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OSCILLATION PROPERTIES OF
FORCED THIRD ORDER
DIFFERENTIAL EQUATIONS

W.E. TAYLOR, JR.

Introduction. A great deal of literature exists on the oscillation and
nonoscillation of the equation

¢)) ' +q@)y =0

where q(t) is a positive continuous function defined on [0, o). However,
little seems to be known about equations of the type

@ Y+ q@)y = (1)

where f(¢) is continuous and changes sign arbitrarily on [0, o0). The
asymptotic properties of

(€) Y+ 9@y = f0)

have been studied in several works, some which include the investigations
of Burton and Grimmer [1], Keener [3] and Hammett [2]. Hammett, in
particular, has given conditions under which the nonoscillatory solutions
of (3) tend to zero. The main purpose of this work is to carry out a similar
study for (2). The techniques used herein are patterned after those in [6]
in which Singh concentrated on equations with retarded arguments.

Recall that a solution of (1) or (2) is called oscillatory if it has arbitrarily
large zeros and nonoscillatory otherwise. A solution y is termed quickly
oscillatory if there exists an increasing sequence of zeros of y, {#;}2,
with the property that lim;,.(?;+; — ¢;) = 0. The concept of quickly
oscillatory solutions is also considered in other works, see [4] and [7].

Main result. It is well-known that if z is a nontrivial solution of z” +
¢(¢)z = 0 having at least two zeros on [c, d], then (d — ¢) ¢ g(¢)dt > 4.
This inequality is sometimes called Lyapunov’s inequality. Lovelady
in [5] recently obtained analogous results for (1),

THEOREM 1. If u is a nontrivial solution of (1) satisfying u(a) = u(b) = 0,
and u(x) # Oon(a, b), then

Received by the editors on February 17, 1981, and in revised form on August 21, 1981.
Copyright © 1983 Rocky Mountain Mathematics Consortium

15



16 W.E. TAYLOR
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This result is significant because it yields necessary conditions for (1)
to have quickly oscillatory solutions.

THEOREM 2. If equation (1) has a quickly oscillatory solution, then

®) [ awar =
and lim sup,_, , q(t) = oo.

Proor. Consider a pair of consecutive zeros t,., > ¢, of a quickly
oscillatory solution of (1). Using (4) we obtain

ﬁWW>£MWW>Mmrw~w

asn — o0. Hence (5) holds.
Applying the mean-value theorem for integrals we obtain

5:,.+1 q(®)dt = q(c,)tus1 — 1,) > 8/(tsy1 — 1,)?

n

where ¢, < ¢, < t,41, and it follows that lim sup,_. g(t) = oo and the
proof is complete.

We now investigate the asymptotic behavior of certain solutions of (2).

THEOREM 3. Suppose h > 0 is such that lim inf, ., [*{* q(t)dt = ¢ > 0
and 5%° |f(@®)|dt < oo. If y is a nonoscillatory solution of (2) such that y(t)
+» 0ast — o0, theny'(t) » 0ast — oo.

Proor. We assume without loss of generality that y(z) > 0 on some ray
[t1, o). Integrating equation (2) from ¢, to ¢ we have

© ¥ =y + | qoyss s [ 1701
As t — o0, the right side of (6) remains bounded. Also, either
O] j: q@®)y(t)dt =

or

@®) J7 axod < .

If (7) holds, then y"(t) - — o0 as t — o0, a contradiction, since y(t) >
Oforz > t;. Thus (8) holds. Since [? g(#)dt = oo, it follows that
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© lim inf y(¢) = O.
{—oco

If y'(2) is nonoscillatory, or if y'(¢) is oscillatory but does not change
sign on [t;, o), then y(¢) is monotonic and we have (in view of (9)) that
y(t) > Oast — oo, a contradiction to our hypothesis. Therefore we assume
»'(¢) is oscillatory and changes sign for arbitrarily large values of ¢.
Then

(10) lim inf [y'(z)] = O.
1—00

If lim sup,_... |y'(¢)] # O, then there is a number d > 0 such that
an lim sup [y'(¢)] > d > 0.
1—00

From (10) and (11) we can obtain increasing sequences {T,},=, and
{d,};2, such that
() T,— ocasn— o0, T, >t forn =0,

@ii) |y'(T,)| < dj4forn 2 0,

(iii) d,, = 3/4d, where d,, is the absolute maxium of |y'(¢)| on [T,_;, T,).
Let {z,} be such that[y'(z,)| = d, and z, ¢ [T,_;, T,]. Also let (a,, b,)
be the largest open interval containing z, such that |y'(¢)] > d,/2 for all
tin this interval. Note that |y'(a,)| = |y'(b,)| = d,/2and

(12) d, z |y ()| > d,/2, where a, < t < b,

Since

y(z,) = y'(a,) + _f: y'(t)dt

we have
(13) e < el + |1y o,
consequently
4 < d2 + [ "1y,
or
(14) a2 < ("1,

It is also true that

(15) a2 s | "1y,
Adding (14) and (15) we have



18 W.E. TAYLOR

b
(16) d, < (" 1yl
Applying the Schwartz inequality
by 2 by by
d,%gl: (¢ dt] <\ a "2(t)dt
[Tyoa] s [ a |y
bn "
= (b, — ap) |y
Integrating [’ y"%(t)dt by parts we obtain
bn
dz/(b, — a,) < y'(b,)y"(b,) — ¥'(a,)y"(a,)— L Y (@)y'()dt
= Y'(b)y"(bs) — y'(a,)y"(a,)
b ’ bn ’
+ | g @ - |y
by , b,
< K+ [ a@p 1yl + |71y ol 1ol

where K = y'(b,)y"(b,) — y'(a,)y"(a,). From our choice of a, and b, it
follows that K < 0.

Thus
a6, - a) < [ 1y @@y + |71y olL e
b b
s d, | gwwnar + 4, § "1 f0iar
After dividing both sides by d,, we get
by (M
an d,fb, - a) < (" g + [ 17war

In view of (8), the right side of (17) approaches zero as n — oo. Conse-
quently

(18) lim (b, — a,) = .

Let N be a positive integer so that |y'(t)| = 0 on [ay, by], #; < ay and
b

(19) j"q(t)y(t)dt <1
aN

If y'(¢) = 0 on [ay, by), then from our hypothesis and (18) we can choose
N to also satisfy

bN
j q(t)dt > 8/3d,
1+an
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Applying the mean-value theorem to y(t) over [ay, t], ay < t £ by we
have

(20) (@) =yay) + Yt — ay),ay < B < t,
0

J™ gt = [ @ - ana@ry @t 2 @i [ @ - aarar
2 (8 [t~ ez 3/ (¢~ ag(oy

N
> (3/8)d j' o a(de > 1.

But this contradicts (19). Hence, d = 0 and lim,_,..y’'(¢) = 0. If y'(¢#) < O
on [ay, by], then instead of (20) we would use

(20) (@) = yby) + y'(B)t — by), t < B < by

and the interval [ay + 1, by] above would be replaced by the interval
[ay, —1 + by), after which the same conclusion is obtained.

Now for our main results.

THEOREM 4. Suppose lim inf,_., [** g(¢t)dt 2 ¢ > O for some h > 0 and
% | f(¢)|dt <oco. Then every nonoscillatory solution of (2) tends to zero as
t — oo.

Proof. Let y(t) be a positive nonoscillatory solution of (2) and suppose
y(t) # 0 on [a, o). If y(t) » 0 as ¢t — oo, then by Theorem 3, y'(¢) —» 0
as t —» oo. And we know from the proof of Theorem 3 that

(#3))] lim inf y(z) = 0.
t—oo
Suppose
22) lim sup y(t) > ¢ > 0.
t—0

Then in view of (21) and (22) there exists a sequence {p,}, » = 0 with
the following properties:

@) p, » 0 asn — o0, p, = aforalln,

(D) ¥(p,) > ¢,

(iii) For each n = 1, there is number p, such that p, ; < p, < p, and

W(pn) < /2.

Forn 2 1, let a,, be the largest number less than p, such that y(«,) = ¢/2
and 3, be the smallest number greater than p, such that y(8,) = ¢/2.

Applying the mean-value theorem in the interval [«,, p,], there exists
a number ¢, such that a,, < ¢, < p, and
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(23) V() = (pa) — Ha)(Ps — an) > /2B, —ap)-

From Theorem 3, y'(¢,) —+ 0 as n — oo. Therefore it follows from (23)
that

24 lim(83, — a,) = .

Moreover from our choice of a, and §,, ¥(t) = ¢/2 on [a,, $8,]. By our
previous Theorem we know that j‘i: q(@®)y(t)dt < oo, but

j ")yt > ,21 jj " d(O)dt = (c]2) gl ﬁ g(t)dt — o0 as n - oo,

a contradiction, so lim,_,, y(t) = 0, and our proof is complete.
Finally we examine some oscillatory solutions of (2).

THEOREM 5. Suppose (3 q(t)dt < oo and [ |f(t)|dt < oo and let y be a
bounded solution of (2). If y is quickly oscillatory and y' bounded, then
y - 0.

PRrROOF. Suppose y » 0 as t — co. Then lim sup |y(¢)| > d > 0 for some
constant d. Proceeding in a manner similar to Hammett [2] we have a
sequence. ¢, such that

(i)t, > oasn — oo foreachn = 1;
(ii) foreach n = 1, |y(¢,)| > d;
(iii) for each n = 2, there exist m, such that ¢, ; < m, < t, and |y(m,)|
< df2.
Let[p,, q,] be the smallest closed interval containing ¢, such that |y(p,)| =
|¥(g,)] = d/2 for n = 2. In the interval (p,, t,) there exist r, such that

Y'(rs) = ((t,) — ¥(p)/(t, — p,) which gives

'y,(rn)l = ly(tn) - y(pn)l/(tn - pn) Z "y(tn)l - ly(pn)"/(tn - pn)
> d/2(qn — P»)s

Since |y(¢)] > Ofor ¢ € (p,, q,) for each n = 2, the pair (p,, g,) must lie
between two consecutive zeros of y(¢). Hence g, — p, » 0 as n — oo,
consequently lim sup,_.., |}'(r,)] = o0, a contradiction.
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