
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 14, Number 1, Winter 1984

C1 SURFACE INTERPOLATION
FOR SCATTERED DATA ON A SPHERE

CHARLES L. LAWSON

ABSTRACT. This paper describes an algorithm for constructing a
smooth computable function/defined over the surface of a sphere
and interpolating a set of« data values w(associated with n locations
Pi on the surface of the sphere. The interpolation function/will be
continuous and have continuous first partial derivatives. The loca
tions Pi are not required to lie on any type of regular grid.

1. Introduction. The problem of constructively defining a smooth sur
face that interpolates data defined at scattered points in the plane has
been treated in different ways by a number of authors. For surveys of this
work up to 1977 see [2] and [9].

We consider here the analogous problem for data defined at scattered
points over the surface of a sphere. When data are defined over only a
portion of the surface of a sphere, it may be most reasonable to map
that portion of the spherical surface to a planar region, using a C1 mapping
function, and treat the problem by an algorithm designed for the planar
domain problem. However, when the data are scattered over the whole
surface, and it is desired to produce a C1 interpolation function defined
over the entire surface, it seems necessary, or at least very desirable, to
deal with the problem directly in the spherical setting. In particular, there
is no C1 function that will map the entire surface of a sphere to a bounded
planar region.

2. The problem. Let S denote the surface of the unit sphere in three-
space. Given pointsph i = 1, . . . , « , the problem is to construct a com
putable function/defined and having C1 continuity over S and satisfying
the interpolation conditions/(/?;) = u{ for / = i, . . . , n.

2.1. Relevant properties of C1 functions on S. A function,/ defined on
S is differentiate at a point p0 in S if and only if there exists a three-
vector go satisfying

The development described in this paper was carried out by the Jet Propulsion La
boratory, California Institute of Technology, under contract with the National Aeronau
tics and Space Administration.

Copyright © 1984 Rocky Mountain Mathematics Consortium

177

178 C. L. LAWSON

(1) lim f(Po + dP)-jf(Po)+gtdp) = 0
\\dp\\-+0 \\dp\\

Po-hdp^S

Let T0 denote the tangent plane to the sphere at the point pQ. Since the
perturbed points p0 + dp in (1) are required to lie in S, the normalized
perturbation vectors dp/\\dp\\ approach the plane T0 as \\dp\\ approaches
zero. It follows that if a vector g0 satisfies (1), then so also does any vector
of the form g0 4- h where h is orthogonal to the tangent plane T0, i.e.,
where A is a multiple of the vector from the origin to p0.

To resolve this nonuniqueness of vectors g0 satisfying (1) we will stand
ardize on the shortest such vector. This vector is distinguished among
vectors gQ satisfying (1) by the property of being orthogonal to the position
vector from the origin to p0, or equivalently by the property that the point
p0 + go lies in the tangent plane TQ. We will call this vector g0 the gradient
vector of/at/?0.

Note that the fact that / has a restricted domain, namely S, is an es
sential part of this definition. For example i f / i s the restriction to S of
some function/defined in an open neighborhood of three-space contain
ing pQ, it is entirely possible that / may be differentiate at p0 and have a
unique gradient vector g that is different from the (minimal length) gradi
ent vector g0 off. In such a case, however, g0 will be the orthogonal
projection of g onto the 2-D subspace parallel to the tangent plane T0.

Let U be a region of S containing p0 and not extending more than %\2
radians away from p0 in any direction. Let k be the one-to-one mapping
of points of U to their orthogonal projections in T0. Let U0 be the region
in T0 to which U is mapped by k. Define the function/) on U0 by f0(t) =
f(k~l(t)). Note that the point p0 is in both the domains o f / and / 0 . If/ is
differentiate at pQ with gradient vector g0, then also/0 is differentiate at
p0 with gradient vector g0. We will make use of this local equivalence of
/ and /0 later in deriving an algorithm for estimating the gradient of /
from discrete data.

We will say a function defined on S is in the class C1 if there is a con
tinuous 3-D vector-valued function g defined on S such that for each
point PQ e S, g(p0) is orthogonal to the vector from the origin to p0 and
satisfies the condition ascribed to g0 in (1).

3. Major steps of the solution method. The approach to be described has
the same major steps as the method for the analogous planar problem
given in [6]. These steps are

1. build a triangular grid on S having the given points pt- as vertices,
2. estimate the gradient vector g{ at each point pi9 and
3. evaluate the interpolation function / a t an arbitrary point p in S by

(a) Looking up p in the grid to find the triangle containing p and

INTERPOLATION ON A SPHERE 179

(b) Computing f(p) by an interpolation method using the given
function values w, and the estimated gradient vectors g(at the three vertices
of the enclosing triangle.

3.1. Data structures. In the algorithms to be described the points p{ will
be represented by their Cartesian coordinates. It will be convenient in
the following to let the same symbol denote either a point or the 3-D
vector from the origin to the point. In particular, points in S are repre
sented by vectors of unit Euclidean length. Each triangle will have an
index number and will be represented by a set of six pointers identifying
the three adjacent triangles and the three vertex points. This is exactly
the same data structure as was used in [6].

If triangle t has vertices whose indices are A, B, and C in counterclock
wise order, and whose adjacent triangle indices are a, 6, and c with triangle
a opposite vertex A, b opposite B, and c opposite C, the six pointers
representing triangle t would be stored in one of the following three
permutations :

a, b, c, B, C, A

b9 c, a, C, A9 B

c, a, b, A, B, C.

All access to these pointers is done via three very short subroutines. Thus
the actual storage mode for these pointers is "hidden" from the rest of
the program. By appropriate programming of these three subroutines the
pointers can be packed to save storage.

The array storage requirements of this algorithm are thus 3ft locations
for the vectors / ? , , / = 1, . . . , ft, n locations for the data values ui9

i = 1, . . . , / ! , 12K locations for the triangle pointers (This is based on six
pointers per triangle and at most 2ft-4 triangles. This storage requirement
can easily be reduced by packing), 3ft locations for the gradient vectors
gt-, i = 1, . . . , ft, and ft locations for a permutation vector used only
while building the grid (This storage could be overlaid by the gradient
vector array or could be eliminated entirely by minor changes in the
program design).

3.2. Determinantal tests and grid look-up. Let pl9 p2, and /?3 be three-
vectors having unit Euclidean length. Let dct(pl9 p2, p$) denote the deter
minant of the 3 x 3 matrix whose column vectors are pl9 p2, p$ in that
order. If â = det(/?1} p2i p$) ^ 0, then no two of the vectors form an angle
of zero or %, and the three vectors do not all lie in a single plane through
the origin. In this case a proper spherical triangle can be formed by
connecting each of the three pairs of points by the shorter arc of the great
circle in S determined by that pair of points. Thus each arc will have

180 C. L. LAWSON

length less than %. This triangle divides S into two regions. The smaller
region is to be regarded as the interior of the triangle. If A > 0, an observer
traversing the edges of the triangle with the interior of the triangle to the
left will visit the vertices in the order pl9 p2, p$. If A < 0, the ordering would
be reversed. We will always order the vertices of triangles so that A > 0.

Let pl9 p2, P3, be vertices of a proper triangle tin S with A > 0. Regard
ing q as a variable three-vector in S, note that the quantity sx = det(#,
P2> Ps) is proportional to the distance of q from the plane determined by
the vectors p2 and p3 with the sign of sx being positive if q is on the same
side of the (/72,/?3)-plane as/?! and negative if q is on the opposite side. Thus
a point q e Sis inside the triangle / if and only if the three quantities

sx = detfa, p2, Ps)

(2) 2̂ = det(/>l5 q, p3)

sz = detOi, p2, q)

are all nonnegative.
Our algorithm for finding a triangle containing a given point q consists

in computing the quantities sh s2 and s3 for some triangle t and then either
accepting t as the containing triangle if all s{ ^ 0 or else moving to the
neighboring triangle across the edge opposite vertex p{ if s{ is the first
of the test quantities found to be negative. If there is no neighboring
triangle across this edge the search stops, returning this information.
Otherwise the search continues by computing the test quantities in the
neighboring triangle.

Rounding errors in computing a 3 x 3 determinant causing inconsistent
sign determination could conceivably lead to cycling in the look-up process
or to the construction of topologically impossible edges in the grid con
struction. (Grid construction will be described in §3.3). Consider for
example four points ph . . . , /?4 that lie in order along an arc of a great
circle, the arc having length less than %. The true mathematical value of
the determinant of the 3 x 3 matrix formed using any three of these
vectors is zero. Using finite precision coordinates and finite precision
floating point arithmetic these determinants will generally not be com
puted as zero. A nonzero result does not in itself cause a serious problem
but the possibility of inconsistency in the evaluation of related deter
minants can.

To illustrate the hazard suppose that with ph ..., /?4 as above the com
puted value of det(/71? p2, p3) is positive and (ph p2, /?3) is accepted as a
triangle in the grid. Then suppose /?4 is tested for inclusion in this triangle.
It is possible that all of the determinants dçt(pA, p2, p3), det(/?1? ph pz\
and det(/?1,/72, pd might evaluate nonnegative. This would lead to the
erroneous conclusion that /?4 is contained in the triangle (ph p2, p3) and

INTERPOLATION ON A SPHERE 181

various topologically incorrect edges would be constructed to incorporate
/?4 into the grid. Using a tolerance e such that all results between — e and
e are treated as zero does not solve the problem. We have had good luck
using double precision evaluation of the determinants and strict zero
tests. We have also had success with single precision determinant evalua
tion if we randomized the order in which the points p{ were considered
for inclusion in the grid.

One way to assure consistency while sacrificing some accuracy would
be to truncate all coordinate values to a small enough number of bits to
permit the determinant evaluation to be done exactly. For example, on
a machine carrying fourteen hexadecimal digits of significance in a double
precision number, one might round all coordinates to the 2 - 1 7 bit. The
smallest nonzero bit that could occur in the product of three such numbers
would be the 2~51 bit. The coordinates do not exceed one in magnitude;
so the same is true of their products. These products and the sum of up
to six such products can be held exactly in a normalized floating point
number earring fourteen hexadecimal digits. Thus determinants of 3 x 3
matrices could be computed exactly.

3.3. Constructing the triangular grid. The convex hull of a finite set of
points in the plane is the smallest convex polygon containing the entire
point set. We need an analogous notion, which we will call the spherical
convex hull, for points on the surface S of the unit sphere. Let P be a
finite set of points in S. If there is no plane that strictly separates the origin
from P, we will say the whole surface S is the spherical convex hull of P.
Alternatively, if there is a plane strictly separating the origin from P,
let C be the smallest convex cone with its vertex at the origin and con
taining the set P. The intersection of C with 5 will be called the spherical
convex hull of P. This region will lie strictly within some hemisphere of S.

A triangular grid with n vertices and covering all of S will have 2«-4
triangles. A grid that covers a spherically convex proper subset of S and
has n vertices and b boundary edges will have 2n-b-2 triangles. Note that
2n can always be used as an upper bound on the number of triangles.
Our method of constructing a triangular grid using a given finite point set
P in S as vertices will be a sequential process that alters a grid covering
the spherical convex hull of some set of k points of P to obtain a grid
covering the spherical convex hull of these k points plus one more.

Algorithms of this type can be divided into (at least) three subtypes.
(a) First find the boundary points of the (spherical) convex hull of P

and construct a triangular grid for these points. Then in the remaining
sequential part of the algorithm each new point is known to lie in some
triangle of the current grid.

(b) Preprocess the points of P into an ordering that assures that each

182 C. L. LAWSON

new point will be stricty outside the (spherical) convex hull of the preced
ing points.

(c) Do no prepreprocessing and be prepared for each new point to be
either inside or outside the (spherical) convex hull of the preceding points.

With subtypes (a) and (b) one is adding extra code and execution time
for a preprocessing stage in the hope of permitting the subsequent sequen
tial phase to be simpler and execute faster. We have at different times
developed algorithms for the planar problem representing each of these
subtypes. The algorithm of [6] is of subtype (b). My present inclination
is to prefer subtype (c) as I think it permits the total program to be simpler
and probably is not significantly slower if in fact it is any slower. More
specifically it does not require storage for a separate data structure to
keep track of boundary points as was the case in [6].

Our approach then is to form one initial triangle and then loop through
the remaining n — 3 points adding one at a time and modifying the
triangular grid at each stage to cover the spherical convex hull of all the
points so far considered. Each new point may be either inside or outside
the grid so far constructed. In the class of problems for which this method
is primarily intended, i.e., problems in which the data are scattered quite
generally over all of S, a stage will be reached at which the spherical
convex hull is all of S. Thereafter all additional points will necessarily
lie inside the grid so far constructed since the grid will cover all of S.
The user can cause this full coverage of S to happen early by arranging
that the first four points to be processed are located such that the tetra
hedron with these four points as vertices contains the origin as a strictly
interior point. The triangular grid based on these four points will cover
all of S.

Initially the algorithm seeks three points with which to construct the
first triangle. The first vector pi is accepted unconditionally. The remaining
vectors are scanned for the first one whose inner product with px lies
between cos 179° and cos 1°, i.e., between -0.99985 and 0.99985. Pointers
are swapped to relabel this vector as/?2. The remaining vectors are scanned
to find one whose determinant along with pi and p2 exceeds 0.001 in
magnitude. Such a vector is relabeled as p3. The vectors p2 and p3 are
then swapped if necessary to assure that det(/71? p2, p$) is positive. This
completes the construction of the first triangle.

We may now assume a grid based on k — 1 points has been constructed
and the next point, pk, is to be introduced. A look-up is done using the
method described in §3.2. This look-up either finds a triangle / containing
pk, or else finds a triangle t such that pk is outside this triangle relative to
a side of the triangle beyond which there is no adjacent triangle. In the
first case, the single triangle t having vertex points pA, pB, pc will be
replaced by three triangles having vertex points (pk, pB, pc), (pA, pk, pc),

INTERPOLATION ON A SPHERE 183

and (pA, pB, pk) respectively. The algorithm then does a grid improvement
phase to be described subsequently. In the second possible outcome of
the look-up process, the point pk is strictly outside the spherical convex
hull of the preceding k — 1 points, and in particular it is outside an edge
of triangle t that constitutes a portion of the boundary of the spherical
convex hull. In this case one new triangle will be formed by connecting
pk to the two ends of the edge of t that gave a negative s{ value in the
look-up testing (See §3.2).

The algorithm next scans the current grid boundary points in both
directions from the new triangle and connects pk to all other boundary
points that result in the creation of proper spherical triangles (See §3.2).
The algorithm then does grid improvement.

3.3.1. Grid improvement. When two adjacent spherical triangles form
a strictly convex spherical quadrilateral, there arises the possibility of
replacing these two triangles by the two that occur when the quadrilateral
is partitioned by its other diagonal. One must estalish a criterion for
choosing between the two possible dissections of a quadrilateral. This
issue was discussed for the planar case in [6] where it was shown that
three differently stated criteria were mathematically equivalent. In the
spherical setting a fourth criterion with considerable intuitive appeal can
be formulated and it is easily seen to be equivalent to the "circle test"
of [6].

Let ph p2, p& and /?4 be the vertices, in counterclockwise order, of a
spherical quadrilateral in S. Assume all four of the potential triangles (px

P2Pd> (P2P3PÙ* (PSPAPI), and (piPiP2) would be proper spherical triangles.
One choice would be to connect points px and p3 forming triangles (pip2pz)
and (PSPAPI) while the other choice would be to connect points p2 and
/?4 forming triangles (p2p$pd and {p^PiPè- Consider the 3D polyhedron
underlying the spherical triangular grid. If the four points under con-
sideraton are not coplanar then one choice will give underlying planar
triangular faces that could be faces of a convex polyhedron and the
other choice will not. Therefore our new criterion is a preference to make
the underlying 3D polyhedron convex.

Another way to describe this criterion is to consider the unique line L
from the origin that intersects both of the lines pips and p2p±. If Pi,p2,
pz, and /?4 are not coplanar the two lines will intersect L at two distinct
points. We construct the one of these two lines that intersects L furthest
from the origin. We implement this test by computing d = det (p2 — ph

Ps — JPI> PA — Pi) and constructing the line p2pA if d > 0 and constructing
pxpz if d < 0. Either line can be used if d = 0.

After a new point, say pk, is connected into the grid, each edge that is
opposite pk in some triangle is a candidate for swapping. Thus if there is

184 C. L. LAWSON

a triangle pkp2Pi and an adjacent triangle p2PzP^ the edge p2p± will be
replaced by the edge pkp3 if det(/?2 - pk, Pz - />* /?4 - PÒ is negative.
When an edge is swapped, the edges opposite pk in the two newly formed
triangles become candidates for swapping.

3.4. Estimation of gradient vectors. We assume a triangular grid has
been constructed in S covering the spherical convex hull of the points
/?!, ...,/?„ and having the points ph . . .,pn as vertices. We also assume
the data values ul9 . . . , un (See §2) are available. It is required to estimate
a 3D gradient vector^ at each pointp{. See §2.1 for the characterization
of gradient vectors for this problem.

Let p{ be a point at which a gradient vector g{ is to be estimated. Our
general idea is to do a least squares quadratic fit to data near the point
Pi and then use the gradient vector of this fitted quadratic polynomial as
the gradient vector at p{. We use a six-term quadratic polynomial in two
variables forcing interpolation to the value u{ at pt>. Thus we need at least
five neighboring points, and prefer more than five to obtain a local
smoothing effect on the gradient vector. Let Q denote the set of points
to be used for the fit. We first place all the immediate neighbors of p{

into Q. If the number of immediate neighbors is from six through sixteen
and if the matrix for the least squares problem passes a conditioning test
then this set Q is used for the fit. If the number of points exceeds sixteen,
excess points are discarded. If the number is less than six, more nearby
points beyond the immediate neighbors of pt- are introduced. If the matrix
condition test is not passed, more points, up to sixteen, are added. If the
condition test still fails with sixteen points, the least squares system is
damped to bias the solution toward small values of the coefficients of the
three second order polynomial terms.

The fitting is set up in a local coordinate system determined by p{.
A 3 x 3 rotation matrix R is determined that transforms the position
vector of/?,- to the vector (0, 0, 1). Thus the "north pole" of the rotated
coordinate system is at /?,-. The same coordinate transformation is applied
to all vectors in the fitting set Q. Generally these transformed vectors,
having some proximity to pt-, will all lie in the "northern hemisphere"
of the rotated coordinate system, i.e., their z coordinates will be positive.
If any transformed vector (x, y, z) has z < 0, we arbitrarily replace it by
(x/s, y/s9 0) where s = sqrt(x2 + y2). This last step is just an expedient
to do something definite in a poor situation. Data must be very sparse or
poorly distributed to result in any points of Q being in the "southern
hemisphere" of the rotated coordinate system.

We ignore the z coordinates of these transformed vectors, using only
their x and y coordinates in the fitting. This can be interpreted as pro
jecting the points pj of Q orthogonally onto the plane T that is tangent

INTERPOLATION ON A SPHERE 185

to the sphere at the "north pole", i.e., at p{. The polynomial model for
the fit is

cxx + c2y + czx
2 + c^xy + c5y

2 = u - ut-.

The coefficients c b . . . , c5 of this polynomial are determined by a least
squares computation. The two-vector (ch c2) is the gradient vector at pt>
of the fitted polynomial relative to the (x, ^-coordinate system in the
tangent plane T. Using the observations at the end of §2.1 we take the
three-vector (cl9 c2, 0) to be the gradient vector at pt- of the (as yet un
known) interpolating function defined over the surface of the sphere.
The inverse of the rotation matrix R is then applied to (c1? c2, 0) to obtain
the representation of the gradient vector g{ in the original coordinate
system.

3.5. Interpolation in a single triangle. In the planar case described in
[6] we preferred the nine-parameter Clough-Tocher cubic macroelement
[3] as our interpolation method primarily for the following two reasons.

(a) It is more economical to evaluate than any other C1 interpolation
method of which we are aware. Beginning with the rectangular coor
dinates of q and of the vertices, and the function values and 2D gradi
ent vectors at the vertices, our evaluation of this interpolant uses 55
multiplications, 65 additions, and 4 divisions.

(b) The interpolant at any point is simply a cubic polynomial in the
Cartesian coordinates (or in the barycentric coordinates), and thus it
is easy to derive and implement an evaluation of the gradient of the
interpolated surface if this should be desired.

Unfortunately, the Clough-Tocher method depends strongly on prop
erties of polynomials in Cartesian coordinates over a planar region and
does not seem to generalize for use over a spherical triangle.

We will describe two methods for C1 interpolation over planar triangles
that do generalize to spherical triangles. We first describe aspects that are
common to both of these methods. The given data consists of a function
value and a 2D gradient vector at each vertex. Values along an edge
are computed by Hermite cubic interpolation and the tangential derivative
at any point on an edge is computed as the derivative of this Hermite
cubic interpolation polynomial. The normal derivative at any point on
an edge is computed by linear interpolation using the derivatives normal
to the same edge at the two ends of the edge. For q on the boundary
t* of a triangle t let F(q) denote the value and G(q) denote the gradient
vector defined by these interpolation methods along the boundary.

The interpolant for interior points q et will be constructed as a convex
combination of partial interpolants :

186 C. L. LAWSON

(3) Aq) = E Wi(q)fiiq), J Wi(q) = 1.
1=1 1=1

Each partial interpolant/ will agree with F for all q on the boundary /*,
and will satisfy the gradient conditions Vf(q) = G(q) for some, but not
all, points of t*. The weight functions w{ will be constructed to be non-
negative throughout t, and to be zero at all boundary points q at which
V/(#) # G(q). Interpolation methods of the form of (3) are analyzed in
detail in [4]. It is shown in Corollary 2.5 of [4] that if the f/s and w/s are
C1 throughout t and satisfy the conditions just enumerated, the function
/ o f (3) is also C1 throughout t and satisfies f(q) = F(q) and Vf(q) = G(q)
for all q e t*. We sketch here the proof of this proposition as given in [4],

Satisfaction of f(q) = F(q) is clear since e a c h / satisfies this condition
and the f/s are combined using weight functions that sum to one. To
verify the satisfaction of the gradient condition on the boundary, expand
V/as

(4) V / = | > , V / , + Ì / V w , .
f=i i=i

Since all f/s agree with F on the boundary, the second summation in
(4) satisfies

£f< V w< = F t V w< = F V Ì w, = 0,
f=i Ï = I i=i

for q e t*9 where the last equation uses the observation that the condition
j^Wj = 1 of (3) implies VEwt- = 0 throughout/. The first summation of
(4) evaluates to G(q) for q e t* since the w/s sum to one, and each wt- is
nonzero at a boundary point q only if V/(#) = <?(#).

3.5.1. Planar Method 1. For any point q in the triangle t l e t / in (3)
be defined by Hermite cubic interpolation along the line through q parallel
to the edge opposite vertex/?,-. This function/ has been called the BBG
interpolant or BBG projector due to its use in [1]. See also [2, pp. 92-101].
Function and derivative values for this interpolation are derived from the
edge functions F and G defined above. The function/(#) defined in this
way is C1 over triangle /, a n d / and its gradient match Fand G respectively
on all edges, except that the normal derivative of/ on the relative interior
of the edge opposite p{ will generally not be consistent with G.

Thus letting / be the BBG interpolant, it will suffice, according to
Corollary 2.5 of [4], to require that w{ have the value zero on the edge
opposite Pi and be nonzero elsewhere on the boundary of t. This is con
veniently assured by letting w{ be the barycentric coordinate of q that
has the value zero on the edge opposite p{ and one at p{. Thus (3) special
izes to

INTERPOLATION ON A SPHERE 187

(5) f(q) - biMq) + WM) + bM),

where the b{ are the barycentric coordinates of q relative to the triangle
t and the f/s are BBG interpolants, each requiring two linear interpola
tions and three Hermite cubic interpolations for its evaluation.

3.5.2. Planar Method 2. For any point q in the triangle t let/; in (3) be
defined by Hermite cubic interpolation along a line from vertex p{ through
q to the opposite edge. This interpolant has been called a side-vertex or
radial interpolant. A number of ways of using side-vertex interpolants to
construct interpolation methods are discussed in [8], however the method
we are using is not treated there. (After reading the initial version of this
paper, Nielson has shown in a personal communication that Planar
Method 2 can be derived as a specialization of Theorem 3.3 of [8]). Each
partial interpolant/ is C1 throughout / and matches the required function
value F at all boundary points. The gradient Vf matches G on the edge
opposite ph but the normal derivative will generally not be consistent
with G on the relative interiors of the two edges adjacent to vertex p{.
with Corollary 2.5 in mind, it seems appropriate for the weight function
Wj to contain the product bi+xbi+2 as a factor, since this product is zero
along the two edges adjacent to ph and nonzero in the relative interior of
the edge opposite pt-. Here the b/s denote barycentric coordinates of q,
and the subscripts are to be evaluated modulo 3 to one of the values
1, 2, or 3.

Introducing a normalizing factor to assure J^w{ = 1, we define

f bf+i bt+2/(bi+1 bi+2 + bi+2 b{ + b{ bi+1) for q # pi+1 or pi+2

(6) iv, = J 0 for q = pi+1

11 for q = pi+2.

Note that the rational expression in the first line of the above definition
has non-removable singularities at vertices pi+x and pi+2. The assignment
of the values 0 and 1 at pi+i and pt+2, respectively, is a technicality to
preserve the property £]w,. = 1 throughout t. Using these weight functions
(3) specializes to

(7) / (,) = (b2b3 + bfr + hb2)
 f o r * * P* P» o r ' 3

[Uj for # = / ? , . .

Here each partial interpolant/- requires one linear interpolation and two
Hermite cubic interpolations along lines. Corollary 2.5 of [4] establishes
the C1 continuity of/, except possibly at the three vertices, since the weight
functions of (6) do not satisfy the hypotheses of the corollary at these

188 C. L. LAWSON

three points. Each Wj is discontinuous at two vertices and lacks differen
tiability at all three vertices. Thus it is necessary to prove that fis con
tinuous, differentiate, and continuously differentiable at the vertices.

This proof has been recorded in detail in an internal memorandum [7].
It is shown that each of the side-vertex partial interpolants fj has a repre
sentation in a neighborhood of each vertex p{ of the form

f/Pi + h) = «, + gjh + 0 ||A||2

for 2D vectors h that are sufficiently small and such that Pi + h s t. The
proofs of continuity and differentiability of / then follow directly. To
demonstrate that Vf is continuous at a vertex Pi we write, for h # 0,

VÄPi+h)-g, = Ejf/Ü>,+h) Vw;(Pi+h) + Zj wj(Pi+h) Vfj(Pi+h)-gi

=(u{+gfh)EJVWX/>,+/0+2L[VHV(A+A)o \\hp]

+ Lj[wj(p<+h)(gl+0\\h\\)]-gi

=EAV">AP<+V o HMl2]+£>,</>,•+//) o HAH]

= 2,'VHV(/>,.+/*)0||/*F + 0||A||.

It is then shown that the last expression above approaches zero as ||h\\ -> 0
by verifying that each Vwj(Pi + A) grows no faster than j|/e||—x as \\h\\ -> 0.
In particular it is shown that

T7 i ^u\ PW wheny = i

3.5.3. Generalization of Planar Methods 1 and 2 for spherical triangles.
The key in generalizing these two planar methods for use with a grid of
spherical triangles on the surface S of the unit sphere is to replace all of
the linear and Hermite cubic interpolations along line segments by the
same type of interpolations along arcs of great circles in S. Let t denote a
proper spherical triangle with vertex position vectors pl9 p2, and /?3, and
let q be a point of S contained in t. Let t' denote the underlying planar
triangle having the same vertices as /, and let q' be the central projection
of q into the plane of triangle t\ i.e., q' is the point in the plane of / '
intersected by the line from the center of the sphere to q.

When the look-up procedure of §3.2 finds that a given point q in S is in
triangle t, it also returns the three nonnegative numbers s±, s2, and J 3

of (2). We call these numbers unnormalized barycentric coordinates
since the (normalized) barycentric coordinates of q' relative to the planar
triangle t' can be computed as

b{ = si/(s1 + s2 + s3), i = 1, 2, 3.

The intersection points between certain lines through q' and edges of / '

INTERPOLATION ON A SPHERE 189

needed for either of the two planar interpolation methods are easily
represented in terms of the è/s and p/s. Thus the intersection between
edge PiPi+i with the line through q' parallel to edge pi+iPi+2 has position
vector biPi + (1 — bt)pi+i while the intersection between edge pi+1pi+2

with the line from vertex p{ through q has the position vector (bï+1pi+1 +
bi+2Pi+2)/(bi+i + bi+2). These intersection points can then be centrally
projected to S by normalizing their position vectors to have unit Euclidean
length. All of the linear and cubic interpolations called for in the planar
methods are then done with respect to arc length along great circle arcs
in S obtained by central projection of the corresponding line segments
in the planar triangle t'.

Recall that gradient data at each vertex pl9 p2, and p3 is represented as
a three-vector orthogonal to the position vector of the vertex. Gradient
information generated at auxiliary points in either interpolation method
is also represented as a three-vector orthogonal to the associated position
vector. The verification that each of these two spherical triangle inter
polation methods defines a C1 function over S can be carried out in the
same way the C1 property of the planar methods is proved.

4. Software implementing these algorithms. Subroutines were written
for these algorithms in 1979 using the JPL SFTRAN3 structured Fortran
language which is preprocessed to Federal (ANSI) Standard Fortran 77.
The time for grid construction for n points was proportional to n1-25 for
test cases in the range from 25 to 500 points. The RMS error in test cases
using simple mathematical functions to generate data over relatively
uniform triangular grids of various densities was proportional to h3A in
test cases having maximum edge length in the grid ranging from 63° down
to 9°. A count of the number of arithmetic operations required to do a
single interpolation in a triangle gives the figures listed in Table 1. The
planar Clough-Tocher method is included for comparison. For all methods
the computation starts with Cartesian coordinatdes for q, ph p2, and p3

and function values and gradient vectors at pl9 p2, and p3. The weights
used to combine the counts are arbitrary but plausible. They are nor
malized to cause an addition plus a multiplication to sum to one for con
sistency with operation counts measured in "Flops".

As a test of the C1 continuity of Method 1 we' reprogrammed the code
for that method using a "{/-arithmetic" package developed at JPL in
1971 based on the ideas of [10]. (This is like the method of [5] without
the benefit of a preprocessor.) In this approach the program computes
a 3D gradient vector and a 3 x 3 Hessian matrix for every intermediate
quantity, and thus also for the final interpolated value. All derivative
computations use mathematically correct formulas, i.e., not differencing.
We found it necessary to reorder some computations to avoid severe

190 C. L. LAWSON

Add/Subtract
Multiply
Divide
Sqrt
Atan

Weighted
Total (Flops)

Clough-
Tocher
Planar
Method

65
55
4

63.8

Spherical
Method 1

371
699
81
24
18

827.0

Spherical
Method 2

352
450

57
15
12

584.2

Factors
for
weighted
total

0.4
0.6
1.2
3.0
5.0

TABLE 1. Operation counts for a single interpolation in a triangle

artificial numerical instabilities in the derivative computations. After this
reordering the results were consistent with C1 continuity.

We did not try a {/-arithmetic version of Method 2. I would expect
severe difficulties with this since the singularities of the w/s at certain
vertices (See §3.5.2) imply that some first partial derivatives of the w/s
can be arbitrarily large in a small neighborhood of a vertex. Mathemati
cally these cancel out, but numerically there would be large rounding
errors.

Numerical differencing tests for C1 continuity were run on the im
plementations of both Method 1 and Method 2. The set of ten points
listed in Table 2 was used as the grid nodal points for the tests. The grid
generation subroutine was run producing sixteen triangles as shown in

(East) Longitude
(Degrees)

0
40

5
- 3 5
- 2 5

20
240
180
155
180

Latitude
(Degrees)

0
10
35
20

- 3 0
- 2 5

10
40

- 1 0
- 2 0

TABLE 2. Nodal points for test cases.

INTERPOLATION ON A SPHERE 191

FIGURE 1. Front surface of sphere, centered on the zero longitude meridian.

FIGURE 2. Back surface of sphere, centered on the 180° longitude meridian.

192 C. L. LAWSON

Figures 1 and 2. The numbers in these two figures are identification
numbers for the triangles.

The first six points of Table 2 appear as triangle vertices in Figure 1
while the last four points are vertices in Figure 2. The vertex points are
positioned correctly as orthogonally projected onto the (y, z)—plane.
The triangle edges were drawn with convenient drafting tools and do
not portray precise curvatures.

Longitude and latitude are related to rectangular coordinates by the
equations

x = cos(longitude) cos(latitude)

y = sin(longitude) cos(latitude)

z = sin(latitude)

In Case 1 of the difference testing we used interpolation at thirty points
as illustrated in Figure 3. This figure corresponds to a small central region
of Figure 1.

There is a primary set of fifteen interpolation points on the equator
running from —0.07 radians to 0.07 radians of longtiude in steps of 0.01
radians. This set of points falls in Triangles 3 and 5 and includes the
vertex common to these two triangles. These points are used to compute
first and second differences in the longitude direction. The secondary
set of fifteen interpolation points lying 0.01 radians of latitude above the
primary set is used for computing a first difference in the latitude direc
tion. Note that some of these points fall in Triangles 2 and 1 as well as
3 and 5.

For Case 2 we used a similar set of thirty points shifted 180° in longi-

0.01

LU

Q of-

J _ J I I I I L
0.07

J L
0.07

LONGITUDE (radians)

FIGURE 3. Interpolation points for Case 1.

INTERPOLATION ON A SPHERE 193

•

I I 1 I
0

FIGURE 4a. Case 1. Interpolated value.

tude. Thus for Case 2 the interpolation points lie in Triangles 14 and
15 with the central primary and secondary points lying on the edge com
mon to these two triangles.

For the test reported here the function to be interpolated was the
cubic polynomial

/(*, y, z) = (9x3 - 2x2y + 3xy2 - 4j>3 + 2z3 - xyz)/lO.

Values of this polynomial and its gradient vector, projected into the local
tangent plane, were associated with each point of Table 2. For Method 1
results from these tests are shown in Figures. Aa-f and 5a-f. The abscissa

194 C. L. LAWSON

0

•2X10"4

-4

-6'

-e

-10

-12

•

ì-

l_

•

_ l _

•

_ l _

•

i

•

_ ! _

•

_ L

•

_ l _

•

_ l _

•

_ l _

•

_ l _

•

_ l _

•

_ L _

•

•

_J I
-7

FIGURE 4b. Case 1. Interpolated value minus true value.

in these figures and in Figures. 6-7 is in units of 0.01 radians from the
central longitude for the case. The central longitude is zero for Case 1
and 180° for Case 2. These tests were run on a Uni vac 1100/81 computer
having relative precision of 27 bits, or about 8.1 decimal places.

These results appear to be consistent with the expectation that the
interpolation method maintains C1 continuity when crossing a vertex
(Case 1) or an edge (Case 2), and interpolates the value and gradient data
at the vertex common to triangles 3 and 5 in Case 1. Thus in Figures. 4c,
4e, 5c, and 5e, the first differences may have different behavior to the
left and right of the center abscissa (0 in Case 1 and 180° in Case 2) but
the left and right subsets appear to approach a common value at the

INTERPOLATION ON A SPHERE 195

0

1 x 10 3

2

-3

-4

•
•

I I

•

I I

•

I I

•

I I

•
•

|

•

I

•

i i

•

i i

•

i i

•

i i

•

i

•

i i
-7 0

FIGURE 4C. Case 1. First difference in longitude.

.20 x 10"4

-2 .30

-2.40

-2.50

-2.60

•

—

L

•

- L -

•

_ 1 _

•

_ 1 _

•

I

•

±

•

I _ i _

•

I

•

__L

•

L

•

L

•

_] _ _J

FIGURE 4d. Case 1. Second difference in longitude.

196 C. L. LAWSON

-0.5 x IO-4

-1.0

• •
-1.5 H

-9 Ol l i l t
-7 0

FIGURE 4e. Case. 1. First difference in latitude.

1 x 10 5

0

-1

-2 #
• • •

i i

•
•

I, ...

•

•

[

•

]_ . ._

•

i

•

i_,-

•

i ._

•

1 . ,.

•

1 1
-7 0 7

FIGURE 4f. Case 1. First difference in longitude of first difference in latitude.

INTERPOLATION ON A SPHERE 197

-0.840 I

-0.850

-0.860

-0.8701 J I I L I l I I L

FIGURE 5a. Case 2. Interpolated values.

4.05 x 10'2

4.00

3.95

3.90

3.85

•

>

i_

•

±

•

_ 1 _

•

L

•

1

•

_ j _

•

1

•

_ i _

•

., 1 , j . . .

•

J_

•

,1,

•

L

•

_J
•7 0 7

FIGURE 5b. Case 2. Interpolated value minus true value.

198 C. L. LAWSON

4 x ì (T 3 f

3 h

2 h

JJLL J I I I I I I I I I
-7 0

FIGURE 5C. Case 2. First difference in longitude.

4x 10"4!

3 h

2 h

J I I I I I I L

FIGURE 5d. Case 2. Second difference in longitude.

INTERPOLATION ON A SPHERE 199

1.30 x 1CT

1.25

1.20

1.15

1.10 1 X_J I L-J L

FIGURE 5e. Case 2. First difference in latitude.

0.5 x 10 a

-1.0 h

-1.5 J I L I * I
-7 0 7

FIGURE 5f. Case 2. First difference in longitude of first differences in latitudes.

200 C. L. LAWSON

5 x 10*5 I

2 h

I l I I T à i 1 i è i_
-7 0

FIGURE 6. Case 1. Method 1 minus Method 2.

1x10"^

• • •

-1

-3 J I I I I I
-7 0

FIGURE 7. Case 2. Method 1 minus Method 2.

INTERPOLATION ON A SPHERE 201

center abscissa. Graphs of results using Method 2 are almost identical in
general appearance to those for Method 1 and thus are not included here.
Differences between interpolated values obtained by Method 1 and
Method 2 are shown in Figures. 6 and 7.

5. An application. In February, 1982, this software was used at JPL
in the study of gravity variation over the surface of the planet Venus.
Data was available at many, but not all points, of a rectangular longitude-
latitude grid. The missing data occurred in irregularly shaped regions
determined by geometrical constraints of the observation and communica
tion instruments. Using 2450 points at which data was present our pro
gram built a spherical triangular grid consisting of 4896 triangles. Missing
data in the rectangular grid was then filled in by interpolation in the
triangular grid. In the course of this work the scientists gained new
insights regarding their data and we found and repaired a weak spot in
our program. See the discussion of determinant evaluation in §3.2.

6. Conclusions and remarks. The efficiency of the grid building proce
dure, execution time in test cases being observed to be proportional to
A71-25, is quite satisfactory. C1 interpolation in a spherical triangle requires
nine to thirteen times as many Flops as C1 interpolation in a planar
triangle. Modifications giving small reductions in the operation counts
are known, but it would be interesting if an entirely different approach
could be found that might be more intrinsically related to the topology of
the spherical surface and require significantly fewer Flops.

Method 1 is more time-consuming than Method 2 by a factor of about
3 to 2 since Method 1 uses nine cubic interpolations along arcs compared
with six for Method 2. Analytic computation of gradients for interpolated
values would probably be more stable using Method 1 than Method 2
because of the singularities in the w/s of Method 2. It would be inter
esting to make visual comparisons of surfaces generated by these two
methods, but we have not had the resources to make such comparisons.

The programs appear to be robust and reliable. The use of the SFTRAN3
structured Fortran language has been extremely helpful in keeping the
code understandable.

It should be noted that the use of the surface of a sphere as the domain
is just a mathematical construct for dealing with the set of all directions in
three-space from an origin point. Thus the methods of this paper are
applicable to the representation of any bounded two-dimensional C1

surface in three-space that is "starlike" in the sense that there is some
origin point from which a ray in any direction intersects the surface in at
most one point and the ray is not tangent to the surface at that point.
Other two-dimensional manifolds besides the plane and the spherical
surface that may deserve investigation for scattered data interpolation

202 C L . LAWSON

include the surface of a cylinder or a torus. On a cylinder one may wish
to admit triangles having two vertices at the same data point while on
the torus one may admit triangles having all three vertices at the same
data point.

REFERENCES

1. R. E. Barnhill, G. Birkhoff and W. J. Gordon, Smooth Interpolation in Triangles,
J. Approx. Theory 8 (1973), 114-128.

2. R. E. Barnhill, Representation and Approximation of Surfaces, Mathematical
Software HI, ed. J. R. Rice, Academic Press, 1977, 69-120.

3. R. W. Clough and J. L. Tocher, Finite element stiffness matrices for analysis of plates
in bending, Proc. Conf. Matrix Methods in Struct. Mech., Air Force Inst, of Tech.,
Wright-Patterson A.F.B., Ohio, 1965.

4. G. J. Herron, Triangular and Multisided Patch Schemes, Ph.D. Theisis, University
of Utah, 1979.

5. G. Kedem, Automatic Differentiation of Computer Programs, TOMS 6 (1980),
150-165.

6. C. L. Lawson, Software for C1 Surface Interpolation, Mathematical Software III,
ed. J. R. Rice, Academic Press, 1977,161-194.

7. , The C1 continuity of a side-vertex interpolator, JPL Internal Memorandum,
Computing Memorandum No. 366-491,1982.

8. G. M. Nielson, The Side-Vertex Method for Interpolation in Triangles, Jour.
Approx. Theory 25 (1979), 318-336.

9. L. L. Schumaker, Fitting Surfaces to Scattered Data, Approximation Theory II,
ed. G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Academic Press, 1976, 203-268.

10. R. E. Wengert, A Simple Automatic Derivative Evaluation Program, CACM 1
(1964), 463-464.

JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CA

91109

