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C1 SURFACE INTERPOLATION 
FOR SCATTERED DATA ON A SPHERE 

CHARLES L. LAWSON 

ABSTRACT. This paper describes an algorithm for constructing a 
smooth computable function/defined over the surface of a sphere 
and interpolating a set of« data values w( associated with n locations 
Pi on the surface of the sphere. The interpolation function/will be 
continuous and have continuous first partial derivatives. The loca
tions Pi are not required to lie on any type of regular grid. 

1. Introduction. The problem of constructively defining a smooth sur
face that interpolates data defined at scattered points in the plane has 
been treated in different ways by a number of authors. For surveys of this 
work up to 1977 see [2] and [9]. 

We consider here the analogous problem for data defined at scattered 
points over the surface of a sphere. When data are defined over only a 
portion of the surface of a sphere, it may be most reasonable to map 
that portion of the spherical surface to a planar region, using a C1 mapping 
function, and treat the problem by an algorithm designed for the planar 
domain problem. However, when the data are scattered over the whole 
surface, and it is desired to produce a C1 interpolation function defined 
over the entire surface, it seems necessary, or at least very desirable, to 
deal with the problem directly in the spherical setting. In particular, there 
is no C1 function that will map the entire surface of a sphere to a bounded 
planar region. 

2. The problem. Let S denote the surface of the unit sphere in three-
space. Given pointsph i = 1, . . . , « , the problem is to construct a com
putable function/defined and having C1 continuity over S and satisfying 
the interpolation conditions/(/?;) = u{ for / = i, . . . , n. 

2.1. Relevant properties of C1 functions on S. A function,/ defined on 
S is differentiate at a point p0 in S if and only if there exists a three-
vector go satisfying 
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(1) lim f(Po + dP)-jf(Po)+gtdp) = 0 
\\dp\\-+0 \\dp\\ 

Po-hdp^S 

Let T0 denote the tangent plane to the sphere at the point pQ. Since the 
perturbed points p0 + dp in (1) are required to lie in S, the normalized 
perturbation vectors dp/\\dp\\ approach the plane T0 as \\dp\\ approaches 
zero. It follows that if a vector g0 satisfies (1), then so also does any vector 
of the form g0 4- h where h is orthogonal to the tangent plane T0, i.e., 
where A is a multiple of the vector from the origin to p0. 

To resolve this nonuniqueness of vectors g0 satisfying (1) we will stand
ardize on the shortest such vector. This vector is distinguished among 
vectors gQ satisfying (1) by the property of being orthogonal to the position 
vector from the origin to p0, or equivalently by the property that the point 
p0 + go lies in the tangent plane TQ. We will call this vector g0 the gradient 
vector of/at/?0. 

Note that the fact that / has a restricted domain, namely S, is an es
sential part of this definition. For example i f / i s the restriction to S of 
some function/defined in an open neighborhood of three-space contain
ing pQ, it is entirely possible that / may be differentiate at p0 and have a 
unique gradient vector g that is different from the (minimal length) gradi
ent vector g0 off. In such a case, however, g0 will be the orthogonal 
projection of g onto the 2-D subspace parallel to the tangent plane T0. 

Let U be a region of S containing p0 and not extending more than %\2 
radians away from p0 in any direction. Let k be the one-to-one mapping 
of points of U to their orthogonal projections in T0. Let U0 be the region 
in T0 to which U is mapped by k. Define the function/) on U0 by f0(t) = 
f(k~l(t)). Note that the point p0 is in both the domains o f / and / 0 . If/ is 
differentiate at pQ with gradient vector g0, then also/0 is differentiate at 
p0 with gradient vector g0. We will make use of this local equivalence of 
/ and /0 later in deriving an algorithm for estimating the gradient of / 
from discrete data. 

We will say a function defined on S is in the class C1 if there is a con
tinuous 3-D vector-valued function g defined on S such that for each 
point PQ e S, g(p0) is orthogonal to the vector from the origin to p0 and 
satisfies the condition ascribed to g0 in (1). 

3. Major steps of the solution method. The approach to be described has 
the same major steps as the method for the analogous planar problem 
given in [6]. These steps are 

1. build a triangular grid on S having the given points pt- as vertices, 
2. estimate the gradient vector g{ at each point pi9 and 
3. evaluate the interpolation function / a t an arbitrary point p in S by 

(a) Looking up p in the grid to find the triangle containing p and 
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(b) Computing f(p) by an interpolation method using the given 
function values w, and the estimated gradient vectors g( at the three vertices 
of the enclosing triangle. 

3.1. Data structures. In the algorithms to be described the points p{ will 
be represented by their Cartesian coordinates. It will be convenient in 
the following to let the same symbol denote either a point or the 3-D 
vector from the origin to the point. In particular, points in S are repre
sented by vectors of unit Euclidean length. Each triangle will have an 
index number and will be represented by a set of six pointers identifying 
the three adjacent triangles and the three vertex points. This is exactly 
the same data structure as was used in [6]. 

If triangle t has vertices whose indices are A, B, and C in counterclock
wise order, and whose adjacent triangle indices are a, 6, and c with triangle 
a opposite vertex A, b opposite B, and c opposite C, the six pointers 
representing triangle t would be stored in one of the following three 
permutations : 

a, b, c, B, C, A 

b9 c, a, C, A9 B 

c, a, b, A, B, C. 

All access to these pointers is done via three very short subroutines. Thus 
the actual storage mode for these pointers is "hidden" from the rest of 
the program. By appropriate programming of these three subroutines the 
pointers can be packed to save storage. 

The array storage requirements of this algorithm are thus 3ft locations 
for the vectors / ? , , / = 1, . . . , ft, n locations for the data values ui9 

i = 1, . . . , / ! , 12K locations for the triangle pointers (This is based on six 
pointers per triangle and at most 2ft-4 triangles. This storage requirement 
can easily be reduced by packing), 3ft locations for the gradient vectors 
gt-, i = 1, . . . , ft, and ft locations for a permutation vector used only 
while building the grid (This storage could be overlaid by the gradient 
vector array or could be eliminated entirely by minor changes in the 
program design). 

3.2. Determinantal tests and grid look-up. Let pl9 p2, and /?3 be three-
vectors having unit Euclidean length. Let dct(pl9 p2, p$) denote the deter
minant of the 3 x 3 matrix whose column vectors are pl9 p2, p$ in that 
order. If â = det(/?1} p2i p$) ^ 0, then no two of the vectors form an angle 
of zero or %, and the three vectors do not all lie in a single plane through 
the origin. In this case a proper spherical triangle can be formed by 
connecting each of the three pairs of points by the shorter arc of the great 
circle in S determined by that pair of points. Thus each arc will have 
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length less than %. This triangle divides S into two regions. The smaller 
region is to be regarded as the interior of the triangle. If A > 0, an observer 
traversing the edges of the triangle with the interior of the triangle to the 
left will visit the vertices in the order pl9 p2, p$. If A < 0, the ordering would 
be reversed. We will always order the vertices of triangles so that A > 0. 

Let pl9 p2, P3, be vertices of a proper triangle tin S with A > 0. Regard
ing q as a variable three-vector in S, note that the quantity sx = det(#, 
P2> Ps) is proportional to the distance of q from the plane determined by 
the vectors p2 and p3 with the sign of sx being positive if q is on the same 
side of the (/72,/?3)-plane as/?! and negative if q is on the opposite side. Thus 
a point q e Sis inside the triangle / if and only if the three quantities 

sx = detfa, p2, Ps) 

(2) 2̂ = det(/>l5 q, p3) 

sz = detOi, p2, q) 

are all nonnegative. 
Our algorithm for finding a triangle containing a given point q consists 

in computing the quantities sh s2 and s3 for some triangle t and then either 
accepting t as the containing triangle if all s{ ^ 0 or else moving to the 
neighboring triangle across the edge opposite vertex p{ if s{ is the first 
of the test quantities found to be negative. If there is no neighboring 
triangle across this edge the search stops, returning this information. 
Otherwise the search continues by computing the test quantities in the 
neighboring triangle. 

Rounding errors in computing a 3 x 3 determinant causing inconsistent 
sign determination could conceivably lead to cycling in the look-up process 
or to the construction of topologically impossible edges in the grid con
struction. (Grid construction will be described in §3.3). Consider for 
example four points ph . . . , /?4 that lie in order along an arc of a great 
circle, the arc having length less than %. The true mathematical value of 
the determinant of the 3 x 3 matrix formed using any three of these 
vectors is zero. Using finite precision coordinates and finite precision 
floating point arithmetic these determinants will generally not be com
puted as zero. A nonzero result does not in itself cause a serious problem 
but the possibility of inconsistency in the evaluation of related deter
minants can. 

To illustrate the hazard suppose that with ph ..., /?4 as above the com
puted value of det(/71? p2, p3) is positive and (ph p2, /?3) is accepted as a 
triangle in the grid. Then suppose /?4 is tested for inclusion in this triangle. 
It is possible that all of the determinants dçt(pA, p2, p3), det(/?1? ph pz\ 
and det(/?1,/72, pd might evaluate nonnegative. This would lead to the 
erroneous conclusion that /?4 is contained in the triangle (ph p2, p3) and 
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various topologically incorrect edges would be constructed to incorporate 
/?4 into the grid. Using a tolerance e such that all results between — e and 
e are treated as zero does not solve the problem. We have had good luck 
using double precision evaluation of the determinants and strict zero 
tests. We have also had success with single precision determinant evalua
tion if we randomized the order in which the points p{ were considered 
for inclusion in the grid. 

One way to assure consistency while sacrificing some accuracy would 
be to truncate all coordinate values to a small enough number of bits to 
permit the determinant evaluation to be done exactly. For example, on 
a machine carrying fourteen hexadecimal digits of significance in a double 
precision number, one might round all coordinates to the 2 - 1 7 bit. The 
smallest nonzero bit that could occur in the product of three such numbers 
would be the 2~51 bit. The coordinates do not exceed one in magnitude; 
so the same is true of their products. These products and the sum of up 
to six such products can be held exactly in a normalized floating point 
number earring fourteen hexadecimal digits. Thus determinants of 3 x 3 
matrices could be computed exactly. 

3.3. Constructing the triangular grid. The convex hull of a finite set of 
points in the plane is the smallest convex polygon containing the entire 
point set. We need an analogous notion, which we will call the spherical 
convex hull, for points on the surface S of the unit sphere. Let P be a 
finite set of points in S. If there is no plane that strictly separates the origin 
from P, we will say the whole surface S is the spherical convex hull of P. 
Alternatively, if there is a plane strictly separating the origin from P, 
let C be the smallest convex cone with its vertex at the origin and con
taining the set P. The intersection of C with 5 will be called the spherical 
convex hull of P. This region will lie strictly within some hemisphere of S. 

A triangular grid with n vertices and covering all of S will have 2«-4 
triangles. A grid that covers a spherically convex proper subset of S and 
has n vertices and b boundary edges will have 2n-b-2 triangles. Note that 
2n can always be used as an upper bound on the number of triangles. 
Our method of constructing a triangular grid using a given finite point set 
P in S as vertices will be a sequential process that alters a grid covering 
the spherical convex hull of some set of k points of P to obtain a grid 
covering the spherical convex hull of these k points plus one more. 

Algorithms of this type can be divided into (at least) three subtypes. 
(a) First find the boundary points of the (spherical) convex hull of P 

and construct a triangular grid for these points. Then in the remaining 
sequential part of the algorithm each new point is known to lie in some 
triangle of the current grid. 

(b) Preprocess the points of P into an ordering that assures that each 
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new point will be stricty outside the (spherical) convex hull of the preced
ing points. 

(c) Do no prepreprocessing and be prepared for each new point to be 
either inside or outside the (spherical) convex hull of the preceding points. 

With subtypes (a) and (b) one is adding extra code and execution time 
for a preprocessing stage in the hope of permitting the subsequent sequen
tial phase to be simpler and execute faster. We have at different times 
developed algorithms for the planar problem representing each of these 
subtypes. The algorithm of [6] is of subtype (b). My present inclination 
is to prefer subtype (c) as I think it permits the total program to be simpler 
and probably is not significantly slower if in fact it is any slower. More 
specifically it does not require storage for a separate data structure to 
keep track of boundary points as was the case in [6]. 

Our approach then is to form one initial triangle and then loop through 
the remaining n — 3 points adding one at a time and modifying the 
triangular grid at each stage to cover the spherical convex hull of all the 
points so far considered. Each new point may be either inside or outside 
the grid so far constructed. In the class of problems for which this method 
is primarily intended, i.e., problems in which the data are scattered quite 
generally over all of S, a stage will be reached at which the spherical 
convex hull is all of S. Thereafter all additional points will necessarily 
lie inside the grid so far constructed since the grid will cover all of S. 
The user can cause this full coverage of S to happen early by arranging 
that the first four points to be processed are located such that the tetra
hedron with these four points as vertices contains the origin as a strictly 
interior point. The triangular grid based on these four points will cover 
all of S. 

Initially the algorithm seeks three points with which to construct the 
first triangle. The first vector pi is accepted unconditionally. The remaining 
vectors are scanned for the first one whose inner product with px lies 
between cos 179° and cos 1°, i.e., between -0.99985 and 0.99985. Pointers 
are swapped to relabel this vector as/?2. The remaining vectors are scanned 
to find one whose determinant along with pi and p2 exceeds 0.001 in 
magnitude. Such a vector is relabeled as p3. The vectors p2 and p3 are 
then swapped if necessary to assure that det(/71? p2, p$) is positive. This 
completes the construction of the first triangle. 

We may now assume a grid based on k — 1 points has been constructed 
and the next point, pk, is to be introduced. A look-up is done using the 
method described in §3.2. This look-up either finds a triangle / containing 
pk, or else finds a triangle t such that pk is outside this triangle relative to 
a side of the triangle beyond which there is no adjacent triangle. In the 
first case, the single triangle t having vertex points pA, pB, pc will be 
replaced by three triangles having vertex points (pk, pB, pc), (pA, pk, pc), 
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and (pA, pB, pk) respectively. The algorithm then does a grid improvement 
phase to be described subsequently. In the second possible outcome of 
the look-up process, the point pk is strictly outside the spherical convex 
hull of the preceding k — 1 points, and in particular it is outside an edge 
of triangle t that constitutes a portion of the boundary of the spherical 
convex hull. In this case one new triangle will be formed by connecting 
pk to the two ends of the edge of t that gave a negative s{ value in the 
look-up testing (See §3.2). 

The algorithm next scans the current grid boundary points in both 
directions from the new triangle and connects pk to all other boundary 
points that result in the creation of proper spherical triangles (See §3.2). 
The algorithm then does grid improvement. 

3.3.1. Grid improvement. When two adjacent spherical triangles form 
a strictly convex spherical quadrilateral, there arises the possibility of 
replacing these two triangles by the two that occur when the quadrilateral 
is partitioned by its other diagonal. One must estalish a criterion for 
choosing between the two possible dissections of a quadrilateral. This 
issue was discussed for the planar case in [6] where it was shown that 
three differently stated criteria were mathematically equivalent. In the 
spherical setting a fourth criterion with considerable intuitive appeal can 
be formulated and it is easily seen to be equivalent to the "circle test" 
of [6]. 

Let ph p2, p& and /?4 be the vertices, in counterclockwise order, of a 
spherical quadrilateral in S. Assume all four of the potential triangles (px 

P2Pd> (P2P3PÙ* (PSPAPI), and (piPiP2) would be proper spherical triangles. 
One choice would be to connect points px and p3 forming triangles (pip2pz) 
and (PSPAPI) while the other choice would be to connect points p2 and 
/?4 forming triangles (p2p$pd and {p^PiPè- Consider the 3D polyhedron 
underlying the spherical triangular grid. If the four points under con-
sideraton are not coplanar then one choice will give underlying planar 
triangular faces that could be faces of a convex polyhedron and the 
other choice will not. Therefore our new criterion is a preference to make 
the underlying 3D polyhedron convex. 

Another way to describe this criterion is to consider the unique line L 
from the origin that intersects both of the lines pips and p2p±. If Pi,p2, 
pz, and /?4 are not coplanar the two lines will intersect L at two distinct 
points. We construct the one of these two lines that intersects L furthest 
from the origin. We implement this test by computing d = det (p2 — ph 

Ps — JPI> PA — Pi) and constructing the line p2pA if d > 0 and constructing 
pxpz if d < 0. Either line can be used if d = 0. 

After a new point, say pk, is connected into the grid, each edge that is 
opposite pk in some triangle is a candidate for swapping. Thus if there is 
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a triangle pkp2Pi and an adjacent triangle p2PzP^ the edge p2p± will be 
replaced by the edge pkp3 if det(/?2 - pk, Pz - />* /?4 - PÒ is negative. 
When an edge is swapped, the edges opposite pk in the two newly formed 
triangles become candidates for swapping. 

3.4. Estimation of gradient vectors. We assume a triangular grid has 
been constructed in S covering the spherical convex hull of the points 
/?!, ...,/?„ and having the points ph . . .,pn as vertices. We also assume 
the data values ul9 . . . , un (See §2) are available. It is required to estimate 
a 3D gradient vector^ at each pointp{. See §2.1 for the characterization 
of gradient vectors for this problem. 

Let p{ be a point at which a gradient vector g{ is to be estimated. Our 
general idea is to do a least squares quadratic fit to data near the point 
Pi and then use the gradient vector of this fitted quadratic polynomial as 
the gradient vector at p{. We use a six-term quadratic polynomial in two 
variables forcing interpolation to the value u{ at pt>. Thus we need at least 
five neighboring points, and prefer more than five to obtain a local 
smoothing effect on the gradient vector. Let Q denote the set of points 
to be used for the fit. We first place all the immediate neighbors of p{ 

into Q. If the number of immediate neighbors is from six through sixteen 
and if the matrix for the least squares problem passes a conditioning test 
then this set Q is used for the fit. If the number of points exceeds sixteen, 
excess points are discarded. If the number is less than six, more nearby 
points beyond the immediate neighbors of pt- are introduced. If the matrix 
condition test is not passed, more points, up to sixteen, are added. If the 
condition test still fails with sixteen points, the least squares system is 
damped to bias the solution toward small values of the coefficients of the 
three second order polynomial terms. 

The fitting is set up in a local coordinate system determined by p{. 
A 3 x 3 rotation matrix R is determined that transforms the position 
vector of/?,- to the vector (0, 0, 1). Thus the "north pole" of the rotated 
coordinate system is at /?,-. The same coordinate transformation is applied 
to all vectors in the fitting set Q. Generally these transformed vectors, 
having some proximity to pt-, will all lie in the "northern hemisphere" 
of the rotated coordinate system, i.e., their z coordinates will be positive. 
If any transformed vector (x, y, z) has z < 0, we arbitrarily replace it by 
(x/s, y/s9 0) where s = sqrt(x2 + y2). This last step is just an expedient 
to do something definite in a poor situation. Data must be very sparse or 
poorly distributed to result in any points of Q being in the "southern 
hemisphere" of the rotated coordinate system. 

We ignore the z coordinates of these transformed vectors, using only 
their x and y coordinates in the fitting. This can be interpreted as pro
jecting the points pj of Q orthogonally onto the plane T that is tangent 
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to the sphere at the "north pole", i.e., at p{. The polynomial model for 
the fit is 

cxx + c2y + czx
2 + c^xy + c5y

2 = u - ut-. 

The coefficients c b . . . , c5 of this polynomial are determined by a least 
squares computation. The two-vector (ch c2) is the gradient vector at pt> 
of the fitted polynomial relative to the (x, ^-coordinate system in the 
tangent plane T. Using the observations at the end of §2.1 we take the 
three-vector (cl9 c2, 0) to be the gradient vector at pt- of the (as yet un
known) interpolating function defined over the surface of the sphere. 
The inverse of the rotation matrix R is then applied to (c1? c2, 0) to obtain 
the representation of the gradient vector g{ in the original coordinate 
system. 

3.5. Interpolation in a single triangle. In the planar case described in 
[6] we preferred the nine-parameter Clough-Tocher cubic macroelement 
[3] as our interpolation method primarily for the following two reasons. 

(a) It is more economical to evaluate than any other C1 interpolation 
method of which we are aware. Beginning with the rectangular coor
dinates of q and of the vertices, and the function values and 2D gradi
ent vectors at the vertices, our evaluation of this interpolant uses 55 
multiplications, 65 additions, and 4 divisions. 

(b) The interpolant at any point is simply a cubic polynomial in the 
Cartesian coordinates (or in the barycentric coordinates), and thus it 
is easy to derive and implement an evaluation of the gradient of the 
interpolated surface if this should be desired. 

Unfortunately, the Clough-Tocher method depends strongly on prop
erties of polynomials in Cartesian coordinates over a planar region and 
does not seem to generalize for use over a spherical triangle. 

We will describe two methods for C1 interpolation over planar triangles 
that do generalize to spherical triangles. We first describe aspects that are 
common to both of these methods. The given data consists of a function 
value and a 2D gradient vector at each vertex. Values along an edge 
are computed by Hermite cubic interpolation and the tangential derivative 
at any point on an edge is computed as the derivative of this Hermite 
cubic interpolation polynomial. The normal derivative at any point on 
an edge is computed by linear interpolation using the derivatives normal 
to the same edge at the two ends of the edge. For q on the boundary 
t* of a triangle t let F(q) denote the value and G(q) denote the gradient 
vector defined by these interpolation methods along the boundary. 

The interpolant for interior points q et will be constructed as a convex 
combination of partial interpolants : 
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(3) Aq) = E Wi(q)fiiq), J Wi(q) = 1. 
1=1 1=1 

Each partial interpolant/ will agree with F for all q on the boundary /*, 
and will satisfy the gradient conditions Vf(q) = G(q) for some, but not 
all, points of t*. The weight functions w{ will be constructed to be non-
negative throughout t, and to be zero at all boundary points q at which 
V/(#) # G(q). Interpolation methods of the form of (3) are analyzed in 
detail in [4]. It is shown in Corollary 2.5 of [4] that if the f/s and w/s are 
C1 throughout t and satisfy the conditions just enumerated, the function 
/ o f (3) is also C1 throughout t and satisfies f(q) = F(q) and Vf(q) = G(q) 
for all q e t*. We sketch here the proof of this proposition as given in [4], 

Satisfaction of f(q) = F(q) is clear since e a c h / satisfies this condition 
and the f/s are combined using weight functions that sum to one. To 
verify the satisfaction of the gradient condition on the boundary, expand 
V/as 

(4) V / = | > , V / , + Ì / V w , . 
f=i i=i 

Since all f/s agree with F on the boundary, the second summation in 
(4) satisfies 

£f< V w< = F t V w< = F V Ì w, = 0, 
f=i Ï = I i=i 

for q e t*9 where the last equation uses the observation that the condition 
j^Wj = 1 of (3) implies VEwt- = 0 throughout/. The first summation of 
(4) evaluates to G(q) for q e t* since the w/s sum to one, and each wt- is 
nonzero at a boundary point q only if V/(#) = <?(#). 

3.5.1. Planar Method 1. For any point q in the triangle t l e t / in (3) 
be defined by Hermite cubic interpolation along the line through q parallel 
to the edge opposite vertex/?,-. This function/ has been called the BBG 
interpolant or BBG projector due to its use in [1]. See also [2, pp. 92-101]. 
Function and derivative values for this interpolation are derived from the 
edge functions F and G defined above. The function/(#) defined in this 
way is C1 over triangle /, a n d / and its gradient match Fand G respectively 
on all edges, except that the normal derivative of/ on the relative interior 
of the edge opposite p{ will generally not be consistent with G. 

Thus letting / be the BBG interpolant, it will suffice, according to 
Corollary 2.5 of [4], to require that w{ have the value zero on the edge 
opposite Pi and be nonzero elsewhere on the boundary of t. This is con
veniently assured by letting w{ be the barycentric coordinate of q that 
has the value zero on the edge opposite p{ and one at p{. Thus (3) special
izes to 
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(5) f(q) - biMq) + WM) + bM), 

where the b{ are the barycentric coordinates of q relative to the triangle 
t and the f/s are BBG interpolants, each requiring two linear interpola
tions and three Hermite cubic interpolations for its evaluation. 

3.5.2. Planar Method 2. For any point q in the triangle t let/; in (3) be 
defined by Hermite cubic interpolation along a line from vertex p{ through 
q to the opposite edge. This interpolant has been called a side-vertex or 
radial interpolant. A number of ways of using side-vertex interpolants to 
construct interpolation methods are discussed in [8], however the method 
we are using is not treated there. (After reading the initial version of this 
paper, Nielson has shown in a personal communication that Planar 
Method 2 can be derived as a specialization of Theorem 3.3 of [8]). Each 
partial interpolant/ is C1 throughout / and matches the required function 
value F at all boundary points. The gradient Vf matches G on the edge 
opposite ph but the normal derivative will generally not be consistent 
with G on the relative interiors of the two edges adjacent to vertex p{. 
with Corollary 2.5 in mind, it seems appropriate for the weight function 
Wj to contain the product bi+xbi+2 as a factor, since this product is zero 
along the two edges adjacent to ph and nonzero in the relative interior of 
the edge opposite pt-. Here the b/s denote barycentric coordinates of q, 
and the subscripts are to be evaluated modulo 3 to one of the values 
1, 2, or 3. 

Introducing a normalizing factor to assure J^w{ = 1, we define 

f bf+i bt+2/(bi+1 bi+2 + bi+2 b{ + b{ bi+1) for q # pi+1 or pi+2 

(6) iv, = J 0 for q = pi+1 

11 for q = pi+2. 

Note that the rational expression in the first line of the above definition 
has non-removable singularities at vertices pi+x and pi+2. The assignment 
of the values 0 and 1 at pi+i and pt+2, respectively, is a technicality to 
preserve the property £]w,. = 1 throughout t. Using these weight functions 
(3) specializes to 

(7) / ( , ) = (b2b3 + bfr + hb2)
 f o r * * P* P» o r ' 3 

[Uj for # = / ? , . . 

Here each partial interpolant/- requires one linear interpolation and two 
Hermite cubic interpolations along lines. Corollary 2.5 of [4] establishes 
the C1 continuity of/, except possibly at the three vertices, since the weight 
functions of (6) do not satisfy the hypotheses of the corollary at these 
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three points. Each Wj is discontinuous at two vertices and lacks differen
tiability at all three vertices. Thus it is necessary to prove that fis con
tinuous, differentiate, and continuously differentiable at the vertices. 

This proof has been recorded in detail in an internal memorandum [7]. 
It is shown that each of the side-vertex partial interpolants fj has a repre
sentation in a neighborhood of each vertex p{ of the form 

f/Pi + h) = «, + gjh + 0 ||A||2 

for 2D vectors h that are sufficiently small and such that Pi + h s t. The 
proofs of continuity and differentiability of / then follow directly. To 
demonstrate that Vf is continuous at a vertex Pi we write, for h # 0, 

VÄPi+h)-g, = Ejf/Ü>,+h) Vw;(Pi+h) + Zj wj(Pi+h) Vfj(Pi+h)-gi 

=(u{+gfh)EJVWX/>,+/0+2L[VHV(A+A)o \\hp] 

+ Lj[wj(p<+h)(gl+0\\h\\)]-gi 

=EAV">AP<+V o HMl2]+£>,</>,•+//) o HAH] 

= 2,'VHV(/>,.+/*)0||/*F + 0||A||. 

It is then shown that the last expression above approaches zero as ||h\\ -> 0 
by verifying that each Vwj(Pi + A) grows no faster than j|/e||—x as \\h\\ -> 0. 
In particular it is shown that 

T7 i ^u\ PW wheny = i 

3.5.3. Generalization of Planar Methods 1 and 2 for spherical triangles. 
The key in generalizing these two planar methods for use with a grid of 
spherical triangles on the surface S of the unit sphere is to replace all of 
the linear and Hermite cubic interpolations along line segments by the 
same type of interpolations along arcs of great circles in S. Let t denote a 
proper spherical triangle with vertex position vectors pl9 p2, and /?3, and 
let q be a point of S contained in t. Let t' denote the underlying planar 
triangle having the same vertices as /, and let q' be the central projection 
of q into the plane of triangle t\ i.e., q' is the point in the plane of / ' 
intersected by the line from the center of the sphere to q. 

When the look-up procedure of §3.2 finds that a given point q in S is in 
triangle t, it also returns the three nonnegative numbers s±, s2, and J 3 

of (2). We call these numbers unnormalized barycentric coordinates 
since the (normalized) barycentric coordinates of q' relative to the planar 
triangle t' can be computed as 

b{ = si/(s1 + s2 + s3), i = 1, 2, 3. 

The intersection points between certain lines through q' and edges of / ' 
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needed for either of the two planar interpolation methods are easily 
represented in terms of the è/s and p/s. Thus the intersection between 
edge PiPi+i with the line through q' parallel to edge pi+iPi+2 has position 
vector biPi + (1 — bt)pi+i while the intersection between edge pi+1pi+2 

with the line from vertex p{ through q has the position vector (bï+1pi+1 + 
bi+2Pi+2)/(bi+i + bi+2). These intersection points can then be centrally 
projected to S by normalizing their position vectors to have unit Euclidean 
length. All of the linear and cubic interpolations called for in the planar 
methods are then done with respect to arc length along great circle arcs 
in S obtained by central projection of the corresponding line segments 
in the planar triangle t'. 

Recall that gradient data at each vertex pl9 p2, and p3 is represented as 
a three-vector orthogonal to the position vector of the vertex. Gradient 
information generated at auxiliary points in either interpolation method 
is also represented as a three-vector orthogonal to the associated position 
vector. The verification that each of these two spherical triangle inter
polation methods defines a C1 function over S can be carried out in the 
same way the C1 property of the planar methods is proved. 

4. Software implementing these algorithms. Subroutines were written 
for these algorithms in 1979 using the JPL SFTRAN3 structured Fortran 
language which is preprocessed to Federal (ANSI) Standard Fortran 77. 
The time for grid construction for n points was proportional to n1-25 for 
test cases in the range from 25 to 500 points. The RMS error in test cases 
using simple mathematical functions to generate data over relatively 
uniform triangular grids of various densities was proportional to h3A in 
test cases having maximum edge length in the grid ranging from 63° down 
to 9°. A count of the number of arithmetic operations required to do a 
single interpolation in a triangle gives the figures listed in Table 1. The 
planar Clough-Tocher method is included for comparison. For all methods 
the computation starts with Cartesian coordinatdes for q, ph p2, and p3 

and function values and gradient vectors at pl9 p2, and p3. The weights 
used to combine the counts are arbitrary but plausible. They are nor
malized to cause an addition plus a multiplication to sum to one for con
sistency with operation counts measured in "Flops". 

As a test of the C1 continuity of Method 1 we' reprogrammed the code 
for that method using a "{/-arithmetic" package developed at JPL in 
1971 based on the ideas of [10]. (This is like the method of [5] without 
the benefit of a preprocessor.) In this approach the program computes 
a 3D gradient vector and a 3 x 3 Hessian matrix for every intermediate 
quantity, and thus also for the final interpolated value. All derivative 
computations use mathematically correct formulas, i.e., not differencing. 
We found it necessary to reorder some computations to avoid severe 
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Add/Subtract 
Multiply 
Divide 
Sqrt 
Atan 

Weighted 
Total (Flops) 

Clough-
Tocher 
Planar 
Method 

65 
55 
4 

63.8 

Spherical 
Method 1 

371 
699 
81 
24 
18 

827.0 

Spherical 
Method 2 

352 
450 

57 
15 
12 

584.2 

Factors 
for 
weighted 
total 

0.4 
0.6 
1.2 
3.0 
5.0 

TABLE 1. Operation counts for a single interpolation in a triangle 

artificial numerical instabilities in the derivative computations. After this 
reordering the results were consistent with C1 continuity. 

We did not try a {/-arithmetic version of Method 2. I would expect 
severe difficulties with this since the singularities of the w/s at certain 
vertices (See §3.5.2) imply that some first partial derivatives of the w/s 
can be arbitrarily large in a small neighborhood of a vertex. Mathemati
cally these cancel out, but numerically there would be large rounding 
errors. 

Numerical differencing tests for C1 continuity were run on the im
plementations of both Method 1 and Method 2. The set of ten points 
listed in Table 2 was used as the grid nodal points for the tests. The grid 
generation subroutine was run producing sixteen triangles as shown in 

(East) Longitude 
(Degrees) 

0 
40 

5 
- 3 5 
- 2 5 

20 
240 
180 
155 
180 

Latitude 
(Degrees) 

0 
10 
35 
20 

- 3 0 
- 2 5 

10 
40 

- 1 0 
- 2 0 

TABLE 2. Nodal points for test cases. 
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FIGURE 1. Front surface of sphere, centered on the zero longitude meridian. 

FIGURE 2. Back surface of sphere, centered on the 180° longitude meridian. 
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Figures 1 and 2. The numbers in these two figures are identification 
numbers for the triangles. 

The first six points of Table 2 appear as triangle vertices in Figure 1 
while the last four points are vertices in Figure 2. The vertex points are 
positioned correctly as orthogonally projected onto the (y, z)—plane. 
The triangle edges were drawn with convenient drafting tools and do 
not portray precise curvatures. 

Longitude and latitude are related to rectangular coordinates by the 
equations 

x = cos(longitude) cos(latitude) 

y = sin(longitude) cos(latitude) 

z = sin(latitude) 

In Case 1 of the difference testing we used interpolation at thirty points 
as illustrated in Figure 3. This figure corresponds to a small central region 
of Figure 1. 

There is a primary set of fifteen interpolation points on the equator 
running from —0.07 radians to 0.07 radians of longtiude in steps of 0.01 
radians. This set of points falls in Triangles 3 and 5 and includes the 
vertex common to these two triangles. These points are used to compute 
first and second differences in the longitude direction. The secondary 
set of fifteen interpolation points lying 0.01 radians of latitude above the 
primary set is used for computing a first difference in the latitude direc
tion. Note that some of these points fall in Triangles 2 and 1 as well as 
3 and 5. 

For Case 2 we used a similar set of thirty points shifted 180° in longi-

0.01 

LU 

Q of-

J _ J I I I I L 
0.07 

J L 
0.07 

LONGITUDE (radians) 

FIGURE 3. Interpolation points for Case 1. 
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• 

I I 1 I 
0 

FIGURE 4a. Case 1. Interpolated value. 

tude. Thus for Case 2 the interpolation points lie in Triangles 14 and 
15 with the central primary and secondary points lying on the edge com
mon to these two triangles. 

For the test reported here the function to be interpolated was the 
cubic polynomial 

/(*, y, z) = (9x3 - 2x2y + 3xy2 - 4j>3 + 2z3 - xyz)/lO. 

Values of this polynomial and its gradient vector, projected into the local 
tangent plane, were associated with each point of Table 2. For Method 1 
results from these tests are shown in Figures. Aa-f and 5a-f. The abscissa 
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FIGURE 4b. Case 1. Interpolated value minus true value. 

in these figures and in Figures. 6-7 is in units of 0.01 radians from the 
central longitude for the case. The central longitude is zero for Case 1 
and 180° for Case 2. These tests were run on a Uni vac 1100/81 computer 
having relative precision of 27 bits, or about 8.1 decimal places. 

These results appear to be consistent with the expectation that the 
interpolation method maintains C1 continuity when crossing a vertex 
(Case 1) or an edge (Case 2), and interpolates the value and gradient data 
at the vertex common to triangles 3 and 5 in Case 1. Thus in Figures. 4c, 
4e, 5c, and 5e, the first differences may have different behavior to the 
left and right of the center abscissa (0 in Case 1 and 180° in Case 2) but 
the left and right subsets appear to approach a common value at the 
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FIGURE 4C. Case 1. First difference in longitude. 
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FIGURE 4d. Case 1. Second difference in longitude. 
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FIGURE 4e. Case. 1. First difference in latitude. 
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FIGURE 4f. Case 1. First difference in longitude of first difference in latitude. 
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FIGURE 5a. Case 2. Interpolated values. 
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FIGURE 5b. Case 2. Interpolated value minus true value. 
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FIGURE 5C. Case 2. First difference in longitude. 
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FIGURE 5d. Case 2. Second difference in longitude. 
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FIGURE 5e. Case 2. First difference in latitude. 
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FIGURE 5f. Case 2. First difference in longitude of first differences in latitudes. 
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FIGURE 6. Case 1. Method 1 minus Method 2. 
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FIGURE 7. Case 2. Method 1 minus Method 2. 
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center abscissa. Graphs of results using Method 2 are almost identical in 
general appearance to those for Method 1 and thus are not included here. 
Differences between interpolated values obtained by Method 1 and 
Method 2 are shown in Figures. 6 and 7. 

5. An application. In February, 1982, this software was used at JPL 
in the study of gravity variation over the surface of the planet Venus. 
Data was available at many, but not all points, of a rectangular longitude-
latitude grid. The missing data occurred in irregularly shaped regions 
determined by geometrical constraints of the observation and communica
tion instruments. Using 2450 points at which data was present our pro
gram built a spherical triangular grid consisting of 4896 triangles. Missing 
data in the rectangular grid was then filled in by interpolation in the 
triangular grid. In the course of this work the scientists gained new 
insights regarding their data and we found and repaired a weak spot in 
our program. See the discussion of determinant evaluation in §3.2. 

6. Conclusions and remarks. The efficiency of the grid building proce
dure, execution time in test cases being observed to be proportional to 
A71-25, is quite satisfactory. C1 interpolation in a spherical triangle requires 
nine to thirteen times as many Flops as C1 interpolation in a planar 
triangle. Modifications giving small reductions in the operation counts 
are known, but it would be interesting if an entirely different approach 
could be found that might be more intrinsically related to the topology of 
the spherical surface and require significantly fewer Flops. 

Method 1 is more time-consuming than Method 2 by a factor of about 
3 to 2 since Method 1 uses nine cubic interpolations along arcs compared 
with six for Method 2. Analytic computation of gradients for interpolated 
values would probably be more stable using Method 1 than Method 2 
because of the singularities in the w/s of Method 2. It would be inter
esting to make visual comparisons of surfaces generated by these two 
methods, but we have not had the resources to make such comparisons. 

The programs appear to be robust and reliable. The use of the SFTRAN3 
structured Fortran language has been extremely helpful in keeping the 
code understandable. 

It should be noted that the use of the surface of a sphere as the domain 
is just a mathematical construct for dealing with the set of all directions in 
three-space from an origin point. Thus the methods of this paper are 
applicable to the representation of any bounded two-dimensional C1 

surface in three-space that is "starlike" in the sense that there is some 
origin point from which a ray in any direction intersects the surface in at 
most one point and the ray is not tangent to the surface at that point. 
Other two-dimensional manifolds besides the plane and the spherical 
surface that may deserve investigation for scattered data interpolation 
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include the surface of a cylinder or a torus. On a cylinder one may wish 
to admit triangles having two vertices at the same data point while on 
the torus one may admit triangles having all three vertices at the same 
data point. 
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