LOCALIZATION WITH RESPECT TO A CLASS OF SPACES

GERALD A. ANDERSON

1. Introduction. Let \mathscr{F} be a set of compact Hausdorff spaces. Given a Hausdorff space X, we construct the universal example of a map $X \to Y$ so that every map $\Delta \to Y$, $\Delta \in \mathscr{F}$, is null-homotopic. For suitably chosen \mathscr{F} , this localization is shown to be the Quillen plus construction, if X is a CW-complex with $[\pi_1(X), \pi_1(X)]$ perfect, and the Sullivan localization, if X is a nilpotent CW-complex with the Malcev-Lazard completion of $\pi_1(X)$ equal to 0.

2. \mathscr{F} -localization. Throughout this paper, we will assume all spaces pointed, maps basepoint preserving and homotopies relative to the basepoint. Cones, suspensions and mapping cylinders and cones will all be reduced. Let \mathscr{F} be any set of spaces. We say that a space X is \mathscr{F} -local if every map $f: \Delta \to X, \Delta \in \mathscr{F}$, is null-homotopic. An \mathscr{F} -localization of a space X is a map $L_{\mathscr{F}}: X \to X_{\mathscr{F}}$ so that

(i) $X_{\mathcal{F}}$ is \mathcal{F} -local and

(ii) if Y is \mathscr{F} -local and $g: X \to Y$, then there is a map $h: X_{\mathscr{F}} \to Y$ so that $h \circ L_{\mathscr{F}} \cong g$.

Given X, define $F_{\mathscr{F}}(X)$ (or just F(X) if \mathscr{F} is understood) to be the space obtained from X by adjoining the mapping cones of all maps $\Delta \to X$, $\Delta \in \mathscr{F}$. Note that $X \subset F_{\mathscr{F}}(X)$. Define $F^0_{\mathscr{F}}(X) = X$, $F^n_{\mathscr{F}}(X) = F_{\mathscr{F}}(F^{n-1}_{\mathscr{F}}(X))$ and let $X_{\mathscr{F}} = \lim_{X \to \infty} F^n_{\mathscr{F}}(X)$; define $L_{\mathscr{F}}: X \to X_{\mathscr{F}}$ to be the obvious inclusion.

THEOREM 2.1. If X is Hausdorff and each space in \mathcal{F} is compact Hausdorff, then $L_{\mathcal{F}}: X \to X_{\mathcal{F}}$ is an \mathcal{F} -localization.

PROOF. Let $\Delta \in \mathcal{F}$, $f: \Delta \to X_{\mathcal{F}}$. Since Δ is compact, there is an integer n so that $f(\Delta) \subset F^n_{\mathcal{F}}(X)$. Therefore, f is null-homotopic in $F^{n+1}_{\mathcal{F}}(X)$ and so in $X_{\mathcal{F}}$.

Suppose $g: X \to Y$ where Y is \mathscr{F} -local. Clearly, g extends to a map $F_{\mathscr{F}}(X) \to F_{\mathscr{F}}(Y)$, and so to a map $g_{\mathscr{F}}: X_{\mathscr{F}} \to Y_{\mathscr{F}}$. But $L_{\mathscr{F}}(Y): Y \to Y_{\mathscr{F}}$ is a homotopy equivalence, and letting ϕ be a homotopy inverse, $h = \phi \circ g_{\mathscr{F}}$ satisfies the relation $h \circ L_{\mathscr{F}}(X) \cong g$.

Copyright © 1983 Rocky Mountain Mathematics Consortium

AMS (MOR) subject classification: 57D99.

Received by the editors on July 7, 1978.

REMARKS. (1) If \mathscr{F} is a set of compact Hausdorff spaces and $\mathscr{F} \subset \mathscr{F}'$, then $X_{\mathscr{F}'}$, is \mathscr{F} -local by the proof of the theorem.

(2) If X is a CW-complex and \mathscr{F} is a set of CW-complexes, then X has the homotopy type of a CW-complex. To see this, define $\hat{F}_{\mathscr{F}}(X)$ to be the CW-complex obtained from X by adjoining the cones of all cellular maps $\Delta \to X, \Delta \in \mathscr{F}$. Then $\hat{F}_{\mathscr{F}}(X) \subset F_{\mathscr{F}}(X)$ is a homotopy equivalence, and the construction follows as above.

(3) This construction has been used by Spanier [7] (with $X = M(\pi, n)$, $\mathscr{F} = \{S^{n+1}, S^{n+2}, \ldots\}$) to obtain spaces of type $K(\pi, n)$, and by Anderson [1] (with $\mathscr{F} = \{\Sigma^k M(\mathbb{Z}/p, 1): k = 0, 1, \ldots, p \in K)\}$ to obtain a localization of the homotopy groups of a space, away from a set of primes K.

3. A-acyclic localization. Let Λ be a subring of \mathbf{Q} and define $\mathscr{F}(\Lambda)$ to be a set of representatives of the homotopy types of finite CW-complexes Δ with $\tilde{H}_*(\Delta; \Lambda) = 0$. In this section, we characterize the $\mathscr{F}(\Lambda)$ -localization of a CW-complex. We let $X_{\Lambda} = X_{\mathscr{F}(\Lambda)}$ and $L_{\Lambda} = L_{\mathscr{F}(\Lambda)}$.

LEMMA 3.1. L_{Λ} is the composition $g \circ f$ of a homotopy equivalence f and a Λ -acyclic resolution g.

PROOF. Define, as in §2, $G^1(X)$ to be X with the mapping cylinders of all cellular maps $\Delta \to X$ adjoined; obviously $f_1: X \subset G^1(X)$ is a homotopy equivalence and the natural collapse $g_1: G^1(X) \to \hat{F}^1(X)$ is a Λ -acyclic resolution. Define $G^n(X) = G^1(G^{n-1}(X))$ and $f_n: X \to G^n(X), g_n: G^n(X) \to \hat{F}^n(X)$ by

$$\chi \xrightarrow{f_{n-1}} G^{n-1}(X) \xrightarrow{f_1} G^n(X),$$

$$G^n(X) = G^1(G^{n-1}(X)) \xrightarrow{g_1} \hat{F}^1(G^{n-1}(X)) \xrightarrow{g_{n-1}} \hat{F}^1(\hat{F}^{n-1}) = \hat{F}^n(X);$$

 f_n , g_n are compatible with the inclusions $G^n(X) \subset G^{n+1}(X)$, $\hat{F}^n(X) \subset \hat{F}^{n+1}(X)$. Passing to the direct limit, we get the result.

We say that a group P is A-perfect if $(P/[P, P]) \otimes \Lambda = 0$. Given a group G, define G_{Λ} to be the smallest normal subgroup of G containing all finitely presented Λ -perfect subgroups.

THEOREM 3.1. Let X be a CW-complex. Then $L_A: X \to X_A$ is the unique map (up to homotopy) satisfying.

(1) $(L_{\Lambda})_*$: $H_*(X; L_{\Lambda}^* \xi \otimes \Lambda) \cong H_*(X_{\Lambda}; \xi \otimes \Lambda)$ for every coefficient bundle ξ over X_{Λ} ,

(2) $\pi_n(X_A)$ is a A-module for $n \ge 2$, and

(3) $\pi_1(X_A) \cong \pi_1(X)/(\pi_1(X))_A$.

PROOF. For (1), it suffices to show that $H_*(X; (\xi|X) \otimes \Lambda) \cong H_*(\hat{F}(X); \xi \otimes \Lambda)$ for every coefficient bundle ξ over $\hat{F}(X)$. (See the remarks following Theorem 1.1.) Define $\hat{X} = X \cup M_f$, taken over all cellular maps $f: \Delta \to X$,

 $\Delta \in \mathscr{F}(\Lambda)$. Then $X \cong \hat{X}$ and $\hat{F}(X) = \hat{X} \cup \bigcup c(\partial_+ M_f)$ where $\partial_+ M_f$ denotes the top of the mapping cylinder M_f . The result now follows from the appropriate Mayer-Vietoris sequence since $\bigvee c(\partial_+ M_f)$ is contractible, $\hat{X} \cap \bigvee c(\partial_+ M_f) = \partial_+ M_f$ is Λ -acyclic, and $\xi | \bigvee \partial_+ M_f$ is trivial since it extends over the contractible space $\bigvee c(\partial_+ M_f)$.

Let $K = \{p: p \text{ a prime, } \Lambda \otimes \mathbb{Z}/p = 0\}$ and let M_p be the Moore space $M(\mathbb{Z}/p, 1), p \in K$. Then $\Sigma^k M_p \in \mathscr{F}(\Lambda), k = 0, 1, \ldots$, and so $[\Sigma^k M_p, X_{\Lambda}] = 0$. By [6], there is an exact sequence

$$0 \to \pi_{k+1}(X_A) \otimes \mathbb{Z}/p \to [\Sigma^k M_p, X_A] \to \text{Tor} (\pi_k(X_A); \mathbb{Z}/p) \to 0$$

and (2) follows from [1], Theorem 1.5.

We now show that there is an exact sequence

$$0 \to \pi_1(X)_A \to \pi_1(X) \xrightarrow{(L_A)*} \pi_1(X_A) \to 0.$$

(i) L_{\sharp} is surjective: Immediate from the Van Kampen theorem.

(ii) ker $(L_{\sharp}) \subset \pi_1(X)_A$: Let $[f] \in \text{ker}(L_A)_{\sharp}$. Then there exists a map $F: D^2 \to X_A$ so that $F|S^1 \cong L_A \circ f$. By Lemma 3.1, there is a space X' containing X as a strong deformation retract and a A-acyclic resolution $p: X' \to X_A$ so that $p|X = L_A$. Let Δ be the pull-back of the diagram

Since p is a A-acyclic resolution, p' is also, and so Δ is A-acyclic; Δ is compact since p' is proper.

Clearly, f factors through Δ , i.e., there exist maps $G: \Delta \to X, g: S^1 \to \Delta$ so that $G \circ g \cong f$. Therefore, $[f] = G_{\sharp}[g]$ lies in the subgroup $G_{\sharp}(\pi_1(\Delta))$. Since $H_1(\Delta; \Lambda) = 0, \pi_1(\Delta)$ is Λ -perfect, and it follows that $G_{\sharp}(\pi_1(\Delta))$ is also. Thus $[f] \in \pi_1(X)_A$.

(iii) $\pi_1(X)_A \subset \ker(L_A)_{\sharp}$: Let P be a finitely presented A-perfect subgroup of $\pi_1(X)$ and $[f] \in P$. Let $p: Y \to X$ be the covering space corresponding to the subgroup P and let $\tilde{f}: S^1 \to Y$ be a lift of f. Since $\pi_1(Y) \cong P$ is finitely presented, there is a finite subcomplex Y_0 of Y so that $\pi_1(Y_0) \cong$ P and \tilde{f} is deformable into Y_0 . It follows from the proof of Proposition 2.2 of [5] that \tilde{f} , and therefore f, factors through a finite A-acyclic CWcomplex, since $\tilde{H}_n(Y_0; \Lambda) = 0$ for $n \leq 1$. Thus $[f] \in \ker(L_A)_{\sharp}$. Since $\ker(L_A)_{\sharp}$ is normal, it contains $\pi_1(X)_A$.

Uniqueness of L_A follows from obstruction theory.

REMARK. Let c be an infinite cardinal and define $\mathscr{F}_c(\Lambda)$ to be a complete set of representatives of the homotopy types of Λ -acyclic CW-complexes with < c cells. By the proof of the theorem $L_{\mathscr{F}_c(\Lambda)}: X \to X_{\mathscr{F}_c(\Lambda)}$ satisfies conditions (1) and (2) (since $X_{\mathscr{F}_c(\Lambda)}$ is $\mathscr{F}(\Lambda)$ -local) and

$$\pi_1(X_{\mathscr{F}_c(\Lambda)}) \cong \pi_1(X)/(\pi_1(X))_{\Lambda,c},$$

where $()_{A,c}$ denotes the normal closure of all A-perfect subgroups with a presentation of cardinality < c.

EXAMPLES. (1) If $[\pi_1(X), \pi_1(X)]$ is perfect and has a presentation of cardinality $\langle c.$ then $L_{\mathscr{F}_c(\mathbb{Z})}: X \to X_{\mathscr{F}_c(\mathbb{Z})}$ is the plus construction of Quillen (see, for example, [4]).

(2) If X is a nilpotent space and the Malcev-Lazard completion ([3]) $\pi_1(X) \otimes \Lambda$ is 0, then $L_A: X \to X_A$ is the localization of X, away from the set of primes invertible in Λ , of Sullivan [8].

We may generalize the class $\mathcal{F}_c(\Lambda)$ as follows. Let h_* be a generalized (reduced) homology theory defined on the category of *CW*-complexes and let $\mathcal{F}_c(h_*)$ be a complete set of homotopy types of *CW*-complexes Δ with < c cells, such that $h_*(\Delta) = 0$. Recall from [2] that a *CW*-complex X is said to be h_* -local if for any h_* -equivalence $f: A \to B, f^*: [B, X] \to [A, X]$ is bijective, and that any *CW*-complex X has an h_* -localization $X_{h_*}^{*}$, provided h_* satisfies the limit axiom.

Clearly, any h_* -local space is $\mathscr{F}_c(h_*)$ -local, and so there is a map $X_{\mathscr{F}_c(h_*)} \to X_{h_*}^{2}$ commuting, up to homotopy, with the natural maps from X. By Theorem 3.1 and [2], this map is not in general a homotopy equivalence (for any cardinal c).

PROPOSITION 3.2. Let c_0 be the cardinality of $h_*(S^0)$. If $c > c_0$ and X is $\mathcal{F}_c(h_*)$ -local, then ΩX is h_* -local.

PROOF. Let $f: A \to B$ be an h_* -equivalence where A, B are CW-complexes with < c cells. Then both C_f and ΣC_f are in $\mathscr{F}_c(h_*)$. Since the sequence $C_f \to \Sigma A \to \Sigma B \to \Sigma C_f$ is coexact, $(\Sigma f)^* : [\Sigma B, X] \cong [\Sigma A, X]$ and the result follows as in [2], Lemma 3.3.

References

1. D.W. Anderson, Localizing CW-complexes, III. J. Math. 16 (1972), 519-525.

2. A.K. Bousfield, Homological localization of spaces, groups and π -modules, in Localization in Group Theory and Homotopy Theory, Lecture Notes in Mathematics 418, Springer-Verlag, Berlin, 1974.

3. ——, and D.M. Kan, *Homotopy Limits, Completions and Localizations*, Lecture Notes in Mathematics 304, Springer-Verlag, Berlin, 1972.

4. S.M. Gersten, *Higher K-theories of rings*, in *Algebraic K-Theory* I, Lecture Notes in Mathematics 341, Springer-Verlag, Berlin, 1973.

5. C.R.F. Maunder, General position theorems for homology manifolds, J. London Math. Soc. 4 (1972), 760–768.

6. F.P. Peterson, Generalized cohomotopy groups, Amer. J. Math 78 (1956), 259-281.

7. E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

8. D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. 100 (1974), 1-79.

QUEST RESEARCH CORPORATION, NAVAL OPERATIONS DIVISION, 6858 OLD DOMINION DR. MCLEAN, VA 22101