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THREE-STAGE INTERPOLATION TO SCATTERED DATA 

THOMAS A. FOLEY 

1. Introduction. A general three-stage procedure is presented here that 
solves the following multivariate interpolation problem: Let D be a subset 
of RM that contains TV distinct point v{. Given N real values/(v,-), construct 
a function P[f] defined on D that satisfies P[f] (v,-) = /(v,-) for / = 1, . . . , 
N. 

In the bivariate case with n = 2, this problem can be interpreted as 
fitting a surface through N points in three-dimensional space. Foley 
[7] used bivariate interpolation in the characterization of radionuclide 
activity resulting from nuclear tests in Nevada. The survey paper by 
Schumaker [14] gives applications in mineral exploration, medicine, com­
puter aided design, and electronics. 

Part of the motivation for three-stage interpolation is that some 
methods that apply directly to scattered data give undesirable results or 
they are inefficient when N is large. On the other hand, many methods that 
are accurate and efficient only apply to gridded data, which is a narrower 
class of data. 

Three-stage interpolation is related to the following approaches. Schu­
maker [13] gives a two-stage approximation to the scattered data that does 
not generally solve the interpolation problem. The Boolean sum approach 
in Barnhill and Gregory [3] obtains a desired precision and retains the 
interpolation properties. The implementation of the Barnhill-Gregory 
Boolean sums by Poeppelmeier [12] is discussed in Barnhill [2]. The author 
in [6] and Foley and Nielson [8] used delta sums and delta iteration inter­
polants composed of a bicubic spline approximation and a correction term 
using Shepard's method. It will be shown that some of these approaches 
also can be classified as three-stage methods. 

The next section describes general three-stage interpolation. §3 gives 
a bivariate example named BSPLASH that is globally defined and has 
continuous second order partial derivatives. This method is applied to 
several data sets in the final section, and the results compare favorably 
with the best methods tested in Franke [9]. 

2. General three-stage interpolation. The general three-stage process is 
defined by 
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(1) P[f] = BL[f) + S[f-BLlf]] 

where L, B, and S are any operators that satisfy 
(2) L[f] is defined for those v so that BL[f] can be formed, 
(3) BL[f] and S[f - BL[f]] are defined on D, 
(4) S\g] (v,-) = g(vf) for i = 1, ..., Nfor all g defined on Z>, and 
(5) if g(v,.) = 0 for i = 1, . . . , N, then S[g](v) = 0 for all v in D. 

A bivariate example is given in the next section where S is a modified 
Shepard's interpolant to scattered data, B is a bicubic spline interpolant 
to gridded data, and L uses several quadratic least squares approximations 
to generate the gridded data for B. The author has tried several other 
choices for L, B, and S. S can be any interpolant to scattered data. B 
could be a bicubic Hermite, a Berstein polynomial, a Bezier surface, any 
quasi-interpolant, or even a transfinite method. L can be any approxima­
tion or interpolation method that applies directly to the scattered data, 
and L[f] does not even have to be continuous for it to be effective. 

Interpolation, continuity, precision, and error properties of P[/]are now 
given in the following theorem. 

THEOREM 1. Given N distinct points vt- in Rw, 
a)P[/ ] (v , )=/(v , ) /or /= l,...,N, 
b) if S[f] eC'onD for all f and B[f] eOonD for all f, then P[f] e O 

where u = min(s, t). 
c) if B[f] = ffor allfeG and L[f] = f for all fe H, then P[f] = ffor 

allfeG fi H, and 
d) ifB is a linear operator and I is the identity, then 

(6) f-Plf] = (I- S) [( / - B[f]) + B(f - L[f])l 

PROOF. S is not assumed to be linear, but if it were linear, then parts a) 
and c) follow from the Barnhill-Gregory theorem [3] because P is the 
Boolean sum of S and BL. P[f] interpolates the scattered data because by 
(1) and (4) 

P[f](.v{) = BL[f]iy,) + S[f- BL\My.) 

= BL[f](yò +/(v,) - Bimyò =/(v,). 
Property b) holds because P[f] is the sum of B[g] and S[h], where g = L[f] 
and h = /— BL[f]. Property c) follows from (1) and (5), while d) holds 
because 

/ - Plfi = / - BL[f] - S[f- BL[f]] 

= / - * ! / ] + B[f] - BL[f] - S(f - B[f] + B[f] - BL[f]) 

= if - B[f]) + B(f - LU]) - m - B[f]) + B(f - L[f])]. 

If 5 is a linear operator, then Boolean sum and delta iteration inter-
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polants can also be considered as three-stage interpolants. The Boolean 
sum S e L[f] = L[f] + S[f] - SL[f] is the three-stage interpolant (1) 
if B is the identity. Delta iteration is defined recursively by letting JQ = S 
and 

Jm+1[f] = BJJf] + S[f- BAm[f]). 

J 0 is trivially a three-stage method, and if L = Am, then Am+^f] = P[f]. 

3. BSPLASH. This section presents a bivariate example of three-stage 
interpolation. In this context, n = 2, v,- = (xt, yt), and f(yt) = z,-. This 
implementation is called BSPLASH because the operator B produces a 
bicubic spline approximation, which is followed by a modified Shepard's 
interpolant S. This method has been applied to the data sets in Franke 
[9], and some of these results are given in the next section. 

To evaluate L[f] at a point (x, y), find the seven nearest data points 
(xt-, yt) to (x, y). A weighted least squares fit to the seven points (xt-, y{, zt) 
by a quadratic is formed, the weights being ((x — xt)

2 + (y — y if)"1. 
L[f](x, y) is the value of this quadratic evaluated at (JC, y). If the least 
squares problem has many solutions, we will use one of lowest degree. 

L[f] is similar to the method is McLain [11], but it uses only seven points 
instead of all the points. A function evaluation for McLain's method is 
time consuming, but evaluating L[f] is much faster. Furthermore, L[f] 
is only evaluated at the rectangular grid points used in the bicubic spline 
B. L[f] is generally not continuous, but the continuity of P[f] does not 
depend on L[f] as seen in part b) of Theorem 1. What is important is that 
L[f] gives a good approximation t o / a t the bicubic grid points because the 
error term (6) depends on B(f — L[f]). 

The operator B is the natural bicubic spline that solves the gridded 
interpolation problem 

B[g](XGt-, YGj) = g(XGt-, YGj) i = 1, . . . , NXG, 7 = 1 , . . . , NYG. 

See de Boor [4] for a detailed description. The bicubic grid points {XGi9 

YGj) can be input by the user or they can be computed by BSPLASH 
using an averaging process. Let M = IROUND ( yW) , k = I ROUND 
(NjM), NXG = M + 2 and NYG = M + 2. % Sort the x-coordinates 
into increasing order. Set XG2 to the average of the first k jc-coordinates, 
XG$ to the average of the next k smallest ^-coordinates, . . . , and XGM+1 

to the average of the k largest ^-coordinates. Let U = (XGM+1 — XG2)I 
(M — 1). If the M grid points were equally spaced, then U would be the 
difference between two consecutive grid points. Set XGX = xx — U and 
XGNXG = xN + U so that all of the data points fall inside the grid. While 
the interior grid points are being computed, consecutive grid points are 
compared to see if their difference is between (7/2 and 3* (7. If their differ-
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enee is less than U/2, they are considered to be too close and they are 
averaged together thus reducing NXG by one. If their difference is greater 
than 3*U, a new grid point is inserted at their midpoint and NXG is in­
creased by one. The ^-coordinates of the rectangular grid are defined in 
the same manner. 

The operator S is the modified Shepard's method described in Foley 
[6]. 

N 

£/(*,•> yd II Pj<x, y) 
Slf](x, y) = ^ L _ iîi 

2 ÏÏPj(x,y) 

where pj(x, y) = d/fj + d^)\rh dj = (x — xj)2 + (y — yj)2, and ry is the 
distance squared from (xy, yj) to its fifth nearest data point divided by four. 
S[f] has continuous partial derivatives of all orders for all (x, y) and it 
satisfies (4) and (5). S has many interesting properties that are given in 
Foley [6] and in Gordon and Wixom [10]. This method gives results that 
are very similar to the localized Shepard's method used in Franke [9]. 
The primary difference between the two is that S[f] e C°°(R2). It should 
be noted that S is not sensitive to the selection of ry and that no square 
roots are needed. This interpolant is computationally fast, requires very 
little storage, and it is easily generalized to functions of several variables. 
Unfortunately, it is not visually smooth, nor is it very accurate. 

The first stage of BSPLASH computes 

ZG{j = L[f](XG{, YGj) i = l , . . . , NXG J = 1, . . . , NYG. 

The second stage forms the bicubic spline BL[f] through the points (XGh 

YGj, ZGij). This generally yields a smooth approximation to/(x, y), but 
it does not interpolate the original scattered data {xh yh z{). The final 
stage adds to BL[f] the correction term S[f — BL[f]] which uses S to 
interpolate the residuals zt- - BL[f](x{, yt). 

By Theorem 1, this interpolant has continuous second order partial 
derivatives for all (x, y) because S[f] e C°° and B[f] e C2. 

4. Results. Figure 1 is a plot of the function 

+ .5 e x p ( - ( 9 * " 7 ) 2 + ( 9 j ~ 3 ) 2 ) - .2exp(-(9x-4)2-(9>>--7)2) . 

Data sets were generated by evaluating this function at the N = 100, 
33, and 25 (x, y) coordinates displayed in Figure 2. This function and data 
were used by Franke [9] in the comparison of several interpolants. The 
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FIGURE 1. f^x, y) 
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FIGURE 2. (x9 y) 
data points with grid lines 

intersections of the orthogonal lines in Figure 2 are the bicubic grid points 
that were computed by BSPLASH. Figure 3 shows the results of BSPL-
ASH applied to these three data sets. Table 1 gives the maximum absolute 
errors and the average absolute errors for these results as well as the errors 
for BSPLASH applied to the functions / 2 , / 3 , / 4 and/5 defined in Franke 
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FIGURE 3. BSPLASH applied tof^x, y) 

[9]. These discrete errors were computed using the differences at the 33 
by 33 grid used to plot the surfaces. The errors and the visual smoothness 
of the plots compare favorably with the best methods tested in Franke 
[9]. 

Figures 4 & 5 show BSPLASH applied to the N = 50 data points in 
Akima [1] and the N = 25 points in Ferguson [5]. The function values 
were actually .5 more than those given by Ferguson, just as were those 
used by Franke. The evaluation bounds were also the same as those 
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TABLE 1 

Discrete Errors Using BSPLASH 

Function 

7i 
/ i 
n 
P-
n 
n 
/3 
/3 
n 
/4 
/4 
/4 
/5 
/5 

ß 

Data set 

1ÖÖ 
33 
25 
100 
33 
25 
100 
33 
25 
100 
33 
25 
100 
33 
25 

Max Abs. Error 

XM43 
.2293 
.1220 
.0268 
.0493 
.0779 
.0195 
.0723 
.0397 
.0077 
.0319 
.0221 
.0265 
.1267 
.0402 

Mean Abs. Error 

XXJ6Ö 
.0435 
.0277 
.0021 
.0090 
.0107 
.0010 
.0105 
.0065 
.0006 
.0047 
.0038 
.0016 
.0139 
.0066 

FIGURE 4. BSPLASH on Akima's data 
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FIGURE 5. BSPLASH on Ferguson's data 

used by Franke. The visual smoothness of these plots also compares 
favorably with the best methods tested in [9]. 

BSPLASH was efficient on large data sets. The execution times were 
tested on a Cyber 74/CDC6400 using default grid selections and evaluating 
the interpolant on a 33 by 33 grid. When N = 25, 50, 100, 200, 400, and 
800 points were used, the execution time were 1.4, 2.4, 5.4, 12.4, 32.1, and 
64.7 seconds respectively. These observed times are nearly linear in N. 

With respect to storage requirements, most methods need to store the 
N data points (xi9 yh zt) and an output array defining the surface. Other 
than that, approximately 3N locations are needed for storage. 

Some additional comments are in order. In the cases tested by the 
author, the bicubic spline BL[f] was the dominant part. That is, the cor­
rection term S[f — BL[f]] was small relative to the magnitude of BL[f], 
The interpolant was not sensitive to the grid selection on the data in 
Franke [9]. Extrapolation is not generally dependable, but in most of the 
cases tested, the interpolant behaved reasonably outside of the convex 
hull of the (xh yt) points. Finally, this C2 bivariate interpolant easily gen­
eralizes to functions of several variables because it depends on distances 
and tensor product methods, both of which are dimension-independent. 
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