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A TRIANGLE-BASED C1 INTERPOLATION METHOD 

R. J. RENKA AND A. K. CLINE 

ABSTRACT. This paper discusses methods and software for C1 

interpolation at arbitrarily distributed data points in the plane. The 
primary results presented here are derivative-estimation procedures 
which lead to interpolator surfaces constituting very accurate ap­
proximations for a variety of test functions. 

I. Introduction. This paper is addressed to the following problem: given 
a set of nodes (abscissae) (Xh Yt), arbitrarily distributed in the X — Y 
plane, with corresponding ordinates Zt, i = 1, . . . , N9 construct a C1 

bivariate function F(X9 Y) which interpolates the data values, i.e., 
F(X>, Y<) = Z„ i = 1, ...,JV. 

This problem arises in a wide variety of scientific fields in which the 
data represents observed or computed values of some physical pheno­
menon such as temperature, rainfall, elevation, or stress obtained by finite 
element methods. It is often impractical or impossible to obtain data at 
all of the points at which values are desired, thus making it necessary to 
compute values by an approximation technique such as interpolation. 
A smooth interpolatory surface is especially desirable when a visual 
impression of the data is called for. Since most available software for 
contour and surface perspective plotting requires that data be specified 
on a uniform mesh, it may be necessary to interpolate from a nonuniform 
mesh to a set of rectangular grid points. 

The method consists of the following three steps. 
1) Partition the convex hull of the set of nodes (the smallest convex 

region containing the nodes) into triangles by connecting the nodes with 
line segments. 

2) Estimate partial derivatives of F with respect to X and Y at each of 
the nodes using the data values on either a set of nearby nodes (a local 
method) or all of the nodes (a global method). 

3) For an arbitrary point (X, Y) in the convex hull of the set of nodes, 
determine which triangle contains the point, and compute an interpolated 
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value F(X, Y) using the data values and estimated partial derivatives at 
each of the three vertices of the triangle. Capability of extrapolation for 
a point outside of the convex hull is also provided. 

This basic solution method has been employed by McLain [9], Lawson 
[8], and Akima [1] with the exception that McLain and Akima estimate 
different quantities at Step 2 for use in the interpolation phase at Step 3. 
We have employed Lawson's interpolation algorithm in Step 3 but differ 
in our approach to the first two steps. The triangulation phase is described 
in a separate report [2] and will not be discussed here. 

Software implementing the method is listed in Renka [11] and machine-
readable code may be obtained from the first author. 

§11 describes the interpolant, §111 discusses local derivative-estimation 
procedures, §IV is addressed to global derivative estimates, and test results 
are presented in §V. 

II. C1 interpolant. Our triangle-based interpolation method computes 
a value at a point based only on data values and first partial derivatives 
at the three vertices of the triangle containing the point. Given a point 
P and the coordinates of the vertices of a triangle containing P along 
with data values and estimated partial derivatives at the vertices, we 
compute F(P) where 

1) F is a true cubic (not bicubic) in each of the three subtriangles (of 
equal area) defined by connecting the vertices to the barycenter, 

2) Fis once continuously differentiable over the triangle, but has second 
derivative discontinuities across subtriangle boundaries, and 

3) along each triangle side F is the Hermite cubic interpolant of the 
data values and tangential (directional) derivatives at the endpoints, and 
the derivative of F in the direction normal to each triangle side varies 
linearly, interpolating the normal derivatives at the endpoints. 

This piecewise cubic element F is due to Clough and Tocher [3]. C1 

continuity over a union of triangles in a triangulation follows from the 
fact that the tangential and normal derivatives (and hence the partial 
derivatives) at a point on a triangle side are completely determined by 
their values at the endpoints of the side. As we would expect, interpolation 
is exact for data taken from the six-parameter family of quadratics, but 
not for cubics. 

F(P) is evaluated by an efficient computational procedure due to 
Lawson [7]. Our implementation of this procedure also provides for 
computing derivatives of F at the user's option. Table 2.1 specifies the 
operation counts required to evaluate F, as well as the operation counts 
associated with evaluating F and its partial derivatives Fx and Fy. Sub­
tractions are included with additions and the number of compares is an 
expected value. 
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TABLE 2.1. Operation Counts for Interpolation 
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A I , . . *. i . i. ^ . • . ^ Assignment 
Additions Multiplies Divisions Compares «. , . 

62 
170 

54 
142 14 

5 2/3 
5 2/3 

50 
106 

We now consider a method for extrapolation to points which are ex­
terior to the convex hull of the nodes. The method consists of extending 
F linearly beyond the mesh boundary, i.e., we extrapolate to P by passing 
a linear function of one variable through the value and directional deriva­
tive of F at g where Q is the projection of P onto the boundary. Thus 

F(P) = F(Q) + <VF(0, P - ß> 

where the angular brackets denote inner product. 
An exterior point lies in either a semi-infinite rectangle or a semi-

infinite wedge defined by the lines which pass through the boundary nodes 
perpendicular to the boundary edges. See Figure 2.1. g is easily deter­
mined by a traversal of the boundary and when Q lies on the interior of a 
boundary edge, F(P) is readily computed from the properties of F on a 
triangle side. 

*2-
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FIGURE 2.1. Partition of the Exterior Region into 
Semi-infinite Rectangles and Wedges. 
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With this extension to points exterior to the triangulation, the inter-
polatory surface F is defined and continuous over the entire X — Y 
plane but has discontinuous first derivatives across boundaries between 
the semi-infinite regions. However, this lack of smoothness is negligible 
for points close to the triangulation boundary, and extrapolation is not 
appropriate for points far from the boundary. Thus, we feel a method for 
C1 extrapolation is not worth the computational effort. 

Details of the computational procedures for both interpolation and 
extrapolation are contained in [11]. 

III. Local derivative estimation. The interpolant F described in the 
previous section requires estimated partial derivatives at the nodes, and 
these must be determined by a local method in order that the interpola­
tion method be local. Such a method is discussed in the first subsection 
below. The computational procedure associated with the method is 
described in the second subsection. 

METHOD. For k = 1, . . . , N, choose the partial derivatives at node k 
to be the partials of a quadratic function of X and Y which interpolates 
the data value Zk at node k and which fits the data values at a set Sk of 
nearby nodes in a weighted least squares sense. Thus, derivative estimates, 
and hence interpolated values, are exact for quadratic data unless N < 6. 
(For 3 ^ N S 5, the data is fitted with a linear rather than a quadratic 
function.) 

This basic approach to derivative estimation is the method employed by 
Lawson [8] and is similar to interpolation methods proposed by McLain 
[9] and Franke and Nielson [4]. The difficulty arises in the choice of nearby 
nodes and weights. We use the following weighting function proposed by 
Franke and Little and recommended by Franke and Nielson [4]. For each 
node k9 let D{ denote the distance between nodes i and k for i = 1, . . . , 
N and define the weight associated with node /, i # k, by 

W{ EE (Rk - A ) + / ( ^ * A ) where (Rk - Dt)+ » {** " D* **£ | * * 

Rk is termed the radius of influence about node k. The weights are well 
defined when the nodes are distinct (D{ > 0 for i ^ k). Once Rk is chosen, 
Sk is taken to be the set of nodes within the radius of influence. Then for 
nodey in Sk we have Wj = (Rk - Dj)/(Rk*Dj) = l/D, - 1/Rk > 0. Thus, 
as in the case of weighting by inverse distance (Wj = 1 /Dj), this weighting 
method has the property that more distant data have less influence on 
derivative estimates. 

We have obtained good results with the following choice of Rk. For 
N ^ 9 let D be the distance from node k to the eighth closest node (other 
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than A:) to k. D is defined to be the distance from k to the furthest node 
from k if N < 9. Then Rk is taken to be the distance between k and the 
closest node to k (if it exists) whose distance from k is greater than D. 
If no such node exists, we arbitrarily choose Rk = 2D. Thus, for N suffi­
ciently large, Sk consists of the eight closest nodes to k along with all 
nodes which lie at the same distance as the eighth closest. 

In arriving at the derivative-estimation scheme outlined above, we 
tested a number of alternatives. These include weighting by inverse dis­
tance or various powers of inverse distance, taking Sk to be all nodes 
within some fixed radius (independent of A:), and choosing Sk on the basis 
of adjacency information in the triangulation. Our testing consisted of 
computing both derivative and interpolation errors for sets of randomly 
chosen interpolation points. We used two sets of pseudo-randomly 
generated nodes with sizes 100 and 1000, and data values were taken from 
four simple bivariate test functions: cubic, quartic, exponential, and 
trigonometric. 

Choosing Sk to contain nine nodes rather than eight led to comparable 
results, while other choices in the range 6 to 11 were slightly inferior. 
The inclusion of all neighbors of node k in the least squares fit has the 
apparent advantage that nodes are chosen on the basis of location relative 
to k as well as distance from A. However, this method did not prove to be 
effective in practice. Choosing Sk to be all nodes within a fixed distance 
R from node k also produced consistently inferior results for all choices 
of R. In fact, results were comparable or inferior when the constant R 
was optimized for each test function. Additional test results are presented 
in§V. 

COMPUTATIONAL PROCEDURE. The quadratic to be fitted to Zk and the 
data values at the nodes in Sk may be written G(X9 Y) = Zk + a(X - Xk)

2 

+ b(X - Xk)(Y - Yk) + c(Y - Yky + ZXJLX - Xk) + ZYk(Y - Yk). 
Then G(Xk9 Yk) = Zk and the partial derivatives of G at (Xk, Yk) are ZXk 

and ZYk. The vector of unknown coefficients 

u = [abc ZXk ZYk]
T 

is determined by minimizing 

E [Wj*(G(Xj, Yj) - Zy)P = ||Au - v||2 

where A is an m x 5 matrix, m being the number of elements in Sk. 
The row of A corresponding to node j is 

WJ[(XJ - Xk)HXj - Xk){Yj - Yk)(Yj - n)2 (Xj - Xk)(Yj - Yk)] 
and the corresponding component of v is Wj(Zj — Zk). 

The least squares minimization problem has a unique solution if and 
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only if the columns of A are linearly independent, i.e., if and only if 
G(XJ9 Yj) - Zk = 0 for all (Xj, Yj) in Sk => u = 0, or equivalently, 
Q{Xh Yj) = 0 for all (*}, YJ) in Sk [} (Xk, Yk) => Q(X, Y) = 0 for all 
(X, Y) for a general quadratic Q. Thus, a solution to the least squares 
problem is unique if and only if there is no conic section (zero contour of 
a linear or quadratic) which contains all the elements of Sk [} (Xk, Yk). 

Once all elements of Sk have been added to the least squares system, 
the system is tested for ill-conditioning and, if necessary, an additional 
node is added and the test is repeated. If it is not possible to add another 
node, a Marquardt stabilization factor is used to damp out the coefficients 
of the quadratic terms. Thus, the method is guaranteed to produce a 
unique solution unless all nodes are collinear. 

The value of Rk and the indices of the elements of Sk are determined 
by the triangulation software [2, Algorithm 7]. A 6 x 6 array is used 
to store the transpose of the augmented regression matrix which is reduced 
to an upper triangular system by Givens rotations. The transpose of the 
matrix is stored so that the routines which set up an equation and apply a 
rotation operate on matrix elements stored in contiguous locations. Note 
that the unknown coefficients are ordered so that we need only solve a 
2 x 2 triangular system for ZXk and ZYk. 

IV. Global derivative estimation. We have investigated two global 
methods for computing derivative estimates, retaining the triangle-based 
interpolant previously described. Both methods involve the iterative 
solution of a linear system and require no storage other than the 2N 
locations for the derivatives. Method I was found to be computationally 
infeasible but is presented as motivation for the second method. Method 
II resulted in accuracy comparable to that of the local method described 
in the previous section, and required substantially less computation time. 
Thus, while Method II produces a global interpolant, it does not suffer 
the usual limitations of global methods in terms of storage requirements 
and computation time. The local method, however, allows derivative 
estimates to be computed as needed for each interpolation point, thus 
eliminating the necessity of storing derivatives. We have therefore chosen 
to include both methods in the software package. 

METHOD I. Let u denote the vector of length IN containing the vector 
of X-partials at the nodes followed by the vector of Y-partials, and let H 
denote the convex hull of the nodes. In a procedure somewhat analogous 
to the development of cubic splines, we determine the value of u which 
minimizes the L2 norm of the linearized curvature of the interpolant 
F(X, Y) over H. 

We take the curvature of F to be the vector 2-norm of the curvatures, 
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KI and K2>
 m t n e directions of the X and Y axes. These are given by the 

solution of the generalized eigenvalue problem 

Ax = KT1 Bx for A = 
1 + Fl FxFy 

lFxFy 1 + Fl 
, B = a-i " xx " xy 

F F .rxy ryy-i 

where a = (1 + Fl + i72)172- To obtain the linearized curvatures, we 
assume the partials of F are small and take F2, F2, and ivFy to be zero. 
Then A is the identity matrix I, and a = 1. Hence |A — A;_1B| = 
|I — /c~lB\ = 0 => |A; I — B| = 0 , i.e., K\ and K2

 a r e the eigenvalues of B. 
Since B is symmetric, its Frobenius norm is equal to that of the diagonal 
matrix of its eigenvalues. It follows that A;2 + $ = F%% + ^% + Fyy 
Thus, the problem is to find u which minimizes the quadratic functional 

Ô(u) - J^OF*. + 21* + F%)dH. 

The interpolant can be written 

2N N 

FCC, Y) = £ H,*/X*, IO + £ Z,^,(A-, 30 
1 = 1 ï = l 

where /} and g{ are the appropriate patch functions (cardinal functions 
with local support). We may define a symmetric bilinear form on the space 
of piecewise cubic interpolants by 

a(F, G) = f (FXXGXX + 2FxyGxy + FyyGyy)dH. 

Then ß(u) = a(F, F) = urAu + bTu + c 
where 

N 
Aij = a(fi, / , ) , *,. = 2 S OC/}, g/)Z/, 

/=i 

and 

/ jv JV \ 
C = fl2]Z^, 2]Zy*gy . 

V=l y=i / 

To show that the minimization problem has a unique solution, it suffices 
to show that A is positive definite. Suppose a(F,F) = 0. Then, since the 
terms F2

X, F2
y, and F^y are nonnegative, they must integrate to zero over 

any portion of //—in particular, over each of the subtriangles on which 
F is a true cubic. It follows that F is linear on H. Since A is independent 
of the data values, we may assume without loss of generality that Z, = 0, 
i = 1, . . . , N. Then F has at least three zeros in H and is therefore identi­
cally zero. Thus, we have shown that F # 0 implies a(F, F) > 0. 

Note that the minimization problem is the variational equivalent of 
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the biharmonic equation V2(V2F) = 0. This is verified by substituting 
the integrand I of Q into the Euler-Lagrange equation 

dx* \ dFxx J
 + dxdy V dFxy ) ^ dy*\ dFyy ) " ^ 

The biharmonic equation governs the deflection due to bending in a thin 
plate, and Q may be thought of as the strain energy associated with this 
bending. 

Setting the partials of Q with respect to u;- to zero, we obtain the order 
2N linear system 2Au + b = 0 where A is symmetric, positive definite, 
and sparse. Since/ and fN+i, i = 1, . . . , N, have support on the set of 
triangles containing node i, and since the average number of neighbors 
per node is less than six, the expected number of nonzero elements in a 
row of A is 2(6 + 1) = 14 and A has at most 28N nonzeros. Since the 
zero structure depends on the ordering of the nodes, a reordering al­
gorithm might result in increased storage and computational efficiency 
for a direct solution method. In order to minimize the storage require­
ment, however, we chose to employ an iterative method. 

Note that the integrands involved in the residual 2Au + b are true 
quadratic functions of X and Y on each subtriangle for which F is cubic. 
Hence, in order to evaluate the integrals over a triangle, we employed a 
nine-point quadrature rule composed of three-point rules, exact for 
quadratics, on each subtriangle. 

For the 100-node triangulation of Fig. 5.1, A was found to have an 
estimated condition number of 1010. Thus, while guaranteed to converge, 
the Gauss-Seidel method applied to this system was so slow as to be 
computationally infeasible. In an attempt to increase the rate of con­
vergence, we applied the Successive Overrelaxation (SOR) method with 
an algorithm for estimating the optimal relaxation parameter borrowed 
from ITPACK [6].There is no theory which guarantees that this method 
would result in an improvement over Gauss-Seidel and no improvement 
was observed. No other methods were tried since Method II was found 
to be generally more accurate as well as more efficient. We conclude that 
Method I cannot be recommended. 

METHOD II. The following derivative-estimation procedure is essentially 
the same as the method used by Nielson (in conjunction with a different 
interpolant) in his minimum norm network [10]. Let Pk denote the patch 
of triangles containing node k and define 

Ô,(ZX, ZY) s f (Fl + 2F% + F*y)dx dy 

where ZX and ZY are the N-vectors of unknown partials at the nodes. 
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Then the linear system described in the previous subsection may be 
written 

dQ _ dQk -_0 dQ __ dQk __0 
dZXk dZXk ' dZYk dZYk 

fork = 1, ...,N. 
In order to reduce the computational effort associated with Method I, 

we introduced the following approximation to Qk. Let Qk be the quadratic 
functional defined by the sum of the squares of the L2 norms of the linear­
ized curvatures of JF along the line segments from node k to neighbors ofk. 

Thus, for m arcs incident on node k, 

ß . ( Z X , Z Y ) = g j o
L ' [ ^ ( 0 ] 2 ^ 

where t varies along the arcs, L, is the length of arc /, and Wt(t) is the 
restriction of the interpolant F to arc i. Expressions for Qk can be derived 
by using the fact that Wt is the Hermite cubic interpolant of the values 
and directional derivatives of F at the endpoints of the arc. 

If the unknowns are ordered so that ZY follows ZX, the matrix in the 
linear system obtained by replacing Qk by Qk has the same zero structure 
as the matrix associated with Method I. To solve the system, however, 
we employed a block Gauss-Seidel method with 2 x 2 blocks. An itera­
tion is as follows. For k = 1, . . . , N set ZXk and ZYk to the solution of 
the 2 x 2 linear system 

dQk = 0 dQk = 0 
dZXk ' dZYk 

(The A>th components of ZX and ZY are updated at each step.) The 
proof that the system is positive definite and hence that the Gauss-Seidel 
method converges is completely analogous to the proof given for Method 
I. 

Test results for two sets of nodes and six test functions are presented in 
the following section. Starting with the derivatives initialized to zero, 
effective convergence was achieved with only three iterations in all cases. 
Four iterations resulted in slightly smaller derivative errors but no signi­
ficant difference in interpolation errors. Using the optimizing compiler 
on the IBM 3033, the time requirement for a pair of derivative estimates 
was found to be approximately .1467 milliseconds for each iteration — .44 
milliseconds for three iterations. (The operation count for an iteration is 
proportional to N and the observed rate of convergence is independent 
of N.) The local method was found to require 2.09 milliseconds per node 
and is thus slower by a factor of 4.75. 
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V. Test results. Franke [5] has published a comparison of 29 methods 
for smooth interpolation of scattered data in the plane. Among the 
criteria used to judge the methods were accuracy, efficiency, storage 
requirements, and appearance of the resulting surface. We have duplicated 
some of Franke's tests and replicated his results so that our method could 
be included in the comparison. Our computations were performed on 
the IBM 3033 system at ORNL. 

Data values were taken from the following test functions : 

EXPONENTIAL Fl = .75 exp[-((9X - 2)2 + (97 - 2)2)/4] 

+ .75 exp[-(9X + l)2/49 - (97 + 1)/10] 

+ .5 exp[-((9X - 7)2 + (97 - 3)2)/4] 

- .2 exp[-(9X - 4)2 - (97 - 7)2] 

CLIFF F2 = [tanh(97 - 9X) + l]/9 

SADDLE F3 = [1.25 + cos(5.47)]/[6 + 6(3X - l)2] 

GENTLE FA = exp[-(81/16) ((X - .5)2 + ( 7 - .5)2)]/3 

STEEP F5 = exp[-(81/4) ((X - .5)2 + ( 7 - .5)2)]/3 

SPHERE F6 = V64 - 81((X - .5)2 + ( 7 - .5)2)/9 - .5. 

Data values were computed on a set of 100 nodes determined in a 
manner which led to a somewhat uniform distribution, and whose convex 
hull nearly covers the unit square. A Thiessen triangulation [2] of this set 
is depicted in Figure 5.1. 

Table 5.1 contains mean and maximum absolute interpolation errors on 
the 1089 grid points of a 33 by 33 uniform mesh in the unit square. Thir­
teen of the grid points required extrapolation and were included in the 
computation of the error norms for all methods except Lawson's. The first 
four methods use the interpolant described in §11 but with different 
derivatives. The table includes the four most accurate local methods tested 
by Franke, along with Nielson's method which uses essentially the same 
global derivative-estimation procedure as our method. All of them produce 
a C1 surface, and all are triangle-based except the modified Shepard's 
method. We feel that the low storage and computational requirements of 
the methods using global derivative estimates justifies comparison of those 
methods with the local methods. The results associated with local deriva­
tive estimates have been verified by Franke. 

The maximum errors associated with the first four methods demonstrate 
that errors in the interpolant are sometimes offset by derivative errors, 
and thus improved derivative estimates do not necessarily lead to a more 
accurate interpolant. With regard to mean interpolation errors for our 
local method, in no case was more than half a digit of precision lost due to 
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FIGURE 5.1. 100-Node Thiessen Triangulation 

errors in the derivative estimates. As expected, the largest errors occurred 
near the boundary where there are long thin triangles. A comparison of 
root-mean-square interpolation errors resulted in much the same pattern 
as that of the mean errors tabulated here. 

Figure 5.2 depicts a surface perspective plot of Fl (exponential) which 
was generated from the 1089 interpolated values associated with our 
local method. The only apparent flaw occurs near the corner at the bottom 
of the plot where the surface should be nearly flat. This is apparently due 
to the long thin triangles along the right side of the bloundary. 

In order to test the effect of larger variations in the density of the nodal 
distribution, the tests described above were repeated with the 33-node set 
which Franke generated for this purpose [5]. In this case, extrapolation 
was required at 125 of the 1089 uniform grid points. Results are tabulated 
in Table 5.2. 
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TABLE 5.1. Interpolation Errors for 100-Node Set 

Method Fl Fl F3 F4 F5 F6 

Mean Interpolation Errors 

True Derivatives 
Global Derivative Estimates 
Local Derivative Estimates 
Lawson 
Nielson-Franke Quadratic 
Modified Quadratic Shepard 
Akima Mod HI 
Nielson Minimum Norm 

.00413 

.00540 

.00619 

.00783 

.00741 

.00785 

.00729 

.00537 

.00086 

.00191 

.00241 

.00221 

.00265 

.00264 

.00293 

.00181 

Maximum Interpolation 

.00018 

.00094 

.00076 

.00149 

.00110 

.00112 

.00105 

.00091 

Errors 

.00008 

.00046 

.00035 

.00061 

.00058 

.00065 

.00049 

.00047 

.00035 

.00100 

.00146 

.00154 

.00176 

.00182 

.00171 

.00101 

.00010 

.00079 

.00026 

.00038 

.00022 

.00026 

.00058 

.00077 

True Derivatives 
Global Derivative Estimates 
Local Derivative Estimates 
Lawson 
Nielson-Franke Quadratic 
Modified Quadratic Shepard 
Akima Mod III 
Nielson Minimum Norm 

.0985 

.0499 

.0505 

.0951 

.0782 

.0573 

.0520 

.0492 

.0341 

.0484 

.0320 

.0280 

.0721 

.0468 

.0958 

.0424 

.0069 

.0217 

.0108 

.0565 

.0168 

.0125 

.0142 

.0195 

.0019 

.0032 

.0020 

.0090 

.0052 

.0039 

.0033 

.00303 

.0084 

.0196 

.0190 

.0216 

.0206 

.0218 

.0212 

.0195 

.0056 

.0115 

.0066 

.0095 

.0034 

.0036 

.0080 

.0117 

TABLE 5.2. Interpolation Errors for 33-Node Set 

Method Fl F2 F3 F4 F5 F6 

Mean Interpolation Errors 
True Derivatives 
Global Derivative Estimates 
Local Derivative Estimates 
Lawson 
Nielson-Franke Quadratic 
Modified Quadratic Shepard 
Akima Mod III 
Nielson Minimum Norm 

.01656 

.03020 

.03201 

.0462 
.0326 
.0340 
.0372 
.0305 

.00473 

.00812 

.00852 

.0126 

.0137 

.0121 
.0106 
.00800 

.00302 

.01047 

.00893 

.0133 

.00939 

.00907 
.0104 
.0102 

.00118 

.00364 

.00353 

.00552 

.00422 

.00451 

.00394 

.00371 

.00554 

.01049 

.00974 

.0129 

.0104 

.0113 

.0119 

.0106 

.00059 

.00284 

.00167 

.00210 

.00585 

.00400 

.00556 

.00273 

Maximum Interpolation Errors 

True Derivatives 
Global Derivative Estimates 
Local Derivative Estimates 
Lawson 
Nielson-Franke Quadratic 
Modified Quadratic Shepard 
Akima Mod III 
Nielson Minimum Norm 

.1400 

.1487 

.1609 

.287 

.150 

.184 

.164 

.150 

.0310 

.0582 

.0604 

.0956 

.0878 

.0876 

.0680 

.0582 

.0317 

.0577 

.0513 

.0685 

.0679 

.0724 

.0597 

.0571 

.0119 

.0211 

.0189 

.0269 

.0312 

.0272 

.0204 

.0214 

.0778 

.1137 

.0953 

.139 

.0835 

.110 

.115 

.115 

.0038 

.0192 

.0128 

.0137 

.0983 

.101 

.0819 

.0186 
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FIGURE 5.2. Surface Plot of F l . 

Root-mean-square errors again displayed a pattern similar to that of 
the mean errors. The results show that the accuracy of our methods is not 
restricted to nodal distributions with uniform density. The similar accuracy 
of the two global methods (for both node sets) indicates that the choice of 
interpolant is much less important than the gradient estimates. 

While triangle-based interpolation methods are more likely to suffer 
defects near the boundary than are other methods, theyare generally more 
efficient computationally. In terms of the total time required to compute 
the 1089 interpolated values, Lawson's method was found to be about 
3.5 times as fast as Nielson-Franke Quadratic and Akima Mod III, and 
about 7 times as fast as the Modified Quadratic Shepard method [5]. The 
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efficiency of our method relative to Lawson's depends on the application: 
the triangulation phase is slower (see Reference 2); the local derivative-
estimation procedure is approximately the same but the global procedure 
is faster (see §IV) ; and the interpolation phase is about the same. Central-
processor time averaged .133 milliseconds per interpolated value with 
given derivative estimates. 

Approximate storage requirements for arrays other than those contain­
ing nodal coordinates and data values are as follows : 

Renka and Cline 

Lawson 

Nielson-Franke Quadratic 

Modified Quadratic Shepard 

Akima Mod III 

Nielson Minimum Norm 

-7Nor9N 

-20N 

-32N 

-5N 

-33N 

-32N 

Shepard's method has the advantage of not requiring a triangulation but 
pays a price in computational efficiency as noted above. The Nielson-
Franke, Akima, and Nielson methods use Akima's triangulation software 
which requires approximately 32N storage locations. Our method gives 
the user the option of computing and storing the 2N estimated partial 
derivatives before entering the interpolation phase. In this case, the total 
storage requirement is 9N. The partials need not be stored, however. If 
relatively few interpolated values at points scattered throughout a large 
region are needed, the user can set a flag indicating that, for each inter­
polation point, derivative estimates are to be computed at the vertices of 
the triangle containing that point. 

Another criterion used to judge an interpolation package is ease of use. 
Our method suffers from the requirement that the user must call more 
than one subroutine — a node-presorting routine (optional), the triangula­
tion routine, a derivative-estimation routine (optional), and an interpola­
tion routine. We feel the gain in versatility and efficiency more than 
justifies this requirement. Also, our parameter lists are very short and, 
unlike most methods, we require no user-specified ad hoc parameters to 
define the interpolant. For example, the Nielson-Franke Quadratic, Modi­
fied Quadratic Shepard, and Akima Mod III methods all use weight func­
tions involving a fixed radius of influence. This radius must be either 
user-specified or estimated from global information such as the number 
of nodes and the diameter of their convex hull. Franke points out that 
such an estimate results in a method which is, by a strict definition, global. 

The variable radius of influence based on a fixed number of nodes 
within the radius rather than vice versa is apparently the key idea behind 
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the success of our local method. It seems likely that this idea could be 
effectively employed in a number of interpolation methods. 

The software discussed here, as well as a software package which 
extends our method to the surface of a sphere, is available from the first 
author. 
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