A STORAGE-EFFICIENT METHOD FOR CONSTRUCTION OF A THIESSEN TRIANGULATION

A.K. CLINE AND R.L. RENKA

Abstract

This paper describes a storage-efficient method and associated algorithms for constructing and representing a triangulation of arbitrarily distributed points in the plane.

1. Introduction. This paper addresses the following problem. Given a set of nodes $\left(X_{i}, Y_{i}\right), i=1, \ldots, N$, arbitrarily distributed in the $X-Y$ plane, construct a triangulation with the nodes as vertices and which is as nearly equiangular as possible. The primary application of such a triangulation is as a preliminary step in a triangle-based method for bivariate interpolation of data values associated with the nodes [7], [5], [1], [2]. The triangulation also serves as an efficient mechanism for solving closest-point problems such as finding the two closest nodes and finding a largest circle containing none of the nodes. These problems arise in a variety of applications, e.g., wire layout, clustering, facilities location, and constructing the feasible polygon for linear programming in two variables with N constraints [13]. Another application of the triangulation method is as an automatic mesh generator for a triangle-based finite element code. Lists of element node numbers and boundary node numbers can be generated from a set of nodal coordinates which are concentrated in regions where the solution varies most rapidly. In addition to generating the mesh, the method guarantees its validity. Simpson [16] provides and discusses the importance of an algorithm which verifies the consistency of a set of finite element input data.

This paper describes the algorithms implemented in an extensive and well-documented software package for triangulation and interpolation written in a subset of ANSI standard FORTRAN accepted by the PFORT verifier [12]. The software listing is found in Renka [9], and machinereadable code may be obtained from the second author. The primary goal of this research was a triangulation package requiring less storage than those previously available. This was achieved at the cost of a relatively small loss in time efficiency over alternative packages.

[^0]$\S 2$ presents definitions and theory necessary to describe the algorithms. A more detailed analysis is found in Renka [8]. §3 describes the algorithms for constructing a Thiessen triangulation. This presentation is independent of a data structure for representing the triangulation. In $\S 4$ several data structures are analyzed including one which requires only seven words of storage for each node. Execution timings were also performed and are discussed in $\S 5$.

2. Fundamental definitions and triangulation theory.

Definition 1. For three points $P_{0}=\left(X_{0}, Y_{0}\right), P_{1}=\left(X_{1}, Y_{1}\right)$, and $P_{2}=\left(X_{2}, Y_{2}\right)$ in the plane with $P_{1} \neq P_{2}, P_{0}$ LEFT $P_{1} \rightarrow P_{2}$ if and only if $\left(X_{2}-X_{1}\right)\left(Y_{0}-Y_{1}\right) \geqq\left(X_{0}-X_{1}\right)\left(Y_{2}-Y_{1}\right)$. Thus we say P_{0} is left of $P_{1} \rightarrow P_{2}$ if and only if P_{0} is to the left of or on the line through P_{1} and P_{2} as seen by an observer at P_{1} facing P_{2}. Also we say P_{0} STRICTLY LEFT $P_{1} \rightarrow P_{2}$ if the inequality is strict.

Definition 2. A region of the plane is convex if and only if for any two points contained in the region the line segment connecting the two points also lies in the region. The convex hull of a finite set of points in the plane is the smallest convex region which contains the points. Note that such a convex hull is closed and thus contains the points which define it, and the convex hull of a finite set of noncollinear points has at least three of the points on its boundary.

Let S be an ordered set of distinct points in the plane (X_{i}, Y_{i}), $i=1$, $2, \ldots, N$ where $N \geqq 3$. It is assumed that the points are not all collinear. Let H be the convex hull of S and let B be the boundary of H.

Definition 3. A node is an element of S. Each node is identified with its index in S (node $i=\left(X_{i}, Y_{i}\right)$) and will be denoted by this index or by $N_{0}, N_{1}, N_{2}, \ldots$ indicating arbitrary indices. The distinction between a node and its index will be clear from the context.

Definition 4. A triangle is the convex hull of three noncollinear nodes, referred to as vertices. The triangle with vertices N_{1}, N_{2}, and N_{3} is denoted $\left(N_{i}, N_{j}, N_{k}\right)$ with N_{k} STRICTLY LEFT $N_{i} \rightarrow N_{j}$ for $(i, j, k) \in\{(1,2,3)$, $(2,3,1),(3,1,2)\}$.

Definition 5. A triangulation of S is a set of triangles T with the following properties.
a) Each triangle contains no node other than its vertices,
b) the interiors of the triangles are pairwise disjoint, and
c) T covers H, i.e., every point in H is contained in a triangle of T.

Definition 6. Let T be a triangulation of S. For each triangle (N_{1}, N_{2}, N_{3}) of T, the vectors $N_{1} \rightarrow N_{2}, N_{2} \rightarrow N_{3}$, and $N_{3} \rightarrow N_{1}$ are referred to as
edges of T. The undirected line segment corresponding to an edge $N_{1} \rightarrow N_{2}$ is referred to as an arc and is denoted $N_{1}-N_{2}$ or $N_{2}-N_{1}$. Note that edges and arcs are associated with a triangulation, and edges are directed while arcs are not.
A boundary edge of T is an edge $N_{1} \rightarrow N_{2}$ such that P LEFT $N_{1} \rightarrow N_{2}$ for all $P \in H$. Thus each point of a boundary edge lies on B. An interior edge is an edge which is not a boundary edge. The arc associated with a boundary (interior) edge is a boundary (interior) arc.

A boundary node is a node which is an endpoint of a boundary edge and thus lies on B. An interior node is a node which is not an endpoint of a boundary edge.

The node opposite an edge $N_{1} \rightarrow N_{2}$ is the node N_{3} such that (N_{1}, N_{2}, N_{3}) is a triangle of $T . N_{3}$ is unique by Definition 5 b .

Definition 7. Two nodes are adjacent to each other if and only if they are the endpoints of a common arc. A neighbor of a node N_{0} is a node which is adjacent to N_{0}. The degree of a node N_{0} is the number of neighbors of N_{0}.

The adjacency set for a node N_{0} is an ordered set containing the neighbors of N_{0} in counterclockwise order. The first neighbor is arbitrary if N_{0} is interior. If N_{0} is a boundary node, the first and last neighbors of N_{0} are the unique boundary nodes N_{F} and N_{L} such that $N_{0} \rightarrow N_{F}$ and $N_{L} \rightarrow$ N_{0} are boundary edges.

The following observations were made by Lawson [4].
Theorem 1. Let T be any triangulation of S with N being the number of nodes, N_{b} being the number of boundary nodes which equals the number of boundary arcs, N_{a} being the number of arcs, and N_{t} being the number of triangles. Then

$$
\begin{gathered}
N_{t}=2 N-N_{b}-2, \\
N_{a}=N_{t}+N-1=3 N-N_{b}-3 \\
N-2 \leqq N_{t} \leqq 2 N-5 \text { and } 2 N-3 \leqq N_{a} \leqq 3 N-6 .
\end{gathered}
$$

Note that the formula $N_{a}=N_{t}+N-1$ is a special case of Euler's formula which holds for N_{t} representing the number of finite regions in any connected planar graph.

Definition 8. Given a triangulation T of S and a point P in the plane, a node N_{0} is visible from P if and only if P can be connected to N_{0} by a line segment which neither intersects nor overlaps an arc of T. (Line segments which meet in a " T " are said to intersect while segments which meet in a " V " do not.) P is said to be exterior to T if and only if P is not contained in the convex hull of S.

Definition 9. A pair of triangles of $T,\left(N_{1}, N_{2}, N_{3}\right)$ and $\left(N_{2}, N_{1}, N_{4}\right)$, which share a common arc form a quadrilateral of T denoted (N_{1}, N_{2}, N_{3}, N_{4}). The quadrilateral is said to be strictly convex if the diagonals $N_{1}-N_{2}$ and $N_{3}-N_{4}$ intersect at an interior point of $N_{1}-N_{2}$ and of $N_{3}-N_{4}$. A swap in this case is the replacement in T of $\left(N_{1}, N_{2}, N_{3}\right)$ and $\left(N_{2}, N_{1}, N_{4}\right)$ by $\left(N_{3}, N_{4}, N_{2}\right)$ and $\left(N_{4}, N_{3}, N_{1}\right)$. Thus, a swap in effect swaps diagonals.

A swap leaves the parameters N, N_{b}, N_{a}, and N_{t} unchanged, and all possible triangulations of S can be generated by applying swaps to a given triangulation. These results are proved in Renka [8].

Definition. 10. Given an interior arc $N_{1}-N_{2}$ with corresponding quadrilateral $\left(N_{1}, N_{2}, N_{3}, N_{4}\right)$, the swap test is a decision on whether to perform a swap based on either of the following criteria (which can be shown to be equivalent).
a) The max-min angle criterion is the choice of the pair of triangles which maximizes the minimum of the six interior angles when (N_{1}, N_{2}, N_{3}, N_{4}) is strictly convex. The decision will be positive if and only if a larger minimum angle would result from the swap in this case. The decision is defined to be negative if $\left(N_{1}, N_{2}, N_{3}, N_{4}\right)$ is not strictly convex.
b) The circle criterion is the choice of the pair of triangles whose circumcircles do not contain the remaining vertices in their interiors. Equivalently, the decision will be made to swap if and only if N_{4} is interior to the circumcircle of N_{1}, N_{2}, and N_{3}.

An arc is locally optimal if and only if it is a boundary arc or, if it is interior, application of the swap test to it would not result in a decision to swap.
definition 11. A Thiessen triangulation is one in which all arcs are locally optimal.

Consider the following method for constructing a triangulation of S. For each node N_{0} define the Thiessen region associated with N_{0} to be the closure of the set of points in the plane which are closer to N_{0} than to any other node. A pair of nodes N_{1} and N_{2} are said to be Thiessen neighbors if and only if their corresponding Thiessen regions share one or more points. If the regions share more than one point, N_{1} and N_{2} are strong Thiessen neighbors. If the regions share exactly one point, N_{1} and N_{2} are referred to as weak Thiessen neighbors. This is the neutral case corresponding to four or more nodes lying on a common circle. A triangulation may be obtained by connecting all pairs of strong Thiessen neighbors and arbitrarily choosing $k-3$ nonintersecting arcs connecting weak Thiessen neighbors when k nodes lie on a common circle for $k \geqq 4$. Both Lawson
[5] and Sibson [15] have proved that this triangulation satisfies Definition 11 above.

Figure 1 depicts a Thiessen region diagram with corresponding Thiessen triangulation T. Note that Thiessen region vertices are circumcenters of the triangles of T, and Thiessen region boundaries are composed of perpendicular bisectors of the arcs of T. Either diagonal may be chosen as an arc in the neutral case depicted.

Figure 1. Thiessen Region Diagram and Corresponding (Dual) Triangulation

Thiessen regions are also referred to in the literature as tiles and polygons, and have been associated with the names Dirichlet and Voronoi. The corresponding triangulation is also referred to as a Delaunay triangulation. Rhynsburger [11] presents a brief history of the development of these concepts. Other criteria for optimization have been suggested and are currently being explored.

The triangulation algorithm which will be described in the following section applies the swap test in an iterative fashion to produce a Thiessen triangulation.
3. Algorithms. This section discusses algorithms for constructing and obtaining information from a Thiessen triangulation. Some of the algorithms are described in more detail than others, but none of the descriptions make reference to a data structure. However, Algorithms 3 and 5 are designed specifically for a data structure in which the adjacency information is explicit, i.e., the adjacency sets are easily obtained.

An overall description of the method will be followed by detailed algorithms. Our basic approach to constructing the triangulation is as follows.
a) Optionally, presort the nodes (Algorithm 1).
b) Construct an initial Thiessen triangulation T_{j} of the first j nodes where j is the smallest integer such that nodes $1, \ldots, j$ are not all collinear (Algorithm 2).
c) For $k=j+1, \ldots, N$ construct a Thiessen triangulation T_{k} of nodes $1, \ldots, k$ as follows.
i) Find a triangle or a boundary arc or T_{k-1} which contains node k, or a pair of boundary nodes which are visible from k if k is exterior to T_{k-1} (Algorithm 3).
ii) If k lies on a boundary arc, connect it to the endpoints. If k is contained in a triangle and does not lie on a boundary arc, connect it to the three vertices. Otherwise connect k to all boundary nodes which are visible from k (Algorithm 4).
iii) Optimize the mesh by applying a sequence of swap tests (Algorithm 6) and the appropriate swaps to the interior arcs which are opposite k (Algorithm 5).

One of the advantages of this method over alternatives is that it provides for efficient updating of the data. To add a new node to the triangulation, it is only necessary to execute Step c) an additional time, rather than recreating the entire triangulation.

Algorithm 1. Presort the N nodes by applying an $O\left(N^{*} \log (N)\right)$ quick sort to either their X or Y components.

Algorithm 1 may be employed at the user's option to increase the efficiency of the triangulation algorithms. It is not necessary but may be computationally advantageous even for small values of N. Timing comparisons for randomly ordered nodes versus presorted nodes are presented in $\S 5$.

The following algorithm initializes the triangulation. Except in the case of collinearity, it results in a single triangle, formed by the first three nodes as vertices.

Algorithm 2. Construct a Thiessen triangulation of nodes $1, \ldots, j$ where j is the smallest integer such that the first j nodes are not all collinear. Such an integer exists by assumption and $3 \leqq j \leqq N$. Note that nodes $1, \ldots, j-1$ define a line segment L with two of the nodes as endpoints.

Step 1. Order the first $j-1$ nodes by their distances from one of the endpoints of L.

Step 2. Connect the first $j-1$ nodes by making nodes N_{1} and N_{2} adjacent if and only if N_{1} immediately precedes or immediately follows N_{2} in the ordering defined in Step 1.

Step 3. Connect j to each of the first $j-1$ nodes.

Clearly, the triangulation constructed by Algorithm 2 contains no strictly convex quadrilaterals and is thus a Thiessen triangulation. See Figure 2.

Figure 2. Thiessen Triangulation Constructed by Algorithm 2.

The following algorithm may be used both to construct the triangulation and to locate a point at which an interpolated value is to be computed.
Algorithm 3. Let T be a triangulation of S, let H be the convex hull of S with boundary B, and let P be any point in the plane.
a) If P is in H and does not lie on B, find a triangle (N_{1}, N_{2}, N_{3}) containing P (set N_{1}, N_{2}, and N_{3} to the vertex indices of the triangle).
b) If P is exterior to T, set N_{3} to 0 and find the indices of a pair of boundary nodes N_{1} and N_{2} such that N_{1}, N_{2}, and all boundary nodes encountered as the boundary is traversed from N_{1} to N_{2} in counterclockwise order are visible from P, no other nodes being visible from P.
c) If P lies on B, find the indices of the endpoints of a boundary edge $N_{1} \rightarrow N_{2}$ containing P, and set N_{3} to 0 .

Let N_{0} be an arbitrary node (index).
Loop 1. (Initialization.)
Step 1. Set N_{F} and N_{L} to the (indices of the) first and last neighbors of N_{0}, respectively.

Step 2. If N_{0} is a boundary node and P NOT LEFT $N_{0} \rightarrow N_{F}$, then set N_{1} and N_{2} to N_{0} and N_{F}, respectively, and go to Step 13. If N_{0} is a boundary node and P NOT LEFT $N_{L} \rightarrow N_{0}$, then set N_{1} and N_{2} to N_{L} and N_{0}, respectively, and go to Step 15.

Step 3. Search the neighbors of N_{0} for a node N_{2} such that P NOT LEFT $N_{0} \rightarrow N_{2}$. If such a node exists go to Step 5 .
Step 4. If P coincides with N_{0}, then set N_{0} to N_{L}; otherwise set N_{0} to the node opposite $N_{L} \rightarrow N_{0}$ (the neighbor of N_{0} which immediately
precedes N_{L} in the adjacency set). Go to Step 1.
Loop 2. (Find a cone with vertex N_{0} and containing P.)
Step 5. Set N_{1} to the node opposite $N_{2} \rightarrow N_{0}$.
Step 6. If P LEFT $N_{0} \rightarrow N_{1}$, then set N_{3} to N_{0} and go to step 7; otherwise set N_{2} to N_{1} and go to step 5.

Loop 3. (Edge-hopping loop.)
Step 7. If P LEFT $N_{1} \rightarrow N_{2}$, then go to Step 11.
Step 8. If $N_{1} \rightarrow N_{2}$ is a boundary edge, then go to Step 13.
Step 9. Set N_{4} to the node opposite $N_{2} \rightarrow N_{1}$.
Step 10. If P LEFT $N_{0} \rightarrow N_{4}$, then set N_{3} to N_{1} and N_{1} to N_{4}; otherwise set N_{3} to N_{2} and N_{2} to N_{4}. See Fig. 3. Go to Step 7.

Step 11. If $N_{3} \rightarrow N_{1}$ is a boundary edge and P LEFT $N_{1} \rightarrow N_{3}$, then set N_{2} to N_{1}, N_{1} to N_{3}, and N_{3} to 0 and stop.

Step 12. If $N_{1} \rightarrow N_{2}$ is a boundary edge and P LEFT $N_{2} \rightarrow N_{1}$, then set N_{3} to 0 . Stop.

Loop 4. (Counterclockwise boundary traversal).
Step 13. Set N_{B} to the first neighbor of N_{2}.
Step 14. If P NOT LEFT $N_{2} \rightarrow N_{B}$, then set N_{2} to N_{B} and go to Step 13.

Loop 5. (Clockwise boundary traversal).
Step 15. Set N_{B} to the last neighbor of N_{1}.
Step 16. If P NOT LEFT $N_{B} \rightarrow N_{1}$, then set N_{1} to N_{B} and go to Step 15.

Step 17. Set N_{3} to 0. Stop.
Several theoretical properties regarding this algorithm are proven in Renka [8] including that it correctly terminates after a finite number of operations. It is also shown that the number of iterations of Loop 1 is at most two, of Loop 2 is at most the degree of N_{0}, of Loop 3 is at most N_{a} (the number of arcs of T), and of loops 4 and 5 is at most N_{b} (the number of boundary nodes). Since $N_{a}=3 N-N_{b}-3$, the operation count for the entire algorithm is bounded by an expression of the form $K_{1}+K_{2} N+$ $K_{3} N_{b}$. The actual operation count depends on the proximity of P to the

Figure 3. Example of Loop 3.
starting node N_{0}. If a sequence of interpolation points are to be located, N_{0} may be taken to be one of the nodes determined by the previous call. This gives good results when the points are ordered in some typical fashion, such as the natural ordering on a rectangular grid.

In constructing the triangulation, N_{0} is chosen to be the node which was most recently added. If the nodes are ordered by Algorithm 1, the new node to be added, P, is always exterior to T and N_{0} is always a boundary node which is visible from P (except in certain collinear situations). Thus the algorithm consists essentially of Loops 4 and 5 and has an operation count of the form $O\left(N_{b}\right)$. Our test results, however, indicate that the operation count does not increase with N_{b}.

Algorithm 4. Given a triangulation T_{k-1}, a new node to be added k, and nodes N_{1}, N_{2}, and N_{3} determined by Algorithm 3 ,
a) if $N_{3} \neq 0$, then make k adjacent to N_{1}, N_{2}, and N_{3}, and
b) if $N_{3}=0$, then make k adjacent to N_{1}, N_{2}, and all boundary nodes encountered as the boundary is traversed from N_{1} to N_{2} in counterclockwise order.

The details of the algorithm depend on the data structure and are omitted. See Figure 4.

Figure 4. Examples of Algorithms 4a and 4b.

Algorithm 4 clearly produces a triangulation of nodes $1, \ldots, k$ when k does not lie on an arc. The case of k lying on an arc is discussed in Renka [8].

Algorithm 5. Given a triangulation T_{k} constructed by adding node k (Algorithm 4) to a Thiessen triangulation T_{k-1}, optimize the triangulation.

Step 1. Set N_{1} and N_{F} to the first neighbor of k.
Step 2. Set N_{2} to the node opposite $k \rightarrow N_{1}$.
Step 3. If $N_{1} \rightarrow N_{2}$ is a boundary edge, then go to Step 6.
Step 4. Set N_{3} to the node opposite $N_{2} \rightarrow N_{1}$.

Step 5. Test $N_{1}-N_{2}$ for a swap. If the test is positive, then swap $N_{1}-N_{2}$ for $k-N_{3}$, set N_{2} to N_{3}, and go to Step 3.

Step 6. Set N_{1} to N_{2}.
Step 7. If $N_{1}=N_{F}$ or $N_{1} \rightarrow k$ is a boundary edge, then stop; otherwise go to Step 2. See Figure 5.

Figure 5. Swap Applied by Algorithm 5.

The proof that Algorithm 5 produces a Thiessen triangulation is provided by Lawson [5].

Algorithm 6a. Given the coordinates of the vertices of a quadrilateral of $T,\left(N_{1}, N_{2}, N_{3}, N_{4}\right)$, set the logical variable SWPTST to TRUE if

$$
\begin{aligned}
\text { SIN12 } \equiv((& \left.\left.X_{1}-X_{3}\right)\left(X_{2}-X_{3}\right)+\left(Y_{1}-Y_{3}\right)\left(Y_{2}-Y_{3}\right)\right)\left(\left(X_{2}-X_{4}\right)\left(Y_{1}-Y_{4}\right)\right. \\
& \left.-\left(X_{1}-X_{4}\right)\left(Y_{2}-Y_{4}\right)\right)+\left(\left(X_{1}-X_{3}\right)\left(Y_{2}-Y_{3}\right)\right. \\
& \left.-\left(X_{2}-X_{3}\right)\left(Y_{1}-Y_{3}\right)\right)\left(\left(X_{2}-X_{4}\right)\left(X_{1}-X_{4}\right)\right. \\
& \left.+\left(Y_{2}-Y_{4}\right)\left(Y_{1}-Y_{4}\right)\right)<0 .
\end{aligned}
$$

Otherwise set SWPTST to FALSE. A swap is to be applied if and only if SWPTST is TRUE.

Theorem 2. Algorithm 6 a produces the correct decision on the swap test (assuming computation is exact).

Proof. Let α_{1} and α_{2} denote the interior angles at N_{3} and N_{4} respectively. (Refer to Figure 6). From geometry, the measure of the circular is subtended by α_{2} is smaller than twice the measure of α_{2} if and only if N_{4} is interior to the circle circumscribing N_{1}, N_{2}, and N_{3}. Furthermore the arc subtended by α_{1} has twice the measure of α_{1}. Since the sum of the measures of the arcs is 2π, we may conclude that N_{4} is interior to the circumcircle (i.e., a swap should be performed) if and only if $\alpha_{1}+\alpha_{2}$ $>\pi$. Equivalent to $\alpha_{1}+\alpha_{2}>\pi$ is $\sin \left(\alpha_{1}+\alpha_{2}\right)<0$ since $\alpha_{1}+\alpha_{2}<$ 2π. Finally $\sin \left(\alpha_{1}+\alpha_{2}\right)=\cos \left(\alpha_{1}\right) \sin \left(\alpha_{2}\right)+\sin \left(\alpha_{1}\right) \cos \left(\alpha_{2}\right)$ and the

$$
\begin{aligned}
& =\frac{\left(\left(X_{1}-X_{3}\right)\left(X_{2}-X_{3}\right)+\left(Y_{1}-Y_{3}\right)\left(Y_{2}-Y_{3}\right)\right)}{\left(\left(X_{1}-X_{3}\right)^{2}+\left(Y_{1}-Y_{3}\right)^{2}\right)^{1 / 2}\left(\left(X_{2}-X_{3}\right)^{2}+\left(Y_{2}-Y_{3}\right)^{2}\right)^{1 / 2}} \\
& \cdot \frac{\left(\left(X_{2}-X_{4}\right)\left(Y_{1}-Y_{4}\right)-\left(X_{1}-X_{4}\right)\left(Y_{2}-Y_{4}\right)\right)}{\left(\left(X_{2}-X_{4}\right)^{2}+\left(Y_{2}-Y_{4}\right)^{2}\right)^{1 / 2}\left(\left(X_{1}-X_{4}\right)^{2}+\left(Y_{1}-Y_{4}\right)^{2 / 2}\right.} \\
& +\frac{\left(\left(X_{1}-X_{3}\right)\left(Y_{2}-Y_{3}\right)-\left(X_{2}-X_{3}\right)\left(Y_{1}-Y_{3}\right)\right)}{\left(\left(X_{1}-X_{3}\right)^{2}+\left(Y_{1}-Y_{3}\right)^{2}\right)^{1 / 2}\left(\left(X_{2}-X_{3}\right)^{2}+\left(Y_{2}-Y_{3}\right)^{2}\right)^{1 / 2}} \\
& \cdot \frac{\left(\left(X_{2}-X_{4}\right)\left(X_{1}-X_{4}\right)+\left(Y_{2}-Y_{4}\right)\left(Y_{1}-Y_{4}\right)\right)}{\left(\left(X_{2}-X_{4}\right)^{2}+\left(Y_{2}-Y_{4}\right)^{2}\right)^{1 / 2}\left(\left(X_{1}-X_{4}\right)^{2}+\left(Y_{1}-Y_{4}\right)^{2}\right)^{1 / 2}},
\end{aligned}
$$

identical denominator of these terms is positive.

Figure 6. Quadrilateral Referred to in Algorithm 6a.

Note that the swap test of Algorithm 6a requires only ten multiplications and thirteen additions. This is a considerable improvement over algorithms which compute quantities monotonically related to the angles and do comparisons.

Algorithm 6a may produce an incorrect decision due to floating-point arithmetic error when $\sin \left(\alpha_{1}+\alpha_{2}\right)$ is near 0 . This can only occur in the neutral case ($\alpha_{1}+\alpha_{2}=\pi$) and when the four vertices are nearly collinear (α_{1} and α_{2} both near 0 or π). The numerical instability in the neutral case has no ill effects except that the choice of diagonal arcs in a uniform rectangular grid is neither predictable nor consistent, resulting in a displeasing appearance. No attempt is made to remedy this situation in our code.

On the other hand, it is critical that the correct decision be made when the quadrilateral vertices are nearly collinear as the following examples show.

Example 1. Consider the four-node triangulation depicted in Figure 7a. A perturbation of this triangulation is depicted in Figure 7b. Node 4 was found to be exterior to $T_{3}=\{(1,2,3)\}$; but due to roundoff error, Algorithm 6a might produce the decision to apply a swap to ($1,2,3,4$), destroying the triangulation. Thus the swap test should be negative (SWPTST $=$ FALSE) when α_{1} and α_{2} are approximately zero.

Figure 7. Triangulation with Nearly Collinear Nodes.

Example 2. In the triangulation depicted in Figure 8a, Node 4 was found to be interior to $T_{3}=\{(1,2,3)\}$ while Node 5 was determined to be exterior to T_{4}. However, due to roundoff error, Algorithm 6a applied to $(2,1,5,4)$ resulted in the decision not to swap, leaving the triangulation nonoptimal. If a swap had been applied, it would have been followed by a swap applied to $(4,1,5,3)$ resulting in the Thiessen triangulation shown in Figure 8 b . Note that the null or nearly null triangle $(5,2,4)$ will be eliminated if a new node is added to the right of $5 \rightarrow 2$. Thus the test should be positive when both α_{1} and α_{2} are approximately equal to π.

Figure 8. Triangulation for Example 2.

The following alternative algorithm eliminates this numerical instability and is the method implemented in our software package.

Algorithm 6b. Given the X and Y coordinates of N_{1}, N_{2}, N_{3}, and N_{4},
where ($N_{1}, N_{2}, N_{3}, N_{4}$) is a quadrilateral of T, proceed by the following steps.

Step 1. Set COS1 and COS2 to $\left(X_{1}-X_{3}\right)\left(X_{2}-X_{3}\right)+\left(Y_{1}-Y_{3}\right)\left(Y_{2}-Y_{3}\right)$ and $\left(X_{2}-X_{4}\right)\left(X_{1}-X_{4}\right)+\left(Y_{2}-Y_{4}\right)\left(Y_{1}-Y_{4}\right)$, respectively.

Step 2. If COS1 $\geqq 0$ and COS $2 \geqq 0$, go to Step 7.
Step 3. If COS1 <0 and $\operatorname{COS} 2<0$, go to Step 6.
Step 4. Set SIN1 and SIN2 to $\left(X_{1}-X_{3}\right)\left(Y_{2}-Y_{3}\right)-\left(X_{2}-X_{3}\right)\left(Y_{1}-Y_{3}\right)$ and $\left(X_{2}-X_{4}\right)\left(Y_{1}-Y_{4}\right)-\left(X_{1}-X_{4}\right)\left(Y_{2}-Y_{4}\right)$, respectively. Set SIN12 to $\sin 1^{*} \operatorname{COS} 2+\operatorname{COS} 1^{*} \operatorname{SIN} 2$.

Step 5. If SIN12 $\geqq 0$, go to Step 7.
Step 6. Set SWPTST to TRUE and stop.
Step 7. Set SWPTST to FALSE and stop.
This algorithm is algebraically equivalent to Algorithm 6a except when $\alpha_{1}=\alpha_{2}=\pi$. Note that if Step 5 is reached, $\alpha_{1}+\alpha_{2}$ is in the range ($\pi / 2,3 \pi / 2$]. Thus, assuming the nodes are distinct, numerical instability occurs only in the neutral case. A further discussion of floating-point errors is found in Renka [9].

The operation count for Algorithm 6 b is
a) 4 multiplications, 10 additions, and 2 comparisons, or
b) 4 multiplications, 10 additions, and 4 comparisons, or
c) 10 multiplications, 13 additions, and 5 comparisons,
depending upon the values of α_{1} and α_{2}. If α_{1} and α_{2} are uniformly distributed over the range $[0, \pi]$, the expected operation count is 7 multiplications, 11.5 additions, and 4 comparisons. In any case there are fewer arithmetic operations but more comparisons than in Algorithm 6a. Thus, compares being generally more expensive, we pay a price in efficiency for the numerical stability.

The following algorithm for determining the closest k nodes to a given node is used in our interpolation software to select a set of nodes whose data values are to enter into derivative estimates. It also has application in closest-point problems.

Algorithm 7. Given a Thiessen triangulation T and a node N_{0}, determine a sequence of nodes $N_{1}, N_{2}, \ldots, N_{k}$ ordered by distance from N_{0} for some $k \geqq 1$. Briefly stated, the algorithm is as follows. Set S_{0} to $\left\{N_{0}\right\}$. For $i=1,2, \ldots, k$ set S_{i} and N_{i} according to Steps 1-3.

Step 1. Mark N_{i-1} (e.g., with a negative pointer to its adjacency set).
Step 2. Set S_{i} to the union of S_{i-1} with the set of neighbors of N_{i-1}.
Step 3. Set N_{i} to the unmarked node in S_{i} which is closest to N_{0}.
While designed for points in the plane, the above algorithms require only minor modifications to treat alternative geometries. Essentially, by altering only the swap test and definition of LEFT, Renka [10] has extended the triangulation procedure to the surface of the sphere. Similar
modifications could be made for the case of nodes on the surface of a cylinder. However, since the algorithms rely on an ordering of the adjacency information, substantial alterations are required to treat data in higher dimensional spaces.
4. Data structures. This section describes various data structures for representing the triangular grid. The choice of data structure involves a trade-off between computational efficiency and storage efficiency. Thus the best method of representing the triangulation depends on the available computing resources and the application. The first two subsections below describe data structures which contain the adjacency information explicitly and are thus well suited for the algorithms described in the previous section. The third subsection discusses Lawson's data structure, and the final subsection contains a table of storage requirements.
4.1. Adjacency array. The primary goal of this research was a triangulation method requiring less storage than those currently available. This led us to the following data structure which is designed to limit the storage requirement while remaining computationally feasible.

IADJ - Array containing the sequentially ordered set of adjacency lists (indices of the neighbors in the adjacency sets) where the adjacency list of each boundary node is modified by the addition of index 0 following the index of the last neighbor and representing a "pseudo node" infinitely distant from the boundary. The adjacency list for node k is followed by the list for node $k+1, k=1, \ldots, N-1$.

IEND - Array of length N containing pointers to the ends of each (modified) adjacency list in IADJ.

Thus the indices of the neighbors of Node 1 are stored in IADJ(1), . . ., $\operatorname{IADJ}(\operatorname{IEND}(1))$. For $k>1$, the indices of the neighbors of node k are stored in $\operatorname{IADJ}(\operatorname{IEND}(k-1)+1), \ldots, \operatorname{IADJ}(\operatorname{IEND}(k))$, and k has $\operatorname{IEND}(k)-\operatorname{IEND}(k-1)$ neighbors including (possibly) the pseudo node represented by index 0 . Node k is a boundary node if and only if $\operatorname{IADJ}(\operatorname{IEND}(k))=0$. See Figure 9.

Let L be the length of IADJ. For each arc of T there is a pair of adjacent nodes, say N_{1} and N_{2}, and exactly two entries in IADJ -- N_{1} as a neighbor of N_{2} and N_{2} as a neighbor of N_{1}. The adjacency array also contains a zero entry for each node on the boundary. Thus, since there are no other elements in IADJ, $L=2 N_{a}+N_{b}=6 N-N_{b} \leqq 6 N-9$. The second equation follows from Theorem 1 and the inequality is obtained from the lower bound on N_{b}. The upper bound on L determines the amount of storage which must be reserved since the value of N_{b} is generally not known before the triangulation is constructed.

Clearly there is some redundancy in the adjacency array in that for each $\operatorname{arc} N_{1}-N_{2}$, both N_{1} as a neighbor of N_{2} and N_{2} as a neighbor of

Figure 9. Sample Triangulation and Adjacency Array.
N_{1} are represented explicitly. Thus we have not attempted to minimize the storage requirement. However, the total requirement of less than $7 N$ locations represents a substantial savings over other available triangulation methods as shown in Table 1, §4.4.

This storage efficiency was gained at a cost in computational efficiency caused by the necessity of shifting portions of the adjacency array up or down for deletions and insertions of neighbors as the triangulation is constructed. Timing comparisons are presented in $\S 5$. We feel this tradeoff of computational efficiency for storage efficiency is generally advantage-
ous since it allows larger problems to be solved on small machines (even micro-computers), and the time required to construct the triangulation is usually insignificant relative to the time spent on interpolation which is the primary application. Thus we have chosen to employ the adjacency array in our software package.

An obvious modification to the above data structure is the replacement of IEND with an array ISTART of pointers to the beginnings of each adjacency list in IADJ. However, in order that the index of the last neighbor of each node be easily accessible, ISTART must have length $N+1$ with ISTART $(N+1)$ pointing to the first empty location in IADJ. Then the index of the last neighbor of Node k (or 0 representing the boundary) is stored in $\operatorname{IADJ}(\operatorname{ISTART}(k+1)-1)$ for $k=1, \ldots, N$.
4.2. Linked list. The following alternative data structure is not used in our software package but was implemented for comparison with the adjacency array. The linked list eliminates the necessity of shifting portions of an array for insertions and deletions. Rather than storing adjacency lists and their elements in contiguous locations, the index of each neighbor has an arbitrary location in the list with a list pointer to the index of the neighbor which follows it in cyclical counterclockwise order. The method for representing the boundary has also been modified. The linked list consists of three arrays and a pointer:

LIST - Array containing the indices of the neighbors of node k for $k=1, \ldots, N$. LIST contains the negative index of the last neighbor of a boundary node.

LPTR - Array of LIST pointers in a one-to-one correspondence with the elements of LIST. The LIST pointer associated with node j as a neighbor of k points to the index of the neighbor of k which follows j in cyclical counterclockwise order.

LEND - Array of length N containing a LIST pointer to the index of the last neighbor of each node.

LNEW - Pointer to the first empty location in LIST and LPTR.
Note that k is a boundary node if and only if $(\operatorname{LIST}(\operatorname{LEND}(k))<0$. See Figure 10.

We have chosen to store pointers to last neighbors (LEND) rather than first neighbors because it is convenient to have easy access to both first and last neighbors of a boundary node. To determine the index of the last neighbor of node k starting from the LIST pointer to its first neighbor, it is necessary to follow pointers through the entire adjacency list for k; whereas the index of the first neighbor is readily obtained from a pointer to the last neighbor. The elimination of index 0 representing the boundary allows more efficient access to first neighbors at the cost of occasionally having to change signs of indices.

STORAGE-EFFICIENT METHOD				135 LPTR
			LIST	
		1	2	3
		2	3	11
		3	4	2
		4	-1	14
		5	1	7
		6	1	10
2		7	4	12
		8	4	4
		9	3	6
		10	2	13
	LEND	11	-5	1
1	11	12	6	5
2	4	13	5	9
3	7	14	5	8
4	10	15	1	16
5	18	16	3	17
LNEW $=19$		17	4	18
		18	-2	15

Figure 10. Sample Triangulation and Linked List.
By Theorem 1, the length of LIST and LPTR is $2 N_{a}=6 N-2 N_{b}-6$ $\leqq 6 N-12$, implying a total storage requirement of less than $13 N$ locations. Thus with the adjacency array replaced by the linked list, our triangulation method still requires significantly less storage than most other available methods while being comparable to other methods with regard to computational efficiency. See Table $1, \S 4.4$ and Table 2, $\S 5$.

Unlike the adjacency array, the linked list is well suited for packing, i.e., storing more than one integer per computer word with storage and retrieval achieved by shifts or arithmetic operations. In an implementation
on a machine with sufficiently large word length, an element of LIST and its associated LIST pointer may be conveniently stored in a single word, resulting in a savings of 6 N storage locations.
4.3. Lawson's data structure. We present a description of the data structure used by Lawson [5] for comparison with those previously discussed. It consists of a list containing six integers for each triangle. The first three integers are the indices of adjacent triangles in counterclockwise order with 0 representing the region exterior to the convex hull H. The last three integers are the triangle's vertex indices in counterclockwise order, the first vertex being the node shared by the first and third adjacent triangles. See Figure 11.

Figure 11. Sample Triangulation and Lawson's Data Structure.

This data structure has an advantage over the adjacency array in that no shifting or garbage collection is necessary, i.e., triangles need never
be deleted-only replaced. Thus updating the data structure for a swap or the addition of a new node can be implemented very efficiently. On the other hand, the ordered sequence of boundary nodes is not readily obtained from the triangle list. In order to determine the set of nodes which are visible from an exterior point, Lawson uses an additional array of length $4 N_{b}$.

Lawson's algorithm also requires two arrays of length N used to sort the nodes by their distances from an initially determined boundary node so that a new node to be added to the triangulation is always exterior to the convex hull of the previously added nodes.

From Theorem $1, N_{t} \leqq 2 N-5$ and hence the total storage requirement for Lawson's method is $6 N_{t}+2 N+4 N_{b} \leqq 14 N+4 N_{b}-30$.

An advantage of the triangle list is the fact that it lends itself to convenient packing either two or three integers per computer word. Lawson's method has been implemented with three integers packed into a 36-bit word. However, the number of nodes is limited to 2050 in this case. See Table 1.
4.4. Storage requirements. The following table compares the storage requirements of our triangulation method (using both the adjacency array and the linked list) with the methods of Lawson [5], Akima [1], Shamos [14], and Green and Sibson [3]. The specified requirements are in addition to the $2 N$ locations containing nodal coordinates. Note that the number of boundary nodes N_{b} cannot generally be predicted, and thus the upper bound of N must be used in reserving storage.

Table 1. Triangulation Storage Requirements

Adjacency Array	Linked List	Lawson	Akima	Shamos	Green and Gibson
$7 N$	$13 N$	$14 N+4 N \mathrm{~b}$	$32 N$	$30 N$	\geqq
		$\leqq 18 N$			

The storage required for the linked list and Lawson's method may be reduced to $7 N$ and $12 N$, respectively, by packing two integers per computer word. Lawson's method also allows three integers to be packed in a word reducing the requirement to $10 N$. Note, however, that packing is machine-dependent. Green and Sibson use a heap along with garbage collection, thus allowing extra storage to be employed for increased efficiency. The specified storage requirement is the minimum amount which allows reasonable time efficiency.
5. Timing comparisons. We have determined timing requirements for
various triangulation methods, domains, and values of N. Lawson's and Akima's triangulation packages were the only codes available to us other than our own. The times specified in Table 2 are central-processor seconds obtained on the IBM 3033 using the FORTRAN-H extended compiler at Oak Ridge National Laboratory. The timings are believed to be correct to 1%. In the following table p denotes the \log (base 2) of R where R is the ratio of the time associated with $N=2000$ to that associated with $N=1000$, i.e., the times associated with the two values of N were fit with the model $C N^{p}$.

We conclude that Lawson's method is faster than any of the others, but only slightly faster than the linked list with presorting of the nodes. Also, the growth rates for Lawson's method are smaller than those of the other methods. For both the adjacency array and the linked list, presorting of the nodes is advantageous. Critical values of N at which presorting becomes advantageous have been found to be less than 100 in all cases, as the growth rates would indicate.

Table 2. Timing Requirements for Triangulation (and Presorting) of N Randomly Generated Points Disc of Unit Radius

Method	N		
	1000	2000	p
Lawson	.79	1.71	1.11
Akima	4.38	15.80	1.85
Adjacency Array With Presorting	1.00	2.38	1.25
Adjacency Array (No Presorting)	3.31	8.91	1.43
Linked List With Presorting	.77	1.75	1.18
Linked List (No Presorting)	1.29	2.68	1.05

Unit Square

Method	N		
	1000	2000	p
Lawson	.78	1.71	1.13
Akima	4.15	15.59	1.91
Adjacency Array With Presorting	1.03	2.43	1.24
Adjacency Array (No Presorting)	3.35	9.11	1.44
Linked List With Presorting	.79	1.78	1.17
Linked List (No Presorting)	1.30	2.76	1.09

References

1. H. Akima, A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points, ACM TOMS 4 (1978), 148-164.
2. R. Franke, A Critical Comparison of some Methods for Interpolation of Scattered Data, Naval Postgraduate School Technical Report NPS-53-79-003, 1979.
3. P. J. Green and R. Sibson, Computing Dirichlet tessellations in the plane, Computer Journal 21 (1978), 168-73.
4. C. L. Lawson, Generation of a Triangular Grid with Applications to Contour Plotting, Technical Memorandum 299, California Institute of Technology Jet Propulsion Laboratory, 1972.
5. C. L. Lawson, Software for C^{1} Surface Interpolation, Mathematical Software III, J. R. Rice, ed., Academic Press, New York, 1977, 161-94.
6. C. L. Lawson, Transforming triangulations, Discrete Mathematics, 3, No. 4, (1972), 365-372.
7. R. J. Renka, A Triangle-Based C^{1} Interpolation Method, ORNL/CSD-103, Oak Ridge National Laboratory, 1982.
8. R. J. Renka, A Storage-Efficient Method for Construction of a Thiessen Triangulation, ORNL/CSD-101, Oak Ridge National Laboratory, 1982.
9. R. J. Renka, Triangulation and Bivariate Interpolation for Irregulary Distributed Data Points, PhD dissertation, University of Texas at Austin, 1981.
10. R. J. Renka, Interpolation of Data on the Surface of a Sphere, ORNL/CSD-108, Oak Ridge National Laboratory, 1982.
11. D. Rhynsburger, Analytic delineation of Thiessen polygons, Geographical Analysis, 5, No. 2, (1973), 133-44.
12. B. G. Ryder, The PFORT verifier, Software Practice and Experience, 4, (1974), 359-77.
13. M. I. Shamos and D. Hoey, Closest-Point Problems, Proceedings 16th Annual Symposium on Foundations of Computer Science, 1975, 151-162.
14. M. I. Shamos, Computational Geometry, PhD dissertation, Yale University, 1975.
15. R. Sibson, Locally equiangular triangulations, Computer Journal 21, No. 3, (1978), 243-45.
16. R. B. Simpson, A two-dimensional mesh verification algorithm, SIAM J. Sci. Stat. Comput. 2, (1981).

Department of Computer Sciences, University of Texas, Austin, TX 78712
Computer Sciences Division, Union Carbide Corporation, Nuclear Division, Oak Ridge National Laboratory, Oak Ridge TN 37830

[^0]: This report was extracted, with minor revisions, from the second author's PhD dissertation presented to The University of Texas at Austin in May, 1981. The first author's research was partially supported by NASA Grant NAG1-79.

