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REARRANGEMENTS OF DIVERGENT SERIES 

ELGIN H. JOHNSTON 

ABSTRACT. Let 2 a* be a divergent series of positive numbers. 
The rate of divergence of £0* is related to the behavior of subseries 
and to rearrangements of the series. We show the rate of divergence 
of Ti^k is determined by the convergent subseries of ^ak and also 
show that the rate of divergence can be changed, through rearrange­
ment, to give some other predesignated rate of divergence^ 

1. Introduction. Let {ak}f=l be a sequence of positive numbers with ak -» 0 
and J^ak = 00. In this paper we consider the rate of divergence of the 
partial sums An = Ztiak as n -• 00. We prove some results concerning 
the rate of growth of these partial sums and how it may be altered through 
rearrangement of the series. 

Our first results, making up the second section of the paper, show that 
the rate of growth of An as n -+ 00 is determined by the convergent 
subseries of J^ak. These results are, in a sense, "inverse" to previous results 
of Banerjee and Lahiri [1] and Salat [6]. (These papers consider the sums 
of convergent subseries of divergent series and how "often" a particular 
positive P can be the sum of a convergent subseries). 

The third section of the paper concerns arrangements of J^ak. Let TU: 
Z+ -> Z + be a permutation of the positive integers. In [2], [3] and [4], Dian-
anda found conditions under which 2ï#* a n d 2 ï^(*) are asytomtic as 
n -» 00. In [7], Stenberg also considered rearrangements of divergent series 
and studied the divergent subseries of the rearrangements. Our main result 
in the third section considers another aspect of the rearrangement ques­
tion. We show that given f(x) positive, concave, increasing to 00 on (0, 00) 
with/(x 4- 1) — f(x) -• 0 as x -> 00 and 

lim sup 4 r - ^ l , 

there is a permutation % with £ïfl*<*) ~ f(n)- (Compare Riemann's 
classical theorem on rearrangement of conditionally convergent series 
[5]). 

In this paper, all series are to be series of positive real numbers with 
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terms tending to 0. For a series £ak and a positive integer n, An = ^=iak 

will denote the n-th partial sum of £ak. 

2. Subseries and asymptotic behavior. We first state a definition [5, p. 
279] to clarify the manner in which we measure the asymptotic behavior 
of a series. 

DEFINITION 1. Let £ak and J^bk be divergent series. We will say that 
2}ak and £bk diverge at the same rate if 

(1) 0 < a = lim inf BJAn ^ lim sup BJAn = ß < + oo 
«->oo W-*oo 

If a = ß = 1 in (1), we shall say the two series are asymptotic and write 
An ~ Bn or 2 X - 2**. 

The next theorem shows that for series with terms tending to zero, the 
growth of An as n -> oo is to some degree determined by the convergent 
subseries of J^ak. 

THEOREM 2. Let J^ak and J^bk be series with \\mak = \\mbk = 0. Suppose 
that for each increasing sequence {kj}jLi of positive integers, J^ak.and J^bk. 
both converge or both diverge. Then J^ak and J^bk either both converge or 
both diverge at the same rate. 

PROOF. If every subseries of £ak (and hence of J^bk) converges, there is 
nothing to prove. So suppose J^ak has some convergent and some diver­
gent subseries. If the conclusion of Theorem 2 does not hold, then we may 
assume 

(2) lim sup BJAn = +00. 
W->oo 

Consider the set S of positive integers defined by S = {k: bk ^ ak). 
Let ki, k2, . . . denote the elements of S listed in increasing order. By (2), 
it follows that Tibk. and J^ak. diverge and 

lim sup BkJÄkn = + oo 
W->oo 

where, Äkn = Tiïak. and similarly for Bkn. 
We now reassociate the terms of Ttbk. as follows. Let 

8\ = K + K + - • • + Kx 

where nx = min{«: £j=i bk. ^ 1}. Having defined J*!, J*2> . . . , J*w and 
associated positive integers rt\ < • • • < nm, let 

#«+i = **,„.+, + ••• +bknm+i 

where nm+1 = min{«: E"=nm+i K ^ 0- W e t h e n d e f i n e Wm}£=i by 
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J* m = 
J= 

It then follows that 

(3) 

and since bk -> 0, 

(4) 

: »m-l+l 

lim sup 
w->oo 

m = 

l l 

lim @m = 
m-+°o 

1,2, 

^ m 

-- 1. 

3, 

= 

. . . i 

+ 00 

Now from (3) we must have lim inf^^ stfj@m = 0. Thus we may select 
an increasing sequence {mj] of positive integers with 

(5) stmjlamj ^ W2> 7 = 1 , 2 , . . . . 

By (4) and (5) we see that J^â8mj diverges while J±sfmj converges. Breaking 
the ^W;.'s and s/m/s into their component bkf's and ak}s gives a subseries 
of J^bk that diverges while the corresponding subseries of £ak converges. 
This contradiction shows (2) cannot hold, completing the proof of the 
theorem. 

As immediate corollaries of Theorem 2 we have the following two re­
sults. 

COROLLARY 3. Let £ak and J±bk be series satisfying the hypotheses of 
Theorem 2, and let {kj}f=1 be an increasing sequence of positive integers. 
Then J^akj and J^bk. either both converge or both diverge at the same rate. 

COROLLARY 4. Let £ak and £bk be series satisfying the hypotheses of 
Theorem 2, and let % be any permutation of the positive integers. Then 
Haic(k) and 2]6jrU) either both converge or both diverge at the same rate. 

In §4 we give an example showing the converse of Theorem 2 does not 
hold even if J^ak and £bk are series of decreasing terms. However, the 
converse to Corollary 4 is valid as is shown by the next theorem. We first 
state a definition for notation. 

DEFINITION 5. Let {ak} and {bk} be sequences of positive numbers. For 
positive M9 let N%B = {k: ak ^ Mbk). 

THEOREM 6. Let £#* and J^bk be infinite series with lim ak = lim bk = 0. 
Then the following are equivalent. 

(i) There exists M > 0 such that 

2 akand £ ** 

both converge. 
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(ii) For each increasing sequence {k,} of positive integers £ak. and J^bk. 
either both converge or both diverge. 

(iii) For each permutation % of the positive integers, 2û*c« andTiKut) 
either both converge or both diverge at the same rage. 

PROOF. It is easy to prove that (i) implies (ii), and (ii) implies (iii) by 
Corollary 4. To prove (iii) implies (i), we assume (i) does not hold and 
construct a permutation % that contradicts (iii). If (i) does not hold, we 
may assume 

diverges for each positive integer M. Define % inductively as follows. 
Let n{\) = 1. Take N%B = Nfa - {1} and let k[2\ k?\ . . . , *g>, . . . 

denote the elements of N%B in increasing order. Let 

n2 = 1 + min In ^ 2: ax + £ ^ ( 2 ) ^ l{bx 4- £ **<?))}• 

We observe that n± must be finite since 

for ally and 

2>*(2) 

diverges. Define %{j + 1) = kf> for 1 ^ j ^ n2 — 1; thus iz{j) is now 
defined for 1 ^ j ^ n2. Now suppose rcw(m à 2) has been produced and 
7t(j) has been defined for Ì ^ j ^ nm. We let 

(6) TT(«W + 1) = min{&: A: * tf(/), 1 ^ y g *„}. 

Let 

Nili1'2 = W ) 2 - { < / ) : 1 £j ^ nm + 1} 

and let A:[w+1), fc2
m+1), . . . denote the elements of N(^1)2 in increasing 

order. We take 

f Wm+l ^ - l 

(7) l 

/n„+l n-\ W 

> (m + 1) (̂  Ç *«(/> + g è*(-+i) )J 

and note that (7) does indeed define a finite number «m+1. We now define 
Tc(nm +j+l) = fc<f+1) for Igjg nm+1 - nm - 1. 
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As defined above, % is a 1 — 1 mapping from Z+ to Z+; equation (6) 
guarantees % is onto; thus % is a permutation. Finally, (7) shows that 

lim sup £ an{k)fc bn{k) = + oo. 
»-•oo 1 1 

Thus (iii) is violated. This contradiction completes the proof of Theorem 
6. 

As a consequence of the results presented in this section we state a 
rearrangement theorem. 

THEOREM 7. Let J±ak be a divergent series of positive terms with 
limak — 0. If TU is a permutation that maps convergent subseries of J^ak 

onto convergent subseries, and divergent subseries onto divergent subseries, 
then 2#* and J^an{k) diverge at the same rate. 

3. Rearrangements. In Theorem 7 we gave a sufficient condition that a 
rearrangement not affect the rate of divergence. Our next result, similar 
to Riemann's Theorem [5], shows that a divergent series of positive terms 
can often be rearranged to give a predesignated asymptotic behavior. 

THEOREM 8. Let J^ak be a divergent series with lim ak -* 0. Let f(x)9 

defined for x ^ 0, be a positive, strictly increasing concave function with 
(Olim^^/Cx) ==+oo, 

(ii) lim^oo {f{x + 1) - /(*)} = 0, 
and 

(iii) lim sup^oo f(n)/An g 1. 
Then there is a permutation % such that 

(8) Al ~ fin) ias n -> oo) 

where Al = L ï ^ a ) . 

PROOF. Let bx = / ( l ) and bn = fin) -fin - 1)(« = 2, 3, . . .)• Since 
fix) is concave, we have bx ^ b2 è • • •. To prove (8) it sufficies to find 
a permutation % with 

(9) A«„~Bn = -Çbk=f(n). 

We will obtain (9) by producing % so that 

(10) | K U > - b„) = A*„-Bn = o(Bn) (as n - oo). 

Now if lim inf„_oo B„/A„ = 1, we can let % be the identity mapping. 
So assume 

(11) 0 ^ lim inf BJA„ = ß < 1 
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and 

(12) ß ^ lim sup BJA„ = a ^ 1. 
n-+oo 

By (12) we may produce a sequence Ni < N2 < • • • < Nm < • • • of 
positive integers such that 

(13) BJAn ^ 1 + \\m (n^ NJ. 

By (11), the divergence of £bk and the fact that ak, bk -• 0, we may find 
a positive integer N such that 

(14) BNjAN < J-+A, 

(15) 

and so that 

(16) 

TVJBN: 

a„, b„ < 1/2 (n > N). 

We define % by first taking %{k) = k for 1 ^ k g N. Assume n{k) 
has been defined for 1 ^ k ^ n(n ^ N). Then, 

I. if A% - Bn ^ V ^ t a k e ff(* + 1) = min{fc: Ä: ^ < / ) , 1 ^ y ^ « and 
ak ^ bH+1}, and _ 

II. if A%
n - Bn < *jBn, take %{n + 1) = min{fe: Â: ̂  ^ 0 ) , 1 ^ j ^ n}. 

We first observe that if I is used to define %{n + 1), then Al+1 — Bn+i ^ 
Al — Bn. Thus, since \/Bn increases to oo, we see that II will be used 
infinitely often in defining %. This guarantees that % is a permutation of 
Z+ 

From (14) and (15) we see 

(17) *k-BN> -i-J- | ^ > V ^ 

Thus I is used to define %{N + 1). Let Mx be the first integer for which 
we use II to define iz{M{), and take n > Nm > Mx for some positive 
integer m (see (13)). We now consider three cases. 

Case 1. If 0 S Al - Bn < ^Wn, there is nothing to consider: we have 
the "little oh" relationship desired in (10). 

Case 2. Suppose A% - Bn ^ </Bn. We let 

(18) ri = max{A: ^ n: II was used to define 7c(k)}. 

Since n > Mh we know ri ^ M1? and it then follows from II and (18) 
that 

(19) A*,^ - Bn,_x < V ^ 
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and A%
n, - Bn, ^ VÏÇ- By 06) and (19) we then see 

Al, - Bn, = {A*,-x - £W'-i) + (0,0,0 - èw/> é V ^ + y . 

However, by the definition of ri, we will use I in defining n(k)9 k = 
ri + 1, ri + 2, ..., n. Thus (even in the event n = ri) it follows by I that 

Al - Bn g Al, - Bn, ti VB;, + 4- = ^ + T-

Since we are assuming 4̂J — i?„ ^ VBX'we again have the ' V relation­
ship of (10). 

Owe 3. If Al ~ Bn< 0, we show that Al = An. We let 

(20) ri' = max{A: ^ nil was used to define #(&)}. 

By (17) we know «" > N and from I we have 

Al„_x - £„„_! ^ i / ^ 4 > L 

But then by (16) 

(21) Al„ - Bn„ ^ V 5 ^ - \ > 0. 

Now by the definition oìri' in (20) we must use II to define %{k) for ri' < 
k ^ n. But by (21) and the fact that A* - Bn < 0, it follows that for some 
k\ with ri' < k' ^ « we must have a^,) < è^,. Observe that the defini­
tions I and II imply that x(k') ^ k' whenever II is used to obtain k'. We 
claim that 7c(k') = k\ Note that if icik') < k\ then in some previous 
application of I to define some n(k") (k" g n") we would have taken 

(22) n(k") = min{fc: k # x(j), \ ^ j S k" - \ and ak g bp}9 

with #(A:") > k' > 7c(k'). But 6* is a decreasing sequence, so bw ^ 
bk, > anm and the choice of a #(/;") > k' > ic{k') violates (22). This 
contradiction shows %{k') = k' and it easily follows that %{k) = k for 
k' ^ k ^ n. Thus we obtain %{ri) = n when II is used to define %{ri) in 
Case 3, and it follows that Al = An as claimed. 

We have shown that in Case 3, we actually have A% — Bn = An — Bn < 0 
and hence 2?W/,4W > 1. However by (13)and our choice n > Nmit follows 
that 1 > AjBn = Al/B„ ^ m/(m + 1) giving \A* - Bn\ < (l/m)Bn. So 
for n > Nm (combining cases 1, 2 and 3) we have 

(23) \A* - Bn\ ^ max ( ^ B„ VK + -£]. 

Since m may be chosen arbitrarily large and Bn -• oo, (23) is the o(Bn) 
relation in (10). 
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4. Examples. Our first example shows that the converse of Theorem 2 
does not hold even if J^ak and J^bk are series of decreasing terms. To this 
end let a\ = 1 and take a2 = a3 = • • • = a^ = 3~3. Having defined ak 

for 1 ̂  k ^ Nn = Sî(2/ - l)2/-i, we take ^ = (2n + l)-<2*+i> for 
Nw + 1 ̂  fc ̂  W»+i- Thus the terms of J^ak are defined in blocks and 
the sum of the terms in each block is one. The series £bk is defined in an 
analogous way. Let b\ = b2 = b3 = 64 = 2~2. Having defined bk for 
1 S k ^ Mn = Sï(2/)2>, we take 6* = (2#i + 2)-<2»+2> for Mw + 1 ^ 

For the series as defined above, it is easily checked that An ~ Bn, so the 
two series do diverge at the same rate. We now consider the subseries of 
the two series determined by the set N\B = {k: ak ^ bk) of positive inte­
gers. We then find that 

(24) 2 ak = 1 + 2 cn(2n + 1)" (2»+l) 

kEEN-A,B 
n=l 

and 

| OO 

(25) 2 6,= -1 + 2^(2»+2)" •<2n+2) 

where 

(26) cw = 1 + 2 [(27- + l)2/+i - (2,)2']. 

Let /ïn and 2?n denote partial sums of 

2 a*and 2 bk 

respectively. Then from (24), (25), (26) we have 

1 + S Cw(2« + l)-(2n+D 
lim sup ;4W/2?W ^ lim sup — *=$ 

^ ° ° 4 - + £ c„(2»i + 2)-(2»+2) 

» = 1 

AT 
1 + 2 K2« + l)2w+1 - (2«)21(2« + l)-c*+i> 

^ lim sup n^L-
N->oo 1 + 2 (2« + 1)2»+1(2« + 2)-<2»+2) 

4 »=i 

JV 1 

i + J V - 2 x 

^ r i 2n + 1 , _ 
^ hm sup — jj-i—- = + oo. 

N-+00 1 , £ , 1 

4 "*" Y 2/1 + 1 
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Thus, though the subseries 

S a* and Z bk 

both diverge, they do not diverge at the same rate. But then the hypotheses 
of Corollary 3 (and hence of Theorem 2) cannot be satisfied. Thus there 
is a sequence {nk} of positive integers for which 2^a„k diverges and HKk 

converges. 

Our next example shows that Theorem 8 may not hold if the concavity 
hypothesis is lifted from/(x). Let ak = \\^/~k{k = 1,2, . . . ) , it is easily 
shown that A„ ~ 2 ̂ /"n and in fact that \An — 2 ̂ /~n | ä= 3 for n ^ 3. For our 
example it suffices to construct a series J^bk with lim bk = 0 and lim sup„_>oo 
BjAn ^ 1 but such that no rearrangement of J±ak is asymtotic to ^bk. 

We define {bk} inductively. Let 0 < e < 1/100 be given. There is a large, 
positive integer Nx so that 

(39) \2fnlAn - 1| < e (n ^ N& 

Let bk = ak for 1 ^ k S N\. Now suppose positive integers Ni < N2 < 
• • • < Nm have been defined and bk has been defined for k ^ Nm with 

**. = 4̂ - Let 

(40) K = min{« > Nm:An £ 2ANJ 

and define 

(41) bk = * (Nm<k^ K). 

Let JV£ = [(K - tfJ/50] and define Nm+l = A^ + AT. For K<k£ 
Nm+i we take 

(42) bk = (ANm+l - ANm - D/AT, 

which gives 2?#w+1 = ANm+1. The process described above defines a series 
2 6* with 

~- = lim inf BJAn < lim supJßw/̂ 4w = 1. 
^ »—•oo »—»oo 

From (40), (41), (42) and the fact that ak = l/^/T it easily follows that 
lim bk = 0. 

Now suppose % is a permutation for which A% ~ 2?„. Then there is N > 0 
so that 

(43) MS/5„ - 1| < e/3 (n > JV). 
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In particular (43) must hold for n = Nm, N^, Nm+i for all sufficiently 
large m; we show this is impossible. 

If (43) holds with n = Nm9 it follows that 

\Afrm - 2i/]VJ ^ \Afrm - BNJ + \BNm - IJIQ 

<^-BNm + \BNm-2VKn\ 

(44) =\ANm + \ANm-2^JQ 

for sufficiently large m. It follows from (44) that 

(45) (2 - a) VKn < A§m < (2 + a) ^/N~m. 

Now let Sm = {k: 1 ^ k^ Nm and k # %{j\ 1 ^ 7 ^ Nm}. Then by 
(45), the sum of those of the first Nm elements of J^ak that are not among 
the first Nm elements of J^a„ik) is 

(46) . £ « ' S « ^ + C ^ < - « V N ; 

The definition of N„ shows that N^ « 4Nm(or, sufficient for our 
purposes 3Nm < N„ < 5Nm). Since (43) holds for n = N^ and BN' = 
ANm + 1, we have by reasoning analogous to that for (44) 

\AV -(iVNn-h 1)| ^ \Ati - BN>\ + |2fo' - ( 2 ^ + 1)| 

3 < 4-^' + 3 

for large m. Thus for large w, 

(47) (2 - e) y ^ g ,4fr; g (2 + e) y ^ -

Now by our definitions of iVm+i and N'^, we have 

Nm+1 = K + N: = K+ [(Ar; - N'Jin Û K + 2NJ2S. 

But referring to (45) with m replaced by m 4- 1 shows 

(48) ^^m+1 > (2 - s) VÄUi > (2 - e ) v ^ > (2 ~ *) VWm. 

Thus by (47) and (48) 
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(49) A*Nm+l - A*N>m = V a.w 
k=Nmt+l m 

> [ ( 2 V T - 2 ) - e ( V T + l ) ] V ^ > l . l v ^ -

But this "growth" illustrated by (49) is for the terms axik) (N^ < k £ 
Nm+1 < N'm + 2NJ25) of £0*<»- However, referring to (46) we see that 

Nm+i „ f 27/25 Ww Ax 

f* «,<»£ E ak + 2\ - ^ . < 1.1 VAL 

in contradiction of (49). Hence there is no permutation % with A% ~ Bn. 
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