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1. Introduction. It has been known for some time that differential-
boundary operators play an important role in the adjoint theory of linear 
differential operators with general boundary conditions. In addition to 
the classical work of Feller [10] and Phillips [21], the theory of differential-
boundary operators has been applied to such diverse fields as spline 
analysis (Brown [2], Brown and Krall [3]), variational and oscillation 
theory (Reid [22, 24]), boundary control of parabolic (Seidman [27]) 
and hyperbolic (Russell [25, 26]) partial differential equations. However, 
it is interesting to note that although the early work of Feller and Phillips 
was concerned with the well-posedness of Cauchy problems associated 
with these operators most of the current literature on differential-boundary 
operators does not consider this problem. Since 1960 the theory has 
generally been devoted to the study of adjoint operators, derivation of 
Green's matrices and eigenfunction expansions (see [14-19] and the 
survey paper by Krall [20]). In this paper we study a general class of 1st 
order differential-boundary operators and derive necessary conditions and 
sufficient conditions for these operators to generate C0-semigroups. More
over, we show that there exists a fundamental relationship between these 
operators and Cauchy problems for neutral functional differential equa
tions. Although we shall not pursue the point, similar observations have 
recently been used to develop numerical methods for approximating solu
tions and optimal controls for certain integro-differential systems (see [7]). 

Notation used in the paper is fairly standard. For example, L2 = 
^2([0, 1]; Rw) denotes the usual Lebesgue space of Revalued "functions" 
on [0, 1] whose components are square integrable. We shall also make 
use of the Sobolev space H1 = 7/1([0, 1]; Rw) and the Banach space of 
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continuous functions C = C([0, 1], Rw). If X and Y are Banach spaces, 
then the space of bounded linear operators from Xinto Twill be denoted 
by &(X, Y). The symbol | • | is used to denote the norm in a Banach space, 
the precise space being clear from the context. Given a function 
x: [0, + oo) -> Rw and t ^ 0, the function xt: [0, 1] -• R* is defined by 
xt(s) = x{t + s). 

The remainder of this section is devoted to the statement of the basic 
problem and preliminary results needed in §2 and §3. Proofs can be found 
in the cited references. §2 contains the statement of our main results along 
with illustrative examples. The proofs of these results are given in §3. 

Let L and D be linear Rn-valued functions with domains &(L) and 9(D) 
satisfying H1 E @(L) f| 9(D) E £2. At this point we make no continuity 
assumptions on L and D. Let //(•) be an n x n matrix-valued function 
whose columns belong to H\ and define the differential-boundary opera
tor T by 

(1.1) S(T) = {<ßeL2\<f>eH\D<f> = 0} 

(1.2) [T(j>]{t) = fa) - H(t)L<f>. 

Our primary concern will be the question of whether or not T generates 
a Q-semigroup on L2. However, we shall see that this question is closely 
related to the "well-posedness" of an associated neutral functional dif
ferential equation. In order to make this statement more precise, we 
define the operator A in Rw x L2 by 

(1.3) 9(A) = {(37, ^ ) e R « x L2\<ßeH\ D<f> =[9} 

(1.4) A(V, 4!) = M, <j>). 

The next two theorems may be found in [4] and [5]. 

THEOREM 1.1. If A defined by (1.3)—(1.4) is the infinitesimal generator of 
a C0-semigroup {S(t)}m0 on Rn x L2, then 

(i) both L and D belong to ^(H1, Rw); and 
(ii) if (y, (j>) e 9(A), there is a unique x: [0, -h 00) -+ Rn such that for 

each t è 0, xt e H\ DXt is continuously differentiate and 

(1.5) -^Dxt = Lxt 

with 

(1.6) x 0 = <ß. 

Moreover, 

(1.7) S(0(y, <f) = (Dxt, xt). 
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Part (ii) of this theorem shows that in a generalized sense, the Cauchy 
problem associated with the neutral functional differential equation (1.5) 
is well-posed with initial data in Rn x L2 whenever A is the generator 
of a Co-semigroup on Rn x L2. Under additional hypotheses on D, the 
converse is true as well. In particular, we assume D e &(C, Rw). Then 
standard representation theorems imply that there is a matrix-valued 
function fi; R -• RwXw whose entries are of bounded variation, continuous 
from the right on (0, 1), fx(s) = //(0) for s ^ 0, pi(s) = /i(l) for s ^ 1 
and such that for each <f>eC 

(1.8) D<t>= \\d[i{s)]<jAs). 
J 0 

The operator D is said to be atomic at s e [0, 1] if the jump J(s) = 
fi(s) — /u(s~) is nonsingular. 

A crucial step in the proof of part (i) of the following theorem is show
ing that for (rj, 0) e 9(A) the problem (1.5)—(1.6) has a unique Hl solution 
for / ^ 0. 

THEOREM 1.2. Let L e @(H\ R"), D e @(C, Rn) and A be defined by 

(1.3M1.4). 
(i) If D is atomic at 1, then A generates a C0-semigroup on Rn x L2. 

(ii) If D is atomic at 0 and 1, then —A generates a C0-semigroup on 
Rn x L2. Hence, A generates a CQ-group on Rw x L2. 

Neither the necessary conditions of Theorem 1.1 nor the sufficient 
conditions of Theorem 1.2 are sharp. In fact, a condition (on D) that 
is both necessary and sufficient is currently unknown (see [4]). 

In order to relate the neutral functional differential equation (1.5)—(1.6) 
to the differential-boundary operator T defined by (1.1)—(1.2) we shall 
make use of a result due to R. Vinter (see [28, 29]). Let ^Tand F be Banach 
spaces and A, B, F be linear operators satisfying 

A: 9(A) -> Y, 9(A) g Y, 9(A) dense in Y, 

B: 9(B) -> X, 9(B) = 9(A), 

F: 9(F) -+ X, 9(F) E 9(A), 

and denote by A0 the restriction of A to Ker B. Define the operator A 
i n Z x y by 

(1.9) 9(A) = {(x, y)eXx Y\ye9(A), By = x] 

0^10) Â(x, y) = (Fy, Ay). 

THEOREM 1.3. Assume that B has a bounded right inverse B+ such that 
AB+, FB+ are bounded and F is (A0 - B+F)-bounded (i.e., there are con
stants cx and c2 such that \Fy\ <; cx \y\ + c2\ (A0 - B+F)y\ for ally e Ker B). 
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Then, A0 — B+F (with domain @(A0)) generates a C^semigroup on Y if 
and only if A generates a C0-semigroup on X x Y. 

REMARK 1.4. The proof of Theorem 1.3 is essentially contained in 
Vinter's proof of Theorem 2.1 in [29], although his statement of the 
result differs from ours. In fact, Theorem 1.3 appears in [29] with the 
(AQ — 2?+F)-boundedness of F replaced by the conditions that \B+\ < 1 
and Fis ^-bounded. It is asserted in [29] that these two conditions imply 
the (AQ — i?+F)-boundedness of F. However, this conclusion is unwar
ranted as the following example shows. 

Let Y be the Banach space c0 (the set of real sequences {em}™=1 such 
that e m - > 0 a s / n - > +oo, with the sup norm). Let X = R and define 
<3(A) = @(B) = Q)(F) to be the set of all finite sequences in cQ. The 
operators A, B and Fare defined by A{em} = {ZI^i em, 0,0, . . . } B{em} = 
2ex and F{em} = 2 £m=i em> respectively. A right inverse B+ is given by 
B+7] = {y/2, 0, 0, . . . } and clearly, B+, AB+ and FB+ are all bounded. 
It is easy to check that \B+\ < 1 and Fis ^-bounded. Since A0 — B+F = 0 
and Fis not bounded, F can not be (A0 — 2?+F)-bounded. 

We now direct our attention to the study of the differential-boundary 
operator F defined by (1.1)-(1.2). 

2. Statement of results and some examples. We consider the operator T 
of §1 defined by 

(2.1) 9(T) = {(j> e L21 (j> e H\ D<j> = 0} 

(2.2) (Tcj>}(t) = fa) - H(t)I4, 

with the same conditions on L, D and //(•) as given there (see (1.1)-(1.2)). 
We have the following necessary conditions on L and D analogous to 
those stated in Theorem 1.1 (part (i)). 

THEOREM 2.1. Let L, Z>, H( • ) and T be as above and assume that the 
column vectors of H(-) are linearly independent in L2. If T defined by 
(2.1)-(2.2) generates a Co-semigroup on L2, then L and D belong to <%(H\ 
Rw). Moreover, D $ &(L2, Rw). 

The need for the "nondegeneracy" assumption in H(-) is clear. Indeed, 
if v = {b e Rn I H(-)b = 0 (in L2)} is nontrivial and T generates a Co-
semigroup on L2, then we may perturb L by any linear map of H into 
F without altering the form of T. In light of this theorem, we will proceed 
under the assumption that Le^(Hx, Rw). Consequently, standard repre
sentation theorems (see [1]) imply that there exist n x n matrix-valued 
functions A(-), B(-) whose columns belong to L2 and such that if <f>e H\ 
then 
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(2.3) L<j> = f* {A(s)<f>(s) 4- B(s)<j>(s)}ds. 

Concerning sufficient conditions on L and D so that T generates a 
C0-semigroup on L2, we first state a lemma important for our analysis. 
It allows us to convert the problem to a more manageable one concerning 
the generation of semigroups on product spaces. Let K = D(H(-)) and 
define the operator Ak in R* x L2 by 

(2.4) ®(Ak) = {(V, <f>) 6 R» x L21 ci e tf1, 2)0 = 9 } 

(2.5) Afa & = (ÄI^, 0). 

LEMMA 2.2. Assume that L e &(H\ Rn). IfK=D(H(-)) is nonsingular, 
then T (-T) generates a C0-semigroup on L2 if and only if Ak(—Ak) 
generates a C0-semigroup on Rn x L2. 

Note that K being nonsingular implies that the column vectors of H(-) 
are linearly independent in L2. As a consequence of this lemma, we have 
the following sufficient condition for jTto generate a Q-semigroup on L2. 

THEOREM 2.3. Assume that L e ^(H1, Rw), D e J>(C, R») and K = 
D(H(-)) is nonsingular. 

(i) If D is atomic at 1, then T generates a C^semigroup on L2. 
(ii) If D is atomic at 0 and 1, then T generates a C0-group on L2. 

Observe that Theorem 2.3 and Theorem 1.2 are very similar. Indeed, 
the relationship between the differential-boundary operator T and the 
neutral functional differential equation (1.5)—(1.6) is clear. Under the 
assumption that K = D(H(-)) is nonsingular, T is a generator if and 
only if (1.5)—(1.6) is well posed. In order to illustrate the theorem, we 
consider a few examples. 

EXAMPLE 2.4. Let D e &(Q Rw) be atomic at 1 and L e ^(L2, Rw). Then 
T generates a C0-semigroup on L2 under less restrictive assumptions on 
//(•) . In fact, if H(') is any« x n matrix-valued function whose columns 
belong to L2, then [T<f>](t) = <j>(t) — H(t)L<j) can be viewed as a bounded 
perturbation of the operator 

[^](0 = ^(0 = ^(0-^- 1 ) -o 

with domain 3>(TX) = 3>(T) = { 0 e Z ^ e H\ D<f> = 0}. Since Kx = 
D{eX{~l)I) -» J{\) as X -» +oo, Kx is nonsingular for large .̂ If L E 
^(L-Î, R»), then B(-) = 0 in (2.3) and Theorem 2.3 implies that Tx gen
erates a Q-semigroup on L2. Since T is a bounded perturbation of Th 

T also generates a Q-semigroup. Note also that if H{)L<j> = 0, then the 
operator [7$](0 = <j>(t) lies withing the scope of this example. 
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Example 2.4, Example 2.7 below and others not presented here lead 
us to conjecture that both the regularity conditions on H and the non-
singularity of K = D(H(-)) (while important for our approach) can, in 
general be relaxed. 

REMARK 2.5. We note that a similar perturbation argument implies 
that Theorem 2.3 remains valid if Tis replaced by 

W ) = <f>(t) - H(t)L<f> + JT0, 

where J T e &(L2, L2). Such operators include a large class of integro-
differential-boundary operators. 

EXAMPLE 2.6. Let P(-) be an n x n matrix-valued function whose 
entries are essentially bounded on [0, 1] and let (?(•) be an n x n matrix-
valued function whose columns belong to L\. We assume that the columns 
of H(-) belong to H1 and that C, G, E and F are n x n matrices. For 
(ßeH1 let 

D<f> = EftO) 4- F<f>(\) + j^ß(s)0OO<fe, 

L<f> = C#0) + <?#1), 

and consider the differential-boundary operator T defined on 

®(T) =i[<f>eL2\<ßeH\ E<ß(0) + F<f>(\) + ^QQ(s)(f>(s)ds = o} 

by 

[Tftt) = m + P{tM) - mOlCtff» 4- G#l)]. 

Operators of this form have been considered by a number of investigators 
during the past twenty years (see [20] and the references therein). Observe 
that if the matrices F and £#(0) 4- FH(l) + ft Q(s)H(s)ds are non-
singular, then T generates a C0-semigroup on L2. If in addition E is 
nonsingular, then T generates a C0-group. By Theorem 2.3 the results 
of this example remain valid if L is replaced by any operator belonging 
to ^(H1, Rn). Moreover, the measure defining D could have additionally 
an infinite number of jumps on (0, 1). Thus, this example includes differ
ential-boundary operators with multipoint and Stieltjes boundary condi
tions (see [19, 20]). 

The underlying spaces here are reflexive. Thus, T(Ak) generates a Co-
semigroup if and only its adjoint T*(Af) is a generator. Exploitation of 
this fact can, in some cases, allow one to consider operators Tnot satisfy
ing the hypotheses of Theorem 2.3. The use of T* is illustrated in the 
following example; the derivation and an application of Af is given later. 
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EXAMPLE 2.7. Let C, G, E, F be as in Example 2.6, g.(«) an « x « 
matrix-valued function whose columns belong to H1 and assume that H(-) 
is an « x n matrix-valued function whose columns belong to 1^. Define 
the operator T in L^ on 

by 

where 

9{T) = {<f>eL2\<ßeH\D<(> = 0} 

[lfl(0 = Ä 0 - H{t)[C<l>{G) + Gfll)], 

Zty = £#0) -h F0(1) + f ^ ô W ^ ) * . 

We require that Fis nonsingular; without loss of generality we set F = /, 
the « x « identity. It follows that (see [20]) T is densely defined and has 
adjoint T* defined on 

g(T*) = {<f>eL2\<f>eH\ D+<j> = 0} 

by 

[rvKO = -#0 - ß*(o[#i) - G* J^*W(^} 
where Z>+ is defined by 

D+<f> = 0(0) + £*0(1) + [C* - £*G*] f 1 / / * ^ ) ^ ) * . 

Define the isometry U: L2 -• L2 by [t/0](O = 0(1 - 0, * e [0, 1]. It 
follows that U~l = U and T* generates a Q-semigroup on L2 if and only 
if f = (77* C/ (with domain 0 ( f ) = U@(T*)) is a generator. 

Easy calculations show 

(2.8) [ffl(0 = #0 - ß*(l - o[#0) - G* J* ff*(l - 5)^>fa] 

with 

(2.9) ®{T ) = {<f>eL2\<f>eH\D<f> = 0} 

where 

(2.10) £0 = 0(1) + £*0(O) + [C* - £*G*] f1 H*(l - j)#j)<fc. 

The operator f defined by (2.8)-(2.10) is of the form treated by Theorem 
2.3. Consequently, f (and hence T) generates a Q-semigroup on L2 if the 
matrix 
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ß*(0) + E*Q*(l) + [C*-E*G*]{1H*(s)Q*(s)ds 

is nonsingular. If g(-) = 0, then Example 2.4 can be applied to show 
that r i s a generator. 

The scalar case with ß ( ' ) = 0 ,£ = G = 0 ,F = C = 1 and ||i/(-)ll2 è 2 
was used by Phillips [21] to illustrate that maximal dissipative extensions 
of dissipative differential operators do not have to be contractions of 
maximal operators (see [20]). 

We close this section by considering the adjoint of the operator Ak 

defined by (2.4)-(2.5) and giving an example to illustrate how this can 
be applied to a larger class of differential-boundary operators. Moreover, 
the adjoint itself is of interest in the theory of neutral functional differential 
equations since it generates the adjoint semigroup. Having the form of Af 
is a also important in state space decompositions for neutral equations 
(see [12, 13]) and in the study of certain optimal control problems (see 
[9, 11]). 

If (77, (f>) and (f, (ß) belong to Rn x L2, then we denote by < , > the 
usual inner product on Rn x L2 defined by 

<0?, <t>\ (£ «Ö> = <?, </>> + £ < # ' ) • #*)>*> 

where <^, 0> = ç*£. If L e <%(H\ Rn) has the representation (2.3) and 
(£, ^ )eR" x L2, then it is convenient to define the function ¥(-) = 
r ( £ , $ ( . ) e L 2 b y 

(2.11) W(t) = [B*K*Ç + 0(f). 

Concerning the adjoint operator Af of Ak defined by (2.4)-(2.5), we have 
the following result. 

THEOREM 2.8. Let L e âi(H\ Rn) have the representation (2.3), D e @{Cy 

Rn) have the representation D<f> = Jj d/n(s)(f>(s) and assume D is atomic at 
1. The adjoint Af of Ak is defined by 

(2.12) @(A%) = {(£, (/)) e Rn x L2 | W(-) is of bounded variation, 

WO) + iM*(-)[/*(l)]-1 »•(!-)] e tf1 am/ W(0) = /*(0)[y*(l)]-1 JF(l-)}, 

(2.13) Affo 0 = ([/"(l)]"1 ÎT(1-), ,**(•)**? 

- w - ) + //*(-)[^(i)]-1^(i-)r), 
wAere 2P"(-) w defined by (2.11) (here prime ' denotes differentiation). 

REMARK 2.9. Note that if L e ^ ( i / 1 , R»), then the representation (2.3) 
is not unique. Therefore, it might appear that A% depends on the particular 
representation of L. To see that this is not the case, assume that Ai(-\ 
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A2(-), Bi(') a n d ^2(0 are « x w matrix-valued functions whose columns 
belong to L2 and for each (freH1 

L<f> = J* {A&Ms) + Bfàfa)}*, i = 1, 2. 

It follows that for (j> e H1 

r l {Ax(s) - A&Ms) + (B1(s) - £2(^(s)}<fc = 0. f. 
Hence, the Fundamental Lemma of the Calculus of Variations (see 

[23, page 112]) implies that (Bx — 2?2)(-) is absolutely continuous on [0, 1], 

(2.14) (*! - B2)(t) = f ( ^ ( J ) - ^ ) ) & 
Jo 

and 

(2.15) (B1 - B2)(0) = (Ä! - i?2)(l) = 0. 

Conversely, if At{*\ B;(-) are any matrices satisfying (2.14)-(2.15), then 
they determine the same operator L e &(H\ Rw). The definition of W, the 
form of Af and the expressions (2.14)-(2.15) together imply that Af is 
defined independently of the particular representation of L. 

EXAMPLE 2.10. Let X\ e (0,1), F(-) be an n x n matrix-valued function 
whose columns belong to L2 and C, C be n x n matrices. We consider the 
system of partial differential equations 

(2.16) -JL;K/, x) = - -£-y(t, x) - F(x)y(t, 1); / > 0,0 < x < 1, 

with boundary conditions 

(2.17) C X U ) + ^ 0 ) = 0; t>0 

(2.18) CXr, 1) + y(U xt) - ></, xr) = 0; / > 0 

and initial condition 

(2.19) y(0, •) = # • ) e I*. 

The term F(jc)j>(f, 1) can be viewed as a boundary control term in feedback 
form. Equation (2.16) is a regular mixed boundary condition while (2.17) 
represents an interface condition at JC = xv The problem (2.15)—(2.18) 
can be written in the abstract form 

(2.20) ~<Lz(t)=Tz(t)9 t>0 

(2.21) z(0) = z0, 
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where T is the operator defined on 

@(T) = {</> e L21 0 is a.c. on (0, xt) and (xl9 1), 0 e L2, 

C<H\) + 0(0) = 0, C0(1) + 0(*ft - 0(*r) = 0} 

by 

(2.23) [r0](x) = - 0 ( x ) - F(x)0(l). 

We will show that the system (2.16)—(2.19) is well-posed in the sense that 
the corresponding abstract Cauchy problem (2.20)-(2.21) is well-posed for 
z0 e 9(T) (i.e., the operator T with domain 9(T) generates a C0-semigroup 
on L2). 

The general schme is to apply Theorem 1.3 to convert the problem to 
one involving the generation of semigroups on a product space. To this 
new problem we will apply Theorem 2.8 and finally Theorem 1.2. (Our 
presentation is in reverse order, however.) A number of operators must 
be defined. In particular, the operators L and D (with 9(L) f] 9(D) ^ 
H1) are defined by 

(2.24) L0 = 0(0) 

and 

(2.25) D(j> = 0(1) + C*0(*i) + C*0(O) + f V ( j ) - H(s))*<f>(s)ds, 

where H(-)is any matrix-valued function satisfying the conditions that 
its columns belong to H^O, jcj; R") and HHlxi, 1]; Rw), CH(1) + 
H(xt) - H(x^) = 0 and CH(1) + H(0) = I. Clearly, Le@(H\ R»), 
D e &(C, Rn) and D is atomic at 1. 

With these operators so defined, Theorem 1.2 (part (i)) implies that the 
operator A defined on 

9(A) = {(V, 0 )eR» x L2\<ßeH\ Z)0 = v} 

by 

A(V, 0) = (L0, 0) 

generates a Q-semigroup on Rn x L2. The adjoint A* of A (as given 
by Theorem 2.8 with K = /) has domain 9(A*) = {(£, 0) e R " X L210 is 
absolutely continuous on (0, x{) and (xi> 1), 0 e L2, C0(1) + 0(xi~) — 
0(*r) = 0 and C0(1) + 0(0) = £} and value A*fa 0) = (0(1), - 0 ( 0 -
[F(-) - #(-)]0(l))- Since Rw x L2 is reflexive, A* generates a C0-semi-
group on Rw x L2. 

Now, define A: 9(A) - L2 by G40)(x) = - 0(x) - [F(x) - #(x)]0(l) 
with domain 9(A) = {0 e L2 \ 0 is absolutely continuous on (0, x0 and 
(jq, 1), 0 e L2 and C0(1) + #jcf) - 0(xl) = 0}, 5 : 9(B) = ^ ( ^ ) - L2 
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by B<1) = C$1) + 0(0), B+: R» -> ^(^) by £+£ = #(•)£ and F: 0(F) = 
<3{A) -+ Rn by F0 = $1). By our choice of H, B+ is a right inverse for 2? 
and clearly B+9 AB+ and FB+ are bounded. 

With these operators A* may be expressed as A*(£, cß) = (F̂ >, v40) with 
domain ^(^*) = {(£, 0) e R » x L2 |^e^(,4), £^ = £}. Furthermore, 
r (defined by (2.22)-(2.23)) can be expressed as T<p = A<p - B+F</> with 
domain 0 ( r ) = {</>e@(A) \ B<p = 0}. Theorem 1.3 applies to show that 
r(with domain @>(T)) generates a C0-semigroup on L2. Indeed, one need 
only establish that F is (A - £+F)-bounded on {</> G &(A) \ B(/) = 0}. To 
see this, let 0 < e < 1 — x\. Then 

$1) = fa) + V(P(s)ds, 1 - e < r < 1; 

so that 

[ / + J ' F ( 5 ) * ] $ 1 ) = $ 0 + £ [ # * ) + F(5)çS(l)]Â 

on (1 — £, 1). Integrating both sides over (1 — e9 1), one obtains 

eil + Ä-J0O) = J j_ £ W0 + J ) [ ^ ) + F{s)cli\)]ds)du 

where ATe is a matrix satisfying |ATe| -> 0 as e -* 0. Thus for e sufficiently 
small, 

\#t)\ ^ fi"1 I [/ + ^J" 1 I { ( j ^ 1^0 I2 dtf2 

+ y s3/2(T_ | [(A - £+F)$(*) |2 &y^J 

^ | 0 | + c2|G4-JB+Gtyl 

for appropriate ci, c2. 
Finally, we remark that a similar application of Theorem 1.2 (part (ii)) 

shows that T(with domain @(T)) generates a C0-group on L2 provided C 
is nonsingular. 

3. Proofs. The proof of Theorem 2.1 relies on the following technical 
lemma whose proof is left to the reader. 

LEMMA 3.1. For A e C, define Mx: L2 -+ L2 by 

[Mx<f>](t) = Te^-s^(s)ds. 

Then 
(i) R(MX) = Hl = {<j> e m I #0) = 0}, 
(ii)M,G^(L2,i/J), 
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(iii) [MJ - 1 exists and [MJ - 1 e 0$(H\, L2). 

PROOF OF THEOREM 2.1. Assume that T defined by (2.1)-(2.2) generates 
a Co-semigroup on Z^. By the Hille-Yosida Theorem (see [6]), all large 
X > 0 lie in the resolvent set of the operator T. That is, for all real X > 0 
sufficiently large 

(3.1) [T<j>]{t) - Wf) = # f ) , # • ) e ®(r ) 

has a unique solution that varies continuously in L2 as ^ varies in L2. 
By the definition of T, (3.1) reads 

(3.2) <j)(t) - # ( f ) I ^ - Ifri) = (lit) 

(3.3) Z)çi = 0, <f>eHh 

The equation (3,2) implies that <f> has the general form 

0(0 = ve* + f e*"-»> [#(*)£ + (J)(s)]ds 

= ae* -I- Mx[H(-)b + #•)] ( ' ) 

for some choice of a, è G RW. In fact, a and & must satisfy 

(3.5) L<j> = è 

(3.6) Z>0 = 0. 

With a, 6 so chosen, clearly ^ belongs to H1. 
Let ^ be a point in the resolvent set of T. We claim that a = a(<fi) and 

è = b((])) belong to &(L2, Rw). Indeed, linearity in <fi follows from the 
uniqueness of solutions of (3.1). For continuity, note that the right side of 

ê-ety) + Mx[H(.)](.)b(</,) = # - ) - M ^ ( . ) ] ( - ) 

is continuous in <p since (j> varies continuously with 0 (by assumption) 
and Mi is a bounded linear operator on L2. It follows that the map 

(3.7) 0 -> a((J>) + f « r * H(u)dub(</>) 
J o 

is a bounded map on L2 with finite dimensional range. Accordingly, the 
map 

</>-+—- \a(<]>) + fS e-*»H(u)du è(0) = e-*sH(s) b((p) 

is continuous in cj). By our assumption on H{ • ), it follows that (J) -* 6(0) is 
continuous; (3.7) implies 0 -• a(<p) is continuous as well. 

Substituting (3.4) into (3.5) and' (3.6) we see that a, b must solve sim
ultaneously 
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U?)a + UMx[H(-)])b -b = WxW-)]) 

and 

D(e*)a + D(Mx[H(.)])b = D{.MX[^-)}). 

By the previous claim, the left sides of these equations vary continuously 
as (j) varies in L2. Therefore LMX e &(L2, Rw) and L = LMxMx

l e @{H\, 
Rw). Because H1 £ RM x H J, we conclude that L e &(H\ Rw). The argu
ment is the same for D. 

The final assertion follows easily from the fact that (again by the 
Hille-Yosida Theorem) $}{T) must be dense in L2 if T generates a Co-
semigroup on LQ. 

Recall that if L e ^(H1, Rw), then the representation (2.3) is not unique. 
We take advantage of this fact to establish the following lemma that is 
needed in the proof of Lemma 2.1. 

LEMMA 3.2. If Le &(HX
9 Rw), then there exist n x n matrix-valued 

functions A(-) and B(*) whose columns belong to L2 such that for <fi e H\ 
L§ = JJ {A(s)<ß(s) + B(s)<j>(s)}ds and the matrix I — §B(s)H(s)ds is non-
singular. 

PROOF. The Riesz Representation Theorem applied to H1 implies that 
there exists ann x « matrix-valued function Z(-) whose columns belong 
to H1 such that L has the representation 

(3.8) 14 = V {Z{s)<j>{s) + Z(s)(J>(s)}ds, 0 e H\ 

Let Y(-) be any n x n matrix-valued function whose columns belong to 
H1 satisfying 

(3.9) r(0) = y(i) = 0 

and 

(3.10) J jZ(s ) - Y(s)\ \H(s)\ds < 1/2. 

Define the matrices A(-) and £(•) by A(s) = Z(s) - Y(s) and B(s) = 
Z(s)-Y(s), respectively. Observe that(Z(.) - B(-)) = 7(.) is abso
lutely continuous, (Z(t) - B(t)) = j<0(Z(s) - A(s))ds and (Z - B)(0) = 
(Z — B)(\) = 0. Consequently, it follows from Remark 2.9 that L also 
has the representation 

14 = J 1 {A(s)<j>(s) + £(s)çî(s)}<fc. 

Moreover, since 
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I V B(s)H(s)ds\ ^ TlZ^) - Y(s)\\H(s)\ds < 1/2, 
I Jo I Jo 

the matrix / — $B(s)H(s)ds is nonsingular. 

PROOF OF LEMMA 2.2. The lemma follows almost directly from Theorem 
1.3. Let X = R», Y = L2, ®(A) = @(B) = @(F) = H\ [A<j>]{t) = <j>(t\ 
Fcj) = KL<j> and B<f> = D<j>. The operator B has a bounded right inverse 
[B+7)](t) = H{t)K~l7j with range in Hh Clearly ,45+ and FB+ are bounded. 

To see that F is (^0 — 2?+F)-bounded we select a representation (2.3) 
for L for which / — $B(s)H(s)ds is nonsingular and compute 

KL<f> = K \* A(s)<j>(s)ds + K[1 B(s)<j>(s)ds 
J O «7 0 

(3.11) = K f1 A(s)<f>{s)ds + K f1 B(s)[^(s) - H{s)K^KL<j>]ds 
JO JO 

+ KC B(s)H(s)K-iKL(j>ds. 
J 0 

It follows that 

["/- K V B{s)H{s)K-lds]KL<l) = K V A(s)$(s)ds 

+ K \XB{s)[A^ - B+F<f>](s)ds 

for all <f> e ®(A) ^ @(A0). Since / - Kjl B(s)H(s)dsK~i = tf[/-
Jj B(s)H(s)ds]K~~\ this matrix is nonsingular and we obtain 

F(j> = KL<I> =\l-K i1 B(s)H(s)K-lds]~l K VA(s)<f>(s)ds 

+ \l-K \l B(s)H(s)K-lds~]~lK V B{S)[AQ<J> - B+F<f>](s)ds. 

The Cauchy-Schwarz inequality yields the existence of constants cl9 c2 

such that 

l*fl ^ cx |# . ) l + c2\(A0 - B+F)<j>\. 

This establishes the (A0 — i?+F)-boundedness of F. The result now follows 
by setting A = Ak and applying Theorem 1.3. 

The assertions concerning — T and —Ak are proved similarly; i.e., 
let [A(j)]{t) = - 0 ( 0 , Jty = -AL0, B<f> = Z)0, and [A+c](0 = H(t)K~\ 
From (3.11) the equation 



DIFFERENTIAL-BOUNDARY OPERATORS 139 

ll-KVß(s)H(s)dsK-1\-KL(ß) = -KÌlA{s)<l>{s)ds 

+ KVB(s){-<j>(s)-[H(s)K-^(-KL<f>)}ds 

leads to the (AQ — 2?+F)-boundedness of F and Theorem 1.3 can again 
be applied with A = — Ak. 

PROOF OF THEOREM 2.3. By Lemma 2.2 we have that T generates a 
Q-semigroup on L2 if and only if Ak generates a C0-semigroup on Rw x L2. 
We define Lke<%(H\ R)» by Lk<f> = KL<f>. Then Theorem 1.2 (part (i)) 
implies that Ak generates a Q-semigroup on R" x Ẑ  if D is atomic 
at 1. 

If in addition D is atomic at 0, then Theorem 1.2 (part (ii)) implies 
that — A = — Ak generates a Q-semigroup on Rn x L2. Consequently, 
both T and — T are generators which implies that T generates a Co-
group on L2. 

PROOF OF THEOREM 2.8. Let (£, <fi) belong to <&(Af). By definition there 
exists (f, <Jj) e Rw x L2

 such that 

(3.12) 0 = (Ak(v, iß), (£, <P)} - <ir,, <f), (I, $)> 

for all (ij, <[>) e 2>(Ak) and 

(3.13) Afâ, & = (|, 0). 

We assume that L and D have the representations £>^ = |Jrf//(s)0(.s) 
and 1,0= Jj{^(5)^(j) + B(s)<j>(s)}ds, respectively. Therefore (3.12) can 
be written as 

0 = \\(f>(s), A*(s)K*Ç-$(s)yds + {\<j>(s),B*(s)K*Ç + (s)>ds 
(3.14) J0 J0 

Integrating the last term by parts we obtain 

0 = j*<0(*)> A*(s)K*Ç - $(s)}ds 

(3.15) + Jo ̂  B*(s)K*Z + W + V*(^>ds 

+ <M0"¥(0) « M W ) , É>. 
Note that each element of the form (D<j>, <j>) with <j> e H\ <j>{0) = 0(1) = 0, 
belongs to @(Ak) and for such an element the last term in (3.15) becomes 
zero. Consequently, the Fundamental Lemma of the Calculus of Varia
tions yields the absolute continuity of [B*K*£ 4- 0 4- //*£](•) and 
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(3.16) [B*K*Ç + </, + M*Ç]'(t) = [A*K*Ç - $ ( 0 

holds almost everywhere in [0, 1]. Moreover, the left side of (3.16) belongs 
to L2 and since /**(•)! is of bounded variation, we have that 

(3.17) m = [B*K*Ç + <ß(t) 

is of bounded variation and 

(3.18) fit) = A*(t)K*Ç - [W(t) + //*(')£]'• 

Equation (3.15) can now be written as 

which implies that for each fieH1 

(3 19) ° = <m' ~ W ° + ) + -"*(0+)? + / '* (0)Ç)> 

+ <#1), (W-) + /**(!-> f - i«*(l)l)>. 
Consequently, it follows that 

(3.20) V(fP) = [^*(0+) - /i*(0)]| = /*(0)l 

and 

(3.21) f(l-) = Di»(l) - ^ ( 1 - ) ] | = /*(1)|. 

Since /*(1) is nonsingular, we can solve (3.21) for £ and substitute this 
solution into (3.20) to obtain 

(3.22) I = [/*(l)]-i W(l~) 

and 

(3.23) W(0+) = /*(0)[/*(l)]-1 W{\-). 

Substituting (3.22) into (3.17) yields 

(3.24) fa) = A*w*e - mo + MW+QT1 m-)Y. 
Thus we have shown that if (f, (f) e @(A%)9 then SP"( - ) is of bounded varia
tion, ¥(•) + /i*(-)[^*(l)]_1^(l") belongs to H\ W(-) satisfies the boundary 
condition (3.23) and Af(Ç, <fi) = (£, $) where £ and 0 are defined by 
(3.22) and (3.24), respectively. To complete the proof there remains only 
an elementary calculation to show that all (£, cf) that satisfy these condi
tions belong to @(Af). 
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