
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 13, Number 1, Winter 1983 

SUMS OF THREE AND FOUR INTEGER SQUARES 

GARY R. GREENFIELD 

The classical problem of determining which positive integers can be 
expressed as the sum of four integer squares was first solved in 1770 by 
Lagrange, while a solution to the companion problem of determining 
which positive integers can be expressed as the sum of three integer squares 
seems to have been known as early as the time of Gauss. The purpose of 
this note is to give brief, but elegant, proofs of these well known results. 
More specifically, by determining up to isomorphism the subfields of the 
division ring of rational quaternions and relying on certain properties of 
the ring's (reduced) norm and trace, we are able to solve the three square 
problem. From this we obtain the four square result as a simple corollary. 

For the most part, our approach is of an elementary nature. But, 
unlike that of say [3] or [4], not completely so, since at a certain stage of 
the development we must rely on facts concerning the division ring of 
rational quaternions which are to be more properly found in the theory 
of finite dimensional central simple algebras and algebraic number 
theory. Thus, upon completion, it is our hope that the interested reader 
will delve more deeply into these fascinating subjects by consulting the 
references provided. 

Fix a positive integer n. To determine whether n is the sum of three 
integer squares it is necessary first to reduce to the problem of determining 
when the square-free part of n is the sum of three rational squares. To 
facilitate this reduction we introduce some notation. 

In three dimensional Eucludean space E3, we say a point p = (pl9 p2, p$) 
is rational (respectively integral) if each coordinate pt is rational (respec
tively integral). For a rational point p, there is a smallest positive integer 
dp such that dp\> is integral (dp is merely the least common multiple of 
the denominators of the p{ when expressed as fractions in lowest terms) 
and, evidently, dp = 1 if and only if p is integral. Let S(n) be the sphere 
of radius ^/~n~ in E3 centered at the origin. We have S(n) = {pe£ 3 : 
p\ + P\ + P\ = n}- Clearly, n is the sum of three rational (respectively 
integer) squares if and only if S(n) contains a rational (respectively 
integral) point. 
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LEMMA 1. The positive integer n is the sum of three integer squares if 
and only if it is the sum of three rational squares. 

PROOF. It suffices to show that if S(n) contains a rational point, then 
it contains an integral point. Suppose not. Then among all rational 
points of S(n) select one, say x, with dx minimal. Let y G E3 be an integral 
point chosen such that |x, — y{\ ^ 1/2 for all i. Set z = x — y and d = 
dx |z|2. Since |z|2 = |x - y|2 ^ (1/2)2 + (i/2)2 + (1/2)2 = 3/4 and x # y, 
we have 

(*) 0 < |z|2 < 1 

and therefore, 

(**) 0 < d < dx. 

In addition, 

d = d%W 

= dx(x - y).(x - y) 

= dx(\x\2 - 2(x.y) + |y|2) 

= ^ x | 2 - 2 ( ^ x ) . y + rfx|y|2 

and by examining this last expression we easily conclude that d is an 
integer. 

Let L be the line in E3 through x and y. If L is tangent to S(n), the 
Pythagorean Theorem yields |x|2 + |z|2 = |y|2 which forces |z|2 to be an 
integer, contradicting (*) above. Thus L intersects S(n) in another point 
x'. By virtue of the vector equation for L, we may write x' = x + Az for 
some nonzero real number X. Using x'-x' = (x + A z)-(x -h Xz) to solve 
for A, we find A = — 2(x • z)/|z|2 so X is fact rational, whence x' is a rational 
point of S(n). Now, the calculation 

dx' = dx\z\\x + kz) 

= */Jz|2x — 2dx(x-z)z 

= |z|2 dxx - 2dx(x-z)x + 2dx(x-z)y 

= (|x|2 - 2(x.y) + |y |2Kx - 2dx |x|2x 

+ 2^(x.y)x + 2^(x.z)y 

= (|y|2 - |x|2)(^x) + (2dx |x|2 - 2(rfxx).y)y 

shows dx' is an integral point of E3. Thus, by definition, dx, ^ d and 
combining with (**) we get dx, < dx which contradicts the choice of x. 
This completes the proof of the lemma. 

LEMMA 2. Let n = s2m where s, m are positive integers and m is square 
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free. Then n is the sum of three rational squares if and only if m is the sum 
of three rational squares. 

PROOF. This is routine, and left to the reader. 

Let AT be a Pythagorean field and denote by UK the division ring of 
ordinary quaternions over K. Recall that UK = {xQ + x\i + x2j + x$k: 
x( e K) is a four-dimensional vector space over K with basis {1, i, j9 k\ 
and that multiplication in UK is determined by extending linearly the 
multiplication defined on basis elements as follows: ij = — ji = k9 jk = 
— kj = i, ki = —ik = j9 and i2 = j 2 = k2 = — 1. The element u = 
XQ 4- Xii 4- x2j + ^3^ G £/# has conjugate ü = x0 — xxi — x2j — x%k9 

(reduced) norm N(ü) = uü = x% + x\ + x§ + A|, and (reduced) trace 
T(u) = u + ö = 2x0. Moreover, direct calculation shows that for w, 
v e UK, ûv = Pô, M + v = « + v, and w = w. Of primary importance to 
us are the special properties that the subfields of UK possess. 

LEMMA 3. Let L be afield with K ^ L g UK. Letue UK\K. 
(i) The minimal polynomial for u is x2 — T(u) x + N(u). 

(ii) The field K(u) is quadratic over K. 
(iii) If ve L\K9 then L = A:(v). 
(iv) L is a maximal subfield of UK. 

PROOF. Multiplying the identity u — T(u) -f ü = 0 by u gives u2 — 
T(u) u + N(w) = 0. Since u $ K, the monic polynomial x2 — T(u) x + 
N(u) which u satisfies must be its minimal polynomial. This proves (i). 
Statement (ii) follows directly from (i). By the Primitive Element Theorem 
L = K(w) for some we L\K. But v, we UK\Kso both K(v) and K(w)are 
quadratic over K. Since K(v) E L, L = K(v) and (iii) is proved. We have 
seen that proper subfields of UK are quadratic, so indeed they must be 
maximal, as stated in (iv). 

REMARK. If u e UK\K, then K(u) is Galois over K, with Galois group 
generated, say, by the automorphism a. Since ü = T(u) — u e {a + bu: 
a, beK} = tf(w)and ü2 - T(u)ü + N(u) = ü2 - T(Ü)ü + N(ü) = 0, we 
must have a(u) = ü. Therefore N(u) = ua(u), T(u) = u + a(u) and we 
see N and T are just the ordinary norm and trace of the element u cal
culated from the field K(u) to K. 

We say a field extension L of Ä̂  is a splitting field for UKiîUK®KL ^ 
M2(L)9 the ring of 2 x 2 matrices over L. By invoking a rather deep 
structure theorem [1, Theorem 27, p. 61] it follows that a field extension 
L of K with [L : K] = 2 is isomorphic to a (maximal) subfield of UK if 
and only if it is a splitting field for UK. This fact will play an important 
role in the sequel. 

Before leaving our general setting, a final remark is in order. UK has 
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the structure of a cyclic crossed product (see [1] or [7]) as follows. Let z 
be the generating automorphism of the Galois extension K(i) over K. 
Denote by (K(i)/K, z, - 1) the left K(J)-module {c + dj: c,de K(i)} with 
multiplication defined according to the relations j 2 = — 1 and> /= z(d)j. 
Then UK = (K(i)/K,z, - 1 ) . 

Let Q be the field of rational numbers and consider UQ, the familiar 
division ring of rational quaternions. A quick glance at the reduced norm 
formula makes it readily apparent that in UQ, N(u) is a positive rational 
number for all u ^ 0. The following two lemmas make precise the rela
tionship between UQ and the three square problem. 

LEMMA 4. Let m > 1 be a square free integer. Then m is the sum of three 
rational squares if and only if there exists us UQ such that N(u) = m and 
T(u) = 0. 

PROOF. If m is the sum of three rational squares, say m = x\ + x\ + x% 
simply take u = xxi + x2j + x3k. Conversely an element u = JC0 + x±i + 
X2J + xjc satisfying N(u) = m and T(u) = 0 has x0 = 0 so m = x\ + 
x | + x|, as desired. 

LEMMA 5. Let m > 1 be a square free integer. Then m is the sum of 
three rational squares if and only if there exists u G UQ\Q such that the 
fields Q(u) and Q(^/ — m) are isomorphic. 

PROOF. Assume m is the sum of three rational squares. By the previous 
lemma, we are guaranteed the existence of an element ue UQ with T(u) = 
0 and N(u) = m.lfueQ, then N(u) = u2 so m is a square, a contradiction. 
Thus u e UQ\Q and by Lemma 3 u has minimal polynomial x2 — T(u)x 4-
N(u) = x2 + m whence the field Q(u) is isomorphic to Q(^/ — m). For 
the converse, suppose we are given ueUQ such that Q(u) s Q(\/ — m)-
Then we may choose v e Q(u) such that v2 = — m. Clearly, v £ g, g(v) = 
g(w), and v has minimal polynomial x2 + m. Comparing with the minimal 
polynomial expression found in Lemma 3, we conclude T(y) = 0 and 
N(v) = m. By the previous lemma, m is the sum of three rational squares. 

Of course, up to isomorphism, representatives for fields quadratic over 
Q are given by the fields ß(VdH) where d ^ 0, 1 ranges over the square 
free integers. The objective now is clear: we want to determine which 
fields of this type are isomorphic to subfields of UQ. By a previous remark, 
this is equivalent to determining which fields of this type are splitting 
fields for UQ. Though this may seem to be a formidable obstacle, with 
the aid of Hasse invariants it will become almost effortless. 

We shall not attempt to give a full treatment of Hasse invariants here 
(excellent sources are [2] and [7]). For the moment, it is enough to say 
that the Hasse invariants of UQ are fractions modulo one which are 
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assigned to the primes (inequivalent valuations) of Q subject to certain 
arithmetic restrictions. To compute these Hasse invariants we must rely 
on the construction of UQ as a cyclic crossed product. Let oo denote the 
infinite prime of Q, and let R be the field of real numbers. 

LEMMA 6. The Hasse invariants of UQ are given by 

(1/2 modulo one, if p = 2 or oo 
invPUQ = 

[0 modulo one, otherwise. 

PROOF. By definition, inv^ UQ = 1/2 modulo one, as UQ ®Q Q^ ^ 
UQ ®Q R £ UR. If p 7* 2 is a finite prime of Q, then/? is unramified from 
Ô to ß (0 [5, Theorem 9.1, p. 39], so the cyclic crossed product (Q(i)/Q, 
T, — 1) has invj UQ = 0 modulo one [1, Theorem 14, p. 75, and Theorem 
19, p. 141]. Finally, Hasse's Sum Theorem ensures inv^ UQ = 1/2 modulo 
one, for p = 2. 

To determine whenL = Q(\/~d) withd ^ 0,1 square free is a splitting 
field for UQ, we must determine when UQ®QL ^ M2(L). Fortunately, 
Hasse invariants are defined for tensor products of UQ with finite exten
sions of Q and, more importantly, they will distinguish matrix rings 
according to the criterion that the invariants of the tensor product be 
identically zero. With this in mind we prove the following lemma. 

LEMMA 7. Let d ^ 0,1 be a square free integer. Then Q(<s/^T)is a splitting 
field for UQ if and only ifd<0 and d JÈ 1 (mod 8). 

PROOF. Let oox, oo2be the primes of Q(\/1T) extending the prime oo of 
Q. If d < 0, these primes are complex, while if d > 0, these primes are 
real. Thus, by definition, 

(1/2 modulo one, if d > 0 
inv^ UQ®Q Q(Vd) = \ 

(0 modulo one, if d < 0. 

This shows the condition d < 0 is necessary. Moreover, when d < 0, 
QiV^T) will he a splitting field for UQ unless the prime p = 2 of g splits 
completely in Q(*J~d\ This occurs [8, Theorem 6, 2-1] if and only 
if d = 1 (mod 8). Our proof is complete. 

We can now give our main result. It is a solution to the three square 
problem obtained by blending the prepared ingredients. 

THEOREM 8. Let n be a positive integer. Write n = s2m where s, m are 
positive integers and m is square free. Then n is the sum of three integer 
squares if and only ifm& — 1 (mod 8). 

PROOF. If m = 1, this is obvious, so assume m > 1. By Lemmas 1 and 
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2 it suffices to show m is the sum of three rational squares if and only 
if m & — 1 (mod 8). By Lemma 5 and a remark on splitting fields, m 
is the sum of three rational squares if and only Q(\/ — m) is a splitting 
field for UQ; and by the previous lemma this occurs if and only if —m & 1 
(mod 8) or, equivalently, m & - 1 (mod 8). 

A version of the three square result more amenable to computations, 
and frequently given (see [3] or [6]) is the following corollary. 

COROLLARY 9. Let n be a positive integer. Write n = 4 v where 4 X /. 
Then n is the sum of three integer squares if and only if / ^ 7 (mod 8). 

PROOF. If we write n = s2m as in our theorem and say s = 2bq where 
q is odd, then evidently q2m = / . An examination of cases shows q2 = 1 
(mod 8), whence m = / (mod 8). Therefore n is the sum of three integer 
squares if and only if / ^ — 1 (mod 8) or, equivalently, / ^ 7 (mod 8). 

A special case of the theorem is highlighted for use in solving the four 
square problem. 

COROLLARY 10. If m = 7 (mod 8) is a square free positive integer, then 
m — Ì is the sum of three integer squares. 

PROOF. Let m — 1 = 4 v , where 4 1 / . Since m = 1 (mod 8), m — 1 = 
6 (mod 8), so e = 0. Thus / = ra — 1 = 6 (mod 8), and by Corollary 9, 
the result follows. 

Our final result is at hand. Though it is really a corollary to the three 
square result, for historical reasons we will list it as a theorem. 

THEOREM 11. Every positive integer is the sum of four integer squares. 

PROOF. Let n = 4 v where 4 X / is a positive integer. By Corollary 9 
we need only consider the case where / = 7 (mod 8). Then the previous 
corollary shows / — 1 is the sum of three integer squares, say / — 1 = 
x\ + x\ + xl whence n = (2^0 2 + (2*x2)

2 + (2'x3)2 + (2*)2 and the 
proof is complete. 
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