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LOCALIZATION WITH RESPECT TO A CLASS OF SPACES
GERALD A. ANDERSON

1. Introduction. Let % be a set of compact Hausdorff spaces. Given a
Hausdorff space X, we construct the universal example of a map X — Y
so that every map 4 — Y, 4 € &, is null-homotopic. For suitably chosen
&, this localization is shown to be the Quillen plus construction, if X
is a CW-complex with [z,(X), z;(X)] perfect, and the Sullivan localization,
if X is a nilpotent CW-complex with the Malcev-Lazard completion of
71(X) equal to 0.

2. Z-localization. Throughout this paper, we will assume all spaces
pointed, maps basepoint preserving and homotopies relative to the
basepoint. Cones, suspensions and mapping cylinders and cones will all
be reduced. Let % be any set of spaces. We say that a space X is %#-local
if every map f: 4 — X, 4 € %, is null-homotopic. An %-localization of
aspace Xisamap Lgz: X — Xz so that

(i) Xz is #-local and

(ii) if Y is #-local and g: X — Y, then there is a map h: Xz — Y so
that ho Ly =~ g.

Given X, define Fz(X) (or just F(X) if & is understood)to be the space
obtained from X by adjoining the mapping cones of all maps 4 — X,
de . Note that X < Fgz(X). Define FX(X) = X, Fi(X) = Fz(FrY(X))
and let Xz = lim F%(X); define Lz: X — X to be the obvious inclusion.

THEOREM 2.1. If X is Hausdorff and each space in & is compact Hausdorff,
then Ly: X — Xg is an % -localization.

PRrOOF. Let de &, f: 4 — X;. Since 4 is compact, there is an integer
n so that f(4) = F73(X). Therefore, f'is null-homotopic in F%(X) and so
in Xg.

Suppose g: X — Y where Y is #-local. Clearly, g extends to a map
Fz(X) > Fg(Y),and soto amap gz: Xg > Ygz. But Lg(Y): Y — Y, is
a homotopy equivalence, and letting ¢ be a homotopy inverse, 1 = ¢ o g5
satisfies the relation h o La(X) = g.
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REeEMARKS. (1) If & is a set of compact Hausdorff spaces and # < &/,
then X/, is &-local by the proof of the theorem.

(2) If X is a CW-complex and & is a set of CW-complexes, then X has

. the homotopy type of a CW-complex. To see this, define 1:}(X) to be the
CW-complex obtained from X by adjoining the cones of all cellular maps
4 - X, e &. Then F4(X) = Fz(X) is a homotopy equivalence, and the
construction follows as above.

(3) This construction has been used by Spanier [7] (with X = M(x, n),
F = {S#*1, §712, .. }) to obtain spaces of type K(x, n), and by Anderson
[1](with# = {Z*M(Z/p, 1): k = 0, 1, ..., pe K)} to obtain a localiza-
tion of the homotopy groups of a space, away from a set of primes K.

3. A-acyclic localization. Let A be a subring of Q and define % (/) to be
a set of representatives of the homotopy types of finite CW-complexes 4
with H,(4; A) = 0. In this section, we characterize the 4 ()-localization
of a CW-complex. We let X, = Xz, and Ly = Ly (.

LemMA 3.1. L, is the composition g o f of a homotopy equivalence f and
a A-acyclic resolution g.

Proor. Define, as in §2, G1(X) to be X with the mapping cylinders of
all cellular maps 4 — X adjoined; obviously f;: X < G1(X) is a homotopy
equivalence and the natural collapse g;: GY(X) — ﬁ‘l(X) is a A-acyclic
resolution. Define G"(X) = G{(G* (X)) and f,;: X —» G*(X), g,: G(X) —»
Fn(X) by

x L= G x) L Gr(x),
Gr(X) = GYG™Y(X)) = FYG"Y(X)) £=% FYFY) = Fr(X);

f» 8, are compatible with the inclusions G*(X) < G»(X), F*(X) <
Frt1(X). Passing to the direct limit, we get the result.

We say that a group P is A-perfect if (P/[P, P]) ® A = 0. Given a group
G, define G, to be the smallest normal subgroup of G containing all
finitely presented A-perfect subgroups.

THEOREM 3.1. Let X be a CW-complex. Then L,: X — X, is the unique
map (up to homotopy) satisfying.

(1) (Lpy: H(X; L¥E® A) = Hy(Xy; £ ® A) for every coefficient
bundle & over X ,,

() z,(X,) is a A-module for n = 2, and

) Xy = 71(X)/(y(X))s

Proor. For (1), it suffices to show thatAH*(X ;EX) @A) = H*(ﬁ' X);
& ® /) for every coefficient bundle ¢ over F(X). (See the remarks following
Theorem 1.1.) Define X = X U M 1, taken over all cellular maps f: 4 — X,
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de F(A).Then X = X and F(X) = X U | Je(3; M) where 3, M, denotes
the top of the mapping cylinder M;. The result now follows from the
appropriate Mayer-Vietoris sequence since \/c(0+M,) is contractible,
X N Ve@:My) = 2,M; is A-acyclic, and £[\/d, M is trivial since it
extends over the contractible space \/c(0;M/).

Let K = {p: p a prime, A ® Z/p = 0} and let M, be the Moore space
M(Z/p, 1), pe K. Then Z*M,e #(A),k =0, 1, ..., and so [Z*M,, X ]| =
0. By [6], there is an exact sequence

0 - 7 1(X)) ® Z[p — [2*M )y, X 4] = Tor (wy(Xy; Z/p) — 0

and (2) follows from [1], Theorem 1.5.
We now show that there is an exact sequence

0 - my(X), - m(X) E2% 7 (X) - 0.

(i) L, is surjective: Immediate from the Van Kampen theorem.

(i) ker(Ly) = my(X)4: Let [f]eker(Ly);. Then there exists a map
F: D2 - X, so that F|S! =~ L,of. By Lemma 3.1, there is a space X’
containing X as a strong deformation retract and a A-acyclic resolution
p: X' = X sothat p|X = L, Let 4 be the pull-back of the diagram

) UTUN D2
F
l

X’——————PXA

Since p is a A-acyclic resolution, p’ is also, and so 4 is A-acyclic; 4 is
compact since p’ is proper.

Clearly, f factors through 4, i.e., there exist maps G: 4 — X, g: S1 —» 4
so that G - g = f. Therefore, [f] = G;[g] lies in the subgroup Gy(z1(d)).
Since Hy(d; A) = 0, ny(4) is A-perfect, and it follows that Gy(zy(d) is
also. Thus [f] € (X)),

(iii) 71(X), < ker(Ly),: Let P be a finitely presented A-perfect sub-
group of zy(X)and [f]e P. Let p: Y — X be the covering space correspond-
ing to the subgroup P and let f:S1 — Y be a lift of f. Since z,(¥) =~ P
is finitely presented, there is a finite subcomplex Y, of Y so that z;(Y,) =
P and f is deformable into Y. It follows from the proof of Proposition
2.2 of [5] that £, and therefore f, factors through a finite A-acyclic CW-
complex, since H,(Yy; A) = 0 for n < 1. Thus [f]eker(L,),. Since
ker(L ), is normal, it contains 7;(X) .

Uniqueness of L, follows from obstruction theory.
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REMARK. Let ¢ be an infinite cardinal and define % () to be a complete
set of representatives of the homotopy types of A-acyclic CW-complexes
with < ccells. By the proof of the theorem Lg 4: X — Xz, satisfies
conditions (1) and (2) (since Xy (4 is F(A)-local) and

T1( Xz ) = T(X)/(@A( X4, 00

where ( )4, denotes the normal closure of all A-perfect subgroups
with a presentation of cardinality < c.

ExampLEs. (1) If [z(X), w(X)] is perfect and has a presentation of
cardinality < c. then Lg z: X — Xz g is the plus construction of
Quillen (see, for example, [4]).

(2) If X is a nilpotent space and the Malcev-Lazard completion ([3])
71(X) ® Ais 0, then L,: X — X, is the localization of X, away from the
set of primes invertible in A, of Sullivan [8].

We may generalize the class % (/) as follows. Let A, be a generalized
(reduced) homology theory defined on the category of CW-complexes and
let # (h,) be a complete set of homotopy types of CW-complexes 4 with
< c cells, such that A,(4) = 0. Recall from [2] that a CW-complex X is
said to be A -local if for any A,-equivalence /> 4 — B, f*: [B, X] — [4, X]
is bijective, and that any CW-complex X has an h,-localization X,
provided A, satisfies the limit axiom.

Clearly, any hy-local space is % (hy)-local, and so there is a map
Xg ) — X4, commuting, up to homotopy, with the natural maps from
X. By Theorem 3.1 and [2], this map is not in general a homotopy equiva-
lence (for any cardinal c).

PROPOSITION 3.2. Let ¢y be the cardinality of h(S9). If ¢ > ¢y and X is
F (hy)-local, then QX is h,-local.

ProoOF. Let f: 4 — B be an hy-equivalence where 4, B are CW-com-
plexes with < ¢ cells. Then both C; and 3C; are in & (h,). Since the
sequence C; — Y4 — B — 3Cyis coexact, (Jf)*: [2B, X] 5, [34, X] and
the result follows as in [2], Lemma 3.3.
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