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For functional differential equations of retarded type where the delay 
is fixed and finite, local existence results for initial value problems ana
logous to the Picard and Peano theorems for ordinary differential equa
tions are well known; cf., for example, the book by J. Hale [3]. 

For initial value problems involving equations with infinite delays, 
the results of R. Driver [1] were perhaps the first to appear. More recently, 
existence theorems for such equations have appeared in papers by J. Hale 
and J. Kato [4], K. Schumacher [8], and F. Kappel and W. Schappacher 
[5]. In [1], [4], and [5] existence theorems of Peano-type, where solutions 
are continuously differentiable on their intervals of existence, are obtained 
for equations on quite general delay spaces. For such Peano-type existence 
theorems an important hypothesis that certain /-dependent composites of 
the function in the equation with translates of the state space functions 
be continuous seems to be crucial. For the state space CB consisting of 
continuous bounded functions on (— oo, 0) with supremum norm, it is 
known that such composites are not in general continuous, even for very 
smooth functions on CB; cf. [9] for an example. The example in [9], how
ever, has a solution of Caratheodory type; i.e., a solution which is abso
lutely continuous on its interval of definition and satisfies the equation 
almost everywhere there. 

Recently fairly general existence theorems for solutions of Carathe
odory type have appeared; cf. [5], [8]. Earlier, A. Halany and J. Yorke 
[2] also stated such an existence theorem. As would be expected, a crucial 
condition in these results seems to be that the composites mentioned 
earlier be measurable. 

In fact, recently other results involving Caratheodory type solutions 
such as continuous dependence of solutions on their initial functions also 
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indicate the importance of such a measurability hypotheses; cf. [7]. 
Consequently, a natural question would seem to be: how smooth must 

the function be to guarantee such measurability for such composites? 
It is the purpose of this paper to show that if the state space CB is used, 
there exist continuous linear functions on CB for which such composites 
fail to be measurable. 

We use the following fairly standard notation : 
(1.1) R and Rw denote respectively the set of reals and real «-vectors; 

\x\ is a fixed norm for xeRn; 
(1.2) {CB, || ||} is the Banach space of Revalued functions continuous 

and bounded on (— oo, 0] with ||0|| = sup{ |^ ) | , s ^ 0} for ^ e CB; and 
(1.3) If x(t): ( -oo , b) -• Rn, b <; oo, then for fixed t e ( - o o , b), xt 

denotes the function x(t + s), s ^ 0. 
The simple example x(t) = sin t2 shows that even though x(t) is continu

ous and bounded o n R , ^ : R - > CB, may not be continuous anywhere. 
There are also examples of Lipschitz continuous functions/: R -» R for 
which there exist functions x(t) continuous and bounded on R such that 
the composite f(xt) fails to be continuous in a non-degenerate interval of 
R; cf. an example in [9], as has been already mentioned. However, in the 
example in [9], this composite is measurable and dominated by an inte
gra te function. 

THEOREM. There exists a Revalued function x(t) bounded and continuous 
on R such that given any Revalued function g(t) on R such that \g(t)\ ^ 1 
for all t, there exists a continuous linear functional f: CB -> R2 such that 
either f(xt) = g(t) orf(xt) = g(-t)for t e R. 

An obvious consequence of this theorem is the following corollary. 

COROLLARY. There exists a Revalued function x(t) bounded and con
tinuous on R such that given any Revalued bounded even function g(t) on 
R, there exists a continuous linear functional f: CB -* R2 such thatf(xt) = 
g(t)forteR. 

To prove the theorem we use the following result due to W. Rudin 
which is Theorem 1 in his paper [6]. Rudin's result was pointed out to the 
author by R. Sine who together with J. Peters, the author's colleague at 
Iowa State, indicated how it can be used to prove our theorem. 

THEOREM 1. Let G be an infinite metrizable locally compact group which 
is not compact. Let L°°(G) denote the set of bounded complex Borei func
tions on G. Then there exists a <f> e L°°(G) continuous on G such that given 
any complex function g on G such that \g(t)\ ^ 1 for t e G, there exists a 
continuous linear complex functional f on L°°(G) such that g(t) = f(<f>t) 
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for t e G; here $t = <f)(ts), s e G. Moreover, f is multiplicative; i.e., for 
<f>, (J) e L°°(G) we have f(<f></)) = /($>/($), where 00 is defined to be the 
pointwise product, andf(/u) = 1 where /u e L°°(G) is the function with con
stant value 1 on G. 

PROOF OF THEOREM. Since Theorem 1 deals with complex valued func
tions, we may regard CB as consisting of complex-valued functions, and 
make the identification with Revalued functions in the obvious way. 

Let G = R with group operation being addition and having the usual 
topology. 

(i) For any 0" e CB, define a unique 0 e L°°(R) by 0(0) = 0~(0), 0 
g 0, and 0(0) = 0, 0 > 0. 

(ii) For any continuous linear complex functional / on L°°(R) define 
/ ~ on CB by/~(0~) = /(0) , 0~ e CB. T h u s / - is easily seen to be a con
tinuous linear functional on CB. 

(iii) For any continuous 0 e L°°(R), define 0~ e CB by 0~~(0) = 0(0), 0 

(iv) For any 0 e L°°(R), define 0f e L°°(R) by 0f = 0(f + s), se R. 
(v) Define the functions /x, /LL+, /LT on R by [x{&) = 1 for 0 e R, //+(0) = 1 

for 0 ^ 0 , /z+(0) = 0 for 0 < 0, / r(0) = 1 for 0 ^ 0, and /r(0) = 0 for 
0 > 0 . 

By Theorem 1 there exists a continuous 0 e L°°(R) such that given any 
complex function g on R such that \g(t)\ g 1, there exists a continuous 
linear complex functional / with properties as stated there such that 
/(0f) = g(t) on R. Henceforth in this proof, 0, g, and / are these fixed 
specific functions. 

Since fipr) = AprpT) = C/V"))2, it follows that/ty-) = 0 or/(^~) = 1. 
Case 1. f(/r) = 1. For any continuous 0eL°°(R), /~(0~~) = f(<p/T) 

= f((/))f(fT)l here 0~ e CB is given by (iii), and/~ by (ii). Therefore f (<f>t) 
= /(£? /*"") = A<j>f)f([jr) = /(0?) = g(0, and our theorem follows in this 
case. 

Case 2. / ( / r ) = 0. Since 1 =/( / / ) = / fo+ + pr) = Ay+) + /Ï /T), 
we have/(//+) = 1 ; note that ß = y+ + yr almost everywhere on R and 
in L°°(R), we do not distinguish functions which differ only on sets on 
measure zero; cf. the remark in p. 73 in [6]. 

We now repeat the same argument as in Case 1, replacing CB by CB+ 
the space of continuous bounded functions on t ^ 0 with supremum norm 
there, and conclude that there exists a continuous linear function / + on 
CB+ such that /+(0+) = g(t); here 0+ = 0(f + s), s ^ 0; i.e., <j>f e CB+. 

Define $(t) = <f>(- t),t e R; for fixed t e R we have 

^ = 0(/ + j) = ^(-t-s), s ^ 0 

= 0 ( - f + s), s ^ 0 
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Since /+(#) = g(t\ we have/+(^+) = g ( - 0 ; i.e., /+(&) = g(-t) 
on R. Now/4" can be considered a continuous linear function on CB; we 
can define / + on CB by /+(0) = f+(<f>) for 0 e CB where $(s) = ^ ( - s ) , 
s ^ 0; i.e., $ G CB+. This proves our theorem for this case too. 

REMARKS. Our proof uses the multiplicative property of the bounded 
linear function on L°°(R) very strongly. On the other hand, the condition 
/ (^) = l for the unit function ju is not crucial; it is easy to verify that 
f(ß) = 0, which is the only other possibility due to the multiplicative 
property o f / implies/($) = 0 for all <j> G L°°(R), so if g(t) is not the 
identically zero function, the condition f{fi) = 1 necessarily holds. 

As is pointed out in [6], the fact that the group G in Theorem 1 is not 
compact allows us to assert that the <ß e L°°(G) is in fact continuous. 
This is clearly an important condition used in our proof. Rudin's theorem, 
however, guarantees the existence of an <j> e L°°(G) and a n / a s in Theorem 
1 even for G compact. We also point out that in Rudin's theorem G need 
not be abelian. 

The following questions suggest themselves. 
(i) If S is a commutative semigroup with unit, does Theorem 1 hold if 

G is replaced by SI If so, our theorem would be an immediate conse
quence of it. 

(ii) Does our corollary hold if the condition that g be even is omitted? 
The author suspects the answer is in the affirmative but has not yet been 
able to prove it. 

APPENDIX. AS an application of our main result we state and prove the 
following theorem. 

THEOREM A. The exists a bounded linear function F on CB to R2 and an 
initial function cj> G CB such that the initial value problem 

(2) y'(t) = F(yt),y(t) = <f>(t),t^0, 

has no solution of Caratheodory type, 

PROOF. Let g: R -* R2 be a bounded even function such that for — 1 < 
t < 0, $Lig(s)ds does not exist in the sense of Lebesgue. Let x(t) a n d / b e 
as guaranteed by our corollary; i.e.,/(x,) = g(t), t e R. Define F: CB -• 
R2 by F(<f>) = /(<£), where ^ (0 = <f>(t - 1) for t ^ 0, for any ci G CB; 
clearly ^ G CB. Also F is easily seen to be linear and bounded since / i s . 
We now define <j> in (2) to be x(t) for t ^ 0, and F as above. Suppose (2) 
has a Caratheodory solution y(t) on (— oo, b)9 b > 0. It is by definition 
absolutely continuous on [0, b), and so it is the indefinite integral of its 
derivative; i.e., 
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y(t) = y(0) + ^QF(ys)ds9 0^t< max{l, b}. 

But for such t we have 

a contradiction. 

REFERSENCES 

1. R. D. Driver, Existence and stability of solutions of a delay-differential system, Arch. 
Rat. Mech. Anal. 10 (1962) 401-426. 

2. A. Halany and J. Yorke, Some new results and problems in the theory of differential-
delay equations, SIAM Rev. 13 (1) (1971), 55-80. 

3. J. Hale, Theory of Functional Differential Equations, Appi. Math. Sci. Vol. 3, 
Springer-Verlag, 1977. 

4. and J. Kato, Phase space for retarded euqations with infinite delay, Funk, 
Ekv. 21(1) (1978), 11-41. 

5. F. Kappel and W. Schappacher, Some considerations to the fundamental theory of 
infinite delay equations, J. Diff. Eq. 37 (1980), 141-183. 

6. W. Rudin, Homomorphisms and translations in L0O(G), Adv. in Math. 16 (1) (1975), 
72-90. 

7. K. Sawano, The fundamental theorems for functional differential equations with in
finite delay of Caratheodory type, (to be published). 

8. K. Schumacher, Existence and continuous dependence for functional differential 
equations with unbounded delay, Arch. Rat. Mech. Anal. 67 (1978), 315-335. 

9. G. Seifert, Positively invariant closed sets for systems of delay differential equations, 
J. Diff. Eq. 22 (1976), 292-304. 

DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, AMES, IA 50011 






