn,Sl) 

= (s2 - Sl)z^-^(tn; u(x9 s))9 

where s is between sx and s2 and z(x; u(x9 s)) is the solution of the V.E. 
(4) along u(x9 s) such that z(x; u(x9 s)) has n — 1 zeros at T\ and z(a) (f„_i) 
= 1. But from above we get that z{k~l){tn'9 u(x9 s)) = 0. This contradicts 
the right (m^ . . . ; m,) — disfocality of (4) along u(x9 s) (here m1 = 
« - 1, mk = 1, mj = 0, 2 g j ^ / J # &). 

It remains to consider the case mx< n — 1. Pick /0 so that m/0 = |r/0| 
^ 1 and m7 = 0,y = /0 4- 1, . . . , /. 

In this case let u{x9 s) be the solution of (1) such that u{i~l)(x9 s) — 
ytf^Xx) has mj zeros at TJ, j = 1, . . . , /0 "~ U 

w(/0-1) (x, ^) — }>ì/()_1)(x) has m/Q — 1 zeros at f/Q9 
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where T/0 is T/0 with its last component (which is tn) removed, and 

u<">(tmi9 s) = s 

where a is the number of times tmi occurs in z\. The maximality of the 
sequence {my}^=1 guarantees the uniqueness of u(x, s) (i.e., we use here 
the fact that (1) is right (mi + 1 ; m2; • • • ; m/Q - 1 ; 0; • • • ; 0) - disfocal 
of / ) . In regard to the existence of u(x9 s) for various values of s set k = 
{s: there is such a solution u(x9 s)}. Since y^\tm^)eK9 K is not the 
empty set. By an application of the Brouwer invariance of domain 
theorem, as in [3], or like Theorem 1, [13], K is an open set. Define 
s{ = y^(tm^9 i = 1,2, and assume, without loss of generality, that s2 > 
Si. The claim is that [sl9 s2] <= K (the same argument can be used to 
show that K is a connected set, but we use in this proof only that 
[sl9 s2] c: K). Assume not and define s = sup{s e A : [si, s]cz A}. Since A is 
open, sx < ö < s2 and ô$ A. To see that this leads to a contradiction 
assume {sn}™=1 is a strictly increasing sequence of numbers in [sl9 5] with 
lim^ooS,, = <?. Consider the sequence {un(x) = u(x9 sM)}£Li of solutions of 
(1). If for some e > 0, {ww(*)}^=i is uniformly bounded on [tmv tm + e]9 

then by (C) there is a subsequence {unk(x)}f=i such that 

lim u%(x) = y{i)(x) 
fc-+oo 

uniformly on compact subsets of / , where y(x) is a solution of (1) and 
/ = 0, 1, . . . , « — 1. But it then would follow that 

is in K9 which is a contradiction. Hence for any e > 0, {ww(*)}SS=i c a n n o t 

be uniformly bounded on [tmi, tm + e]. It follows from this and the 
boundary conditions at tm that {u^\x)}^=1 is not uniformly bounded on 
[tmi, tmi + e] for any e > 0. From this we get that for sufficiently large 
n9 u^\x) either touches y[a)(x) or yia\x) in a right hand neighborhood of 
tmi. To be specific we will assume u{

n
a)(x) first touches y^\x) in a right 

hand neighborhood of tmi for infinitely many values of n. By taking sub
sequences and relabeling we can assume that for each n9 u^\x) touches 
y^a)(x) at a first point, say z„, to the right of tmi where {z„}™=1 is a decreasing 
sequence with limit tmv Now 

jt>(x) < u^(x) < yfrKx) on [tm, zn) 

and the boundary conditions at tm imply that 

yP(x) g i#>(x) ^ ;#>(*) on [tmi, zn) 

for 0 ^ y ^ a. It follows that 
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lim i#>(z„) = y^(tmi) 
n->oo 

for j = 0, . . . , a. Recall that un and y2 satisfied several common boundary 
conditions. It follows from the right (mi 4- 1 ; m2; . . . ; m/0 — 1 ; 0; . . . ; 0) 
— disfocality (this is an application of the Brouwer invariance of 
domain theorem for this type of problem similar to Theorem 1, [13)] that 

lim uW(x, Sn) = $Kx) 
n-+oo 

uniformly on compact subsets of / , j = 0, . . . , « — 1. In particular, 

lim uto(tm% sn) = y£\tmi\ 
»->oo 

which contradicts 

lim u(a)(tmi9 sn) = lim sn = <?. 
»-*oo »->oo 

Hence [sl9 s2] = [y[a)(tmi), y{
2
a)(tm)] a A. 

Now using a theorem like Theorem 8, [12] or Theorem 3, [13] but for 
the right (mx + 1 ; m2\ . . . ; m/0 — 1 ; 0; . . . ; 0) — boundary value prob
lem we get that (where ß is the number of times tn occurs in z>0) 

0 = y^ß-2)(tn) - ^ o + / 3 - 2 ) ( a 

0 = uMW(tH9 s2) - u^+ß-2\(tn, Si), 

0 = (s2-si)^u^ß-»(t„,s), 

0 = (h - h) Z(/°+ß-2)(tnl U(X, S)), 

where s is between sx and s2 and z(x\ u(x, s)) is the solution of the V.E. 
along u(x, s) such that z{i~l)(x\ u(x, s)) has m{ zeros at zi9 i = 1, . . . , 
/0 — 1, m/Q — 1 zero at r/0, and 

z<*>(tmi; u(x, s)) = 1. 

But from above we get that 

z^+ß-»(tn; y(x, s)) = 0. 

This contradicts the right (mi; . . . ; m^-disfocality of the V.E. along 
u(x, s). 

From the proof of Lemma 1 we get the following very useful result. 
This result reduces the disfocality of the nonlinear differential equation 
(1) to that of the linear differential equations (4). Using known uniqueness 
implies existence results one also gets the existence of solutions in various 
special cases (see Theorem 3, [5] and various results in [7]). An important 
application is that if/satisfies a uniform Lipschitz condition with respect 
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to y, y\ ...,y{n~l) then the compactness condition is satisfied and 
inf ß(a; y(x)) in this result can be replaced by a lower bound depending on 
the Lipschitz coefficients for certain boundary value problems (see [7]). 

THEOREM 2. Assume (A)-(D) hold and a e J, then /3(a) ^ inf ß(a; y(x)) 
where the infimum is taken over all solutions of(\). 

PROOF. In the first two sentences of Lemma 1 we pointed out that the 
fact that for each solution y(x) of (1) the V.E. is right (m^ . . . ; m^)-
disfocal for all sequences {w/}£=1 satisfying (3) is what we used to prove 
the conclusion of Lemma 1. 

THEOREM 3. Assume (A)-(D) hold, then either there is a solution y(x) 
of (1) such that the V.E. (4) has a nontrivial solution z(x) satisfying the 
n -f 1 boundary conditions 

zc/-i)(a) = 0, y = 1, ...,n-k, 

zV-i>(6) = 0, j = n - k + 1, . . . , « + 1, 

a = b (b = ß(a; y(x))) for some k satisfying nn_k+2 < k S «»-JH-I where 
1^/2 — A; + l < ^ / (« /+1 = 0) or ß(a) = inf ß(a; y(x)) where the infimum 
is taken over all solutions y(x) of (I). 

PROOF. From Theorem 2 we have that ß(a) ^ inf ß(a; y(x)). Assume 
ß(a) > inf ß(a; y(x)). To complete the proof of this theorem we will 
show that this assumption leads to the existence of a solution z(x) as 
described in the statement of this theorem. 

First of all our assumption implies there is a solution y(x) of (1) such 
that ß(a) > ß(a; y(x)). Set b = ß(a; y(x)\ then by Theorem 3, [9], there 
is an h e {1, . . . , / } and a k satisfying nh+1 < k g nh such that there is 
a nontrivial solution z(x; y(x)) of (4) satisfying 

(10) z^-!>(a) = 0, j = 1, ...,n- k, 

(11) zV-!> = 0 , j = h, . . . , /* -h/c - 1. 

A close look at the proof of Theorem 3, [9] shows that z(x; y(x)) is the 
essentially unique solution of (4) satisfying (1), (11) that zin~k) (a; y(x)) ^ 
0,A + k - 1 g n,andifh + k - 1 < « , t h e n z ^ * - 1 ^ ) # O.IfA + fc -
1 = n9 then either z(/H_Ä-1)(Z>; y(x)) = z(w)(Z>; y(x)) equals zero or is not 
zero. If h -f- k — 1 = n and z{n)(b; y(x)) = 0, then z(x) == z(x; y(x)) 
satisfies the properties of z(x) in the statement of the theorem and we 
are done. This leaves only the case where zih+k~l)(b) ^ 0 (whether h 4-
k — 1 < n or h + k — 1 = n). We now show that this leads to a con
tradiction. 

For each y = 1, . . . , / ? , let z (je; y(x)) be the solution of (4) satisfying 
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z^ia; y(x)) = öij9 i =j9 ...,n. 

By the essential uniqueness of z(x; y(x)) mentioned above, we can assume 
without loss of generality (just multiply z(x; y(x)) by the appropriate 
nonzero constant) that for k = 1 z(x; y(x)) = zn(x; y(x)) and for k > 1 

z(x\ y(x)) = 
zfc&Q>\Ax)) 

zn(x; Ax)) 
zri\b\y(x)) 

*££?>(*; Ax)) • • • zF**Kb; y(x)) 

(here one uses the fact that the (h + k — 2) — nd derivative of the right 
hand side of this last equation is zero at b by Theorem 3, [9]). 

We will only complete the proof for the more complicated case where 
k > 1. For e > 0, sufficiently small, define 

z£(x; y(x)) = 

zn-k+i(x; Ax)) 

z£$i(b - ei Ax)) 

Zn(x\ Ax)) 

z«-V(b-e;y(x)) 

k n W - e; Ax)) • • • 4Ä+*-3)(* - e; y(x)) 

Note that ze(x; y(x)) is a solution of the V.E. (4) and 

zV'HaiAx)) = 0, 7 = 1 , . . . , » - * : , 

zìj~l\b - e; y(x)) = 0, y = A, . . . , A + k - 2. 

Furthermore 

lim zJ0(jc; X*)) = * ( 0 (* ; y(x)) 
£->0 + 

uniformly on compact subsets of / , i = 0, . . . , n — 1. 
Since b = ß(a; y(x)) > b - e, zia+k~2\b - e; X*)) # 0. Hence 

z(Ä-1)(x; X*)) has a zero at Z> of order exactly one more than the order 
of the zero of z^Ä_1)(x; y(x)) at b — e. It follows from this and the 
uniform convergence that there is an £0 > 0 such that z^~l\x\ y{x)) has 
an odd ordered zero at, say, x0 where b — £0 < *o < ß(a). 

Now since (1) is right (rax; . . . ; mÄ)-disfocal on [a, x0] with mx = n — k, 
m2 = • • • = wA_! = 0, mh = k (this is like Theorem 1, [13]) we have 
for all ö > 0, sufficiently small, that the BVP (1) 

yV'1^) = yW(a), j = !,..., n-k, 

yV-l)Q> - to) = y{i~Hb - *0), y = A , . . . , A + fc - 2, 

^ * - 2 ) ( 6 _ , o ) = &(j+*-2) (ô _ fi0. X x ) ) + J,(*+*-2,(ò « £o) 

has a solution ^(x). It follows from a result similar to Theorem 3, [9] 
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for the type of boundary value problem considered here that 

uniformly on compact subsets of / , j = 1, . . . , « . Since z^_1)(x; y(x)) 
has an odd ordered zero at xQ it follows that there is a <?0 > 0 such that 

iyfrHx) - y^HxWo 
has a zero (near x0, which is between b — £0 and ß(a)). But this implies 
that yÔQ — y has a zero of order n — k at a followed by k zeros of ^ _ 1 ) — 
•y(A-i) j n (^ /3(a)), nÄ+1 < k S nh, which contradicts the definition of ß(a). 
This completes the proof of this theorem. 

One would like to know when one could rule out the existence of 
solutions like z(x) in Theorem 3. For an example we refer to a result of 
Nehari. Nehari proved [10] that no nontrivial solution y(x) of Ly + 
p(x)y = 0, where p(x) is of one sign on an interval / and Ly = 0 is dis-
conjugate on /, satisfies y has k zeros at c and the fcth quasi derivative of 
y has n — k 4- 1 zeros at d > c, c, del. 
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