
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 14, Number I, Winter 1984

A TRANSFINITE C2 INTERPOLANT OVER TRIANGLES

PETER ALFELD AND ROBERT E. BARNHILL

ABSTRACT. A transfinite C2 interpolant on a general triangle is
created. The required data are essentially C2, no compatibility
conditions arise, and the precision set includes all polynomials of
degree less than or equal to eight. The symbol manipulation
language REDUCE is used to derive the scheme. The scheme is
discretized to two different finite dimensional C2 interpolants in
an appendix.

1. Introduction and history. Scientists and engineers often take three-
dimensional measurements through which they wish to pass a surface.
When designing interactively the surface of a real object, designers input
three-dimensional points. Because the geometric information for these two
classes of problems can be located arbitrarily in three-dimensional space,
the surface scheme must be able to handle arbitrarily located data. There
are two broad classes of methods suitable for solving these problems
(i.e., problems in which simplifying geometric assumptions cannot be
made): (1) patch Lmethods, and (2) point methods. "Patch methods" are
those methods in which small curved pieces are joined together to form
a smooth surface. "Point methods" are those methods in which informa­
tion given only at discrete points is used to construct a surface.

This paper and its appendix introduce new patch methods which have
the following properties: (1) the data may be arbitrarily located, and
(2) the interpolating surface is twice continuously differentiable (C2).
We have divided the development of our new schemes into two parts. This
paper is Part 1 and the accompanying appendix by Alfeld is Part 2.

(a) In Part 1, we develop schemes of interpolation to curves of in­
formation defined over triangles. (These are called transfinite interpolants
because entire curves of information are interpolated.)

(b) In Part 2, we discretize these transfinite interpolants to obtain finite
dimensional patches (i.e., patches which depend on only finitely many
data). A reason for developing transfinite patches per se is that there is a
unified theory of the interpolation properties, polynomial precision, and

This research was supported in part by The National Science Foundation with Grant
MCS-8101854 and by The Department of Energy with Contract DE-AC02-82ER12046.
A000 to The University of Utah.

Copyright © 1984 Rocky Mountain Mathematics Consortium

17

18 P. ALFELD AND R. E. BARNHILL

smoothness for them. These properties can also be traced relatively easily
through the discretization of the transfinite schemes, so that the inter­
polation, precision, and smoothness of the final result can be determined.

When would a user want a C2 scheme? An example comes from the
autombile industry, namely, feature lines. The eye can detect a discon­
tinuity in curvature, so a C2 surface is esthetically necessary.

2. Barnhill, Birkhoff, and Gordon triangular interpolants. We derive a
scheme that interpolates to position, first, and second derivatives on the
boundary of a general triangle. When this scheme is applied piecewise to
each triangle of a triangulation, the resulting surface is twice continuously
differentiate. In order to make the formulas easier to express, we assume
that the data come from an underlying "primitive" function F. However,
this is strictly a notational convenience; the data in a practical problem
are "wire frame data" consisting of curves and first and second cross-
boundary derivatives. (First cross-boundary derivatives are "ribbons"
tangent to the given curves and second cross-boundary derivatives are
"osculating ribbons".)

We assume, then, the existence of an underlying primitive function F
whose gradient and Hessian exist, and are continuous. In fact, we have to
use the values of higher derivatives of F at certain points. We need not
assume that any mixed partial derivatives of order greater than two
commute.

The approach chosen here follows that of Barnhill, Birkhoff, and Gor­
don [1]. To describe it, some notation is needed. Consider a general
triangle, denoted by T, with vertices Vl9 V2, K3, labeled counterclockwise.

For / = 1, 2, 3, the edge of T opposite the vertex V{ is denoted by ei9

i.e., ex = V3 — V2, e2 = Vx — V3, e3 = V2 — Vx. It is obvious that

(2.1) e1 + e2 + e3 = 0.

For any function / , and any direction e e R2, we consider the Gâteaux
derivative, which is defined by

l*=o

If the gradient V/exists and is continuous, then

(2.2) | £ - * / • « •

In particular, we will use derivatives in the direction of the edges of T.
A convenient notation is given by

fjy) = jL(V), i= l ,2 ,3

A TRANSFINITE C2 INTERPOLANT OVER TRIANGLES 19

and

Uv) = 4k{n u=1'2'3'
etc. (Note the reversal in the sequence of subscripts for higher order
Gâteaux derivatives.) If the gradient of /exists and is continuous, then by
virtue of (2.1) and (2.2) we obtain

(2.3) / i + / 2 + / 3 = 0.

Similarly, if the Hessian H of/exists and is symmetric and continuous,
then it follows from two applications of (2.3) that

(2.4) fu=f» + V,k+fkk

whenever {/,/, k) = {1, 2, 3}.
Any point V in the plane can be expressed uniquely in terms of its

barycentric coordinates b\9 b2, bs, as follows: V= 2?=i bt-Vi9 2?=i £,• = 1.
The bi9 i = 1, 2, 3, are linear functions of the cartesian coordinates of V.
It is convenient to use barycentric coordinates exclusively, although
Cartesian coordinates are present implicitly. Table 1 contains the direc­
tional derivatives of the barycentric coordinates in the directions e{,
i = 1, 2, 3. For a more detailed introduction to barycentric coordinates
and their properties see [2].

N
1
2
3

I

0
+ 1
- 1

2

- 1
0

+ 1

3

+ 1
- 1

0

TABLE 1. Directional derivatives dbjdej.

FIGURE 1. Geometry for BBG PtF.

20 P. ALFELD AND R. E. BARNHILL

We use basic interpolation operators P{ which interpolate to position,
and to first and second directional derivatives (in the direction of et), on
edges ej and ek along lines parallel to e{ ({/,/, k} = {1, 2, 3}). For example,
Pi interpolates to position and derivatives at points P and Q in Figure 1.

The operator Pi is defined formally by

{PiF)(tbiV,)

(2.5) = txfrÙFiP) + h1(s1)F(Q)

+ h0 (*x)(l - bòFiLP) + Ä ^ X l - b1)F1(Q)

+ ÄofoXl - bjpFuiP) + Hsi)V ~ b1)
2F11(Q)

where st = b3/(l - b{), P = blV1 + (1 - bj)V2 on e3, Q = 6 ^ ! +
(1 - bJVsoneziCf. Figure 1).

The h/, h(and h{ are quintic polynomials uniquely defined by the car­
dinal properties :

hiij) = d„ K(j) = o h"Aj) = o

(2.6) Ä,.(/) = 0 h&fì^Ò,, h-(j) = 0

hü) = o £;.(;) = o hu) = al7

for i,j = 0, 1, 5,-y being the Kronecker Delta.
Explicit expressions for the cardinal functions are not needed for the

theoretical development. However, they are tabulated in §5.3.
The projectors P2 and P 3 are defined similarly; for details see §4. It is

easily verified (using Table 1) that

-go-^fw «- f (0 = ̂ (0
for / = 0, 1, 2, and that P2 and ^3 have similar properties.

Barnhill, BirkhofT, and Gordon [1] used elementary projectors similar
to the above that interpolate to position and first directional derivatives
only. They computed the Boolean sum of all three operators and obtained
a transfinite C1 BBG interpolation scheme. In this paper, we construct the
Boolean sum Q ••= P3 © P2 © Pi. (The Boolean sum of any two oper­
ators S9 Tis defined by S®T=S+T- ST).

It turns out that Q does solve the interpolation problem. J. A Gregory
has shown that triple Boolean sums of BBG projectors have no compati­
bility problems.

The algebraic manipulations are very tedious and were carried out using
the symbol manipulation language REDUCE [3]. In the following §3, we
describe a differentiation rule that is central to the automatic computation
of Q. §4 contains the documentation of the computation of Q and a listing

A TRANSFINITE C 2 INTERPOLANT OVER TRIANGLES 21

of Q. In §5, data requirements, the lack of compatibility conditions, and
the precision of the scheme are discussed.

3. The central differentiation rule. Computation of the Boolean sum
Q = p3 © p2 © px involves the composition of some of the elementary
projectors Ph P2, P3, and hence the differentiation of functions restricted
to edges, in the direction of other edges. In this section, we first study an
example illustrating that concept, and establish a general pattern of
differentiation. We then state and prove a general rule that covers all
relevant cases, and that is central to the symbol manipulation approach.
The proof partly follows the pattern established by the example.

EXAMPLE. Consider the problem of computing

-£-[f(b2V2 + (I -£2)^)]

(i.e., we are differentiating on e3 in the direction of e{).
The function to be differentiated is composed thus: V = 2]?=i bjVi9

z(V) := f(b2V2 + (1 - b2)Vx) = f(g{UV))) where HZUbiVt) - b2,
g(b2)

 := b2V2 + (1 — b2)Vi. Now consider

4- ^ B | i m ^ + / g ') - ^ .
3^i <-o t

Note that, since ex = V3 — V2,

z(V+ ted = AgiUbiVi + (b2 -t)V2 + (b3 + t)Vz)))

= f(g(b2-t))

= f((b2 - t)V2 + (I -b2 + t)V1)

= f(b2V2 + (i -b2)Vx -te3).

Similarly z(V) = f(b2V2 + (1 - b2)Vx) and hence

9_ z(v) = l i m f(b2V2 + (l -b^-te^-fib^ + il -b2)VÙ
dex

 v ,->o t

Thus:

~*~U{b2V2 + (1 - 62)K!)] = - ^-tf>2K2 + (1 - h)Vx).

In this derivation, we did not have to assume that the gradient of/exists.
We now state the Central Differentiation Rule.

CENTRAL DIFFERENTIATION RULE. Assume that all first order directional
derivatives off exist. Then, for all at- e {0, 1, bi9 1 - bß(J ^ /)}, / = 1, 2, 3,
such that 2J?=I at = 1, and all e e {eh e2, e3}, the following is true:

22 P. ALFELD AND R. E. BARNHILL

(3.0 ^t^-snm^m^
where a4 •= ax.

PROOF. The proof proceeds by considering all possible cases.
Case 1. (EiU aiVi is a general point in R2) a{ = b{ for i = 1, 2, 3, e =

ek for some A: e {1, 2, 3}. By Table 1, since dbj/dek = ± 1 for j ^ A:, all
but the A-th term in the right hand side of (3.1) vanish, which yields (with
*4= h)

since dbk+1/dek = - 1.
Case 2. (2?= 1 Û(-K,- is a vertex of T) a,- = a, — 0, ÖÄ = 1, {/, / , A} =

{1,2, 3}. The derivative of F(J^f=1 ajVj) should be zero since 2 jU CLJVj =
Vk is constant. The right hand side of (3.1) does yield zero since daJ+1/de =
0. for ally.

Case 3. (£jLi «,-K,- lies on edge ek of T) ^ = 0, a, = 1 - bm, am =
bm, {A, /, m} = {1, 2, 3} e = ^ , ^ e {1, 2, 3}.

Case 3A. ft = m. Since Z?m is constant in the direction of em9 the left
hand side of (3.1) is 0. The right hand side does yield zero since daj+i/dem

= 0 for ally = 1,2,3.
Case 3.2. ju ^ m. Arguing as in the above example we see that

mbmVm \l " K)V/) = ̂ *> -̂ {b»v«+ (1 - W)

where

*(//, A) = i - 1 if ju ï k,

+1 if /A = A.

We now turn to the right hand side of (3.1). Since ju # ra, the first term
in each product vanishes whenever j ^ A. Since da^i/de^ = +1 we
obtain the correct expression, possibly with the wrong sign. To verify
that the sign generated by (3.1) is in fact correct we use Table 2. There,
the last column lists the correct sign s(ju, A) of the derivative, and the
next to last column (sgn (RHS)) gives the sign generated by the right hand
side of (3.1). All possible cases are covered and the signs always agree.
This completes the proof of the Central Differentiation Rule.

A TRANSFINITE C 2 INTERPOLANT OVER TRIANGLES 23

m V ak+l sgn^g±l- sgn(JWS) s(/, m)
f1

1

1

2

2

3

3

2

3

1

3

1

2

3

2

3

1

2

1

1 - * s

h

b3

3 l - * i

1-& 2

3 *i

- 1
+ 1
- 1
+ 1
+ 1
- 1
- 1
+ 1
+ 1
- 1
+ 1
- 1

+ 1
- 1
+ 1
- 1
- 1
+ 1
+ 1
- 1
- 1
+ 1
- 1
+ 1

+ 1
- 1
+ 1
- 1
- 1
- 1
+ 1
- 1
- 1
+ 1
- 1
+ 1

TABLE 2. Proof of Central Differentiation Rule.

NOTE. In the above proof we nowhere required that the gradient of F
exists. All that is needed is that the directional derivatives occuring in
the formula (3.1) exist.

4. Computation of the triple Boolean sum Q = P3 © P2 © P^ This
section is a documented listing of the REDUCE program that computes
the C2 interpolant. (The REDUCE code can be obtained by sending us a
blank tape and indicating the desired tape parameters.) For a description
of the REDUCE language see [3].

The purpose of listing the source code is twofold: firstly, it enables
the reader to verify and reproduce the results described here, and secondly,
it illustrates the simplicity and the potential of symbol manipulation in the
derivation of complicated interpolation schemes.

In reading the program, some familiarity with REDUCE would be
useful, but is not essential. The code is largely self-explanatory, and
surprisingly simple.

At the end of this section, there is also a machine produced listing of
the interpolant, in a notation close to that employed in hand work.

THE REDUCE PROGRAM (TABLE 3). Initially, we ignore output and
formatting statements.

—Declaring basic functions (lines 5-10). The OPERATOR declaration
(lines 5-8) instructs REDUCE that the listed identifiers denote functions.
The exclamation mark in an identifier indicates that the following non-
alphanumerical character is part of the identifier. The correspondence
between identifiers and the notation employed in this paper is fairly obvi­
ous. The identifiers in line 5-7 denote the cardinal functions (B stands for

24 P. ALFELD AND R. E. BARNHILL

- and s for = ; !' and !" denote first and second derivatives respectively);
Bl, B2, and B3 are the barycentric coordinates, and F is the primitive
function.

The edges e{, i = 1, 2, 3, are denoted by El, E2, E3. A major deviation
from the true context is that within the REDUCE program the barycentric
coordinates are considered functions of the scalar variables El, E2, E3.
Thus directional derivatives are interpreted as partial derivatives which
can be handled easily in REDUCE. This interpretation is possible because
all relevant rules for partial and directional derivatives are formally identi­
cal.

The DEFINE statement in line 10 instructs REDUCE to replace on
input CI by Bl (El, E2, E3), etc.

—Defining the cardinal properties (lines 24-32). Lines 24-32 contain a
list of the cardinal properties (2.6). The LET statement differs from the
DEFINE statement in that substitutions are carried out during com­
putation rather than on input.

—Defining derivatives (lines 34-49). In lines 34-39 the relations between
the identifiers for the cardinal functions and their derivatives are defined,
lines 40-44 contain Tab e 1, and the Central Differentiation Rule is in­
troduced in lines 46-49. DF is the differentiation operator built into
REDUCE.

The first argument N of the function F indicates the derivative of
the primitive function / that is being denoted. The integer N has digits
1, 2, 3 which denote the directions in which derivatives have been taken,
the right most indicating the most recent derivative, etc. The last three
arguments are the barycentric coordinates. Thus we have for example
the correspondences

F(0, A, B, C) -> F(AV1 + BV2 + CV3)

—Defining the basic projectors (lines 51-76). The notation is self-ex­
planatory. Lines 51-58 correspond to (2.5), and lines 60-76 define the
projectors P2 and P3 , all applied to the primitive function / . If the pro­
jectors are applied to other functions, the definition has to be rewritten,
with/() replaced by suitable expressions.

—Computing P2 ® Pi (lines 78-85). Again, the notation it self-explana­
tory. The formula for the Boolean Sum employed here is P2 ® P\ = P2 +
Pi - P2P1' The equivalent formula P2 © P1 = P1 + P2(I - Px). (where
/ is the identity operator) which is more convenient for hand-work,
yields identical results. Note that P2 applied to Px (P2P1) is computed by
rewriting the definition of P2 with Px replacing/.

A TRANSFINITE C 2 INTERPOLANT OVER TRIANGLES 25

—Computation of P 3 © P2 © JPI (lines 91-101). Similar remarks as for
the computation of P2 © Pi apply.

—Incorporating the assumptions of continuous gradient and Hessian
(lines 103-111). Up to this stage, the only assumptions that have been
made are that the required directional derivatives exist. The resulting
expression is now simplified in a post processing stage. To facilitate auto­
matic cancellation of terms, all derivatives (up to second order) in the
direction e$ are replaced by combinations of derivatives in the directions
ei and e2, using (2.3) and (2.4) (lines 103-110). In line 111, F12and F21 are
equated. Notice that no assumptions are incorporated about the commut­
ation of mixed directional derivatives of order higher than 2.

—Output (lines 1, 3, 12-22, 89, 112-121). Lines 3, 12-22, and 116-118
contain formatting statements. In the form given, the program generates
the following output files :

CM PI: contains the listing of the first stage of computation.
P2BP1 : contains P2® P1'm REDUCE readable form, not incorporat­

ing the assumptions on continuous gradient and Hessian.
CMP2: contains the history of the second stage of computation.
INTP.RED: contains Q = P3 © P2 © Px in REDUCE readable form.

This is useful for further processing, such as investigations of compati­
bility and precision.

INTP.HMN: contains Q in a different notation. The first argument of
F denotes the derivative as before, but the second is V in the form V =
Zî?=iûf^i- This notation is closer to that commonly employed in hand
work, but cannot be processed further in REDUCE without introducing
additional internal notation.

P. ALFELD AND R. E. BARNHILL

OFF EXP;OFF NAT;

OPERATOR HO,Hl,HOB,HIB,HOS,HIS,
HO!',H1!' ,HOB!' ,H1B!',HOS! »,H1S!',
HO !",HI !",HOB !",HIB !",HOS !",HIS !",
B1,B2,B3,F;

DEFINE C1=B1(El,E2,E3),C2=B2(El,E2,E3),C3=B3(El,E2,E3);

FACTOR HO,H1,HOB,H1B,HOS,H1S,
HO!',H1!',HOB!•,H1B!',HOS!' ,H1S! ' ,
HO !",HI !",HOB !",HIB !",HOS !",HIS !";

ORDER HO,Hl,HOB,HIB,HOS,HIS,
HO!',H1!•,HOB!',H1B!',HOS!•,H1S!',
HO !M,HI !",HOB !",HIB !",HOS !",HIS !";

FACTOR V1,V2,V3;

ORDER V1,V2,V3;

LET HO(0)»l,
HOP(0)-0,
HO!"(0)-0,
HOB(0)-0,
HOB!'(0)-l,
HOB!"(0)«0,
HOS(0)-0,
HOS!'(0)«0,
HOS!"(0)»l,

HO(l)-0,
HO!»(l)-0,
•HO!"(l)-0,
HOB(l)«0,
HOB!'(1)»0,
HOB!"(l)-0,
HOS(l)«0,
HOS!'(l)-0,
HOS!"(l)-0,

H1(0)«0,
Hl!*(0)-0,
H1!"(0)«0,
H1B(0)«0,
H1B!'(0)«0,
HlB!"(0)-0,
H1S(0)«0,
HIS! *(0)-0,
HlS!"(0)-0,

HKD-l,
Hl!»(l)-0,
H1!"(1)«0,
H1B(1)»0,
HIBI'CD-l,
H1B!"(1)«0,
H1S(1)»0,
HlS!'(l)-0,
H1S!"(1)-1;

FOR ALL X LET DF(HO(X),X)=HO!'(X), DF(H1(X),X)-H1!'(X),
DF(HOB(X),X)=HOB!'(X), DF(H1B(X),X)=H1B!'(X),
DF(HOS(X),X)=HOS!'(X), DF(H1S(X),X)-H1S!'(X),
DF(HO!'(X),X)=HO!u(X), DF(H1!'(X),X)»H1!"(X),
DF(HOB!'(X),X)=HOB!"(X),DF(H1B!'(X),X)=H1B!"(X),
DF(H0S!'(X),X)=H0S!,,(X),DF(H1S!,(X),X)=H1S!"(X);

FOR ALL A,B,C LET

DF(B1(A,B,C),A)=0,DF(B1(A,B,C),B)=1,DF(B1(A,B,C),C)«-1,
DF(B2(A,B,C),A)=-1,DF(B2(A,B,C),B)=0,DF(B2(A,B,C),C)-1,
DF(B3(A,B,C),A)=l1DF(B3(A,B,C),B)=-l,DF(B3(A,B,C),C)-0;

FOR ALL A1,A2,A3,N,E LET DF(F(N,Al,A2,A3),E)
-(1-DF(A1,E)**2) *DF(A2,E)
-(1-DF(A2,E)**2) *DF(A3,E)
-(1-DF(A3,E)**2) *DF(A1,E)

*F(10*N+1,A1,A2,A3)
*F(10*N+2,A1,A2,A3)
*F(10*N+3,A1,A2,A3).

S1:-C3/(1-C1);

HO(Sl)
H1(S1)
HOB(Sl) *(1-C1)
111B(S1) *(1-C1)
HOS(Sl) *(1-C1)**2
HlS(Sl) *(1-C1)**2

S2:-C1/(1-C2);

P2:- H0(S2)
-»• H1(S2)
+ H0B(S2) *(1-C2)
+ H1B(S2) *(1-C2)
+ H0S(S2) *(1-C2)**2
+ H1S(S2) *(1-C2)**2

S3:-C2/(l-C3);

P3:- H0(S3)
+ H1(S3)
+ HOB(S3) *(1-C3)
+ H1B(S3) *(1-C3)
+ H0S(S3) *(1-C3)**2
+ H1S(S3) *(1-C3)**2

*F(0,C1,1-C1,0)
*F(0,C1,0,1-C1)
*F(1,C1,1-C1,0)
*F(1,C1,0,1-C1)
*F(11,C1,1-C1,0)
*F(11,C1,0,1-C1);

*F(0,0,C2,1-C2)
*F(0,1-C2,C2,0)
*F(2,0,C2,1-C2)
*F(2,1-C2,C2,0)
*F(22,0,C2,1-C2)
*F(22,1-C2,C2,0);

*F(0,1-C3,0,C3)
*F(0,0,1-C3,C3)
*F(3,1-C3,0,C3)
*F(3,0,1-C3,C3)
*F(33,1-C3,0,C3)
*F(33,0,1-C3,C3);

D2P1:=DF(P1,E2); D22P1:-=DF(D2P1,E2);

H0(S2)
H1(S2)
H0B(S2) *(1-C2)

*SUB(C1-0,C3-1-C2,P1)
*SUB(C1*1-C2,C3»0,P1)
*SÜB(C1«0.C3-1-C2,D2P1)

OOOl
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082

A TRANSFINITE C 2 INTERPOLANT OVER TRIANGLES

FOR ALL A,B,C LET
F(3 ,A ,B ,C)
F (13 ,A ,B ,C)
F(23 ,A ,B ,C)
F(31 ,A,B ,C)
F(32 ,A ,B ,C)
F(33 ,A,B ,C)

F(21 ,A ,B ,C)

SHUT CMP2;

-
»
«
»
»
•

•

- F (1 , A , B , C) - F (2 , A , B , C) ,
- F (1 1 , A , B , C) - F (1 2 , A , B , C) ,
- F (2 1 , A , B , C) - F (2 2 , A , B , C) ,
- F (1 1 , A , B , C) - F (2 1 , A , B , C) ,
- F (1 2 , A , B , C) - F (2 2 , A , B f C) ,

F (11 ,A ,B ,C)+F(12 ,A ,B ,C)
+F(21 ,A,B,C)+

F (1 2 , A , B , C) ;

+ H1B(S2) *(1-C2) *SUB(C1=1-C2,C3-0,D2P1) 0083
• H0S(S2) * (1 -C2)**2 *SUB(C1=0,C3=1-C2,D22P1) 0084
• n i S (S 2) * (1 -C2)**2 *SUB(C1»1-C2,C3»0,D22P1); 0085

0086
P2BP1:«P1+P2-P2P1; 0087

0088
SHUT CMPljOUT P2BP1;P2BP1:»P2BP1;SHUT P2BP1;0UT CMP2; 0089

0090
D3P2BP1:-DF(P2BP1,E3); D33P2BP1:«DF(D3P2BP1,E3); 0091

0092
P3P2BP1:- 0093

H0(S3) *SUB(C1«1-C3,C2-0,P2BP1) 0094
+ H1(S3) *SUB(C1«0,C2=1-C3,P2BP1) 0095
+ H0B(S3) * (1-C3) *SUB(C1=1-C3,C2=0,D3P2BP1) 0096
•f H1B(S3) * (1-C3) *SUB(C1=0,C2=1-C3,D3P2BP1) 0097
+ H0S(S3) * (1-C3)**2 *SUB(C1=1-C3,C2*0,D33P2BP1) 0098
• H1S(S3) * (1 -C3)**2 *SUB(C1»0,C2=1-C3,D33P2BP1); 0099

0100
P3BP2BP1:-P3+P2BP1-P3P2BP1; 0101

0102
0103
0104
0105
0106
0107
0108
0109

,C)+F(22,A,B,C), 0110
Olli
0112
0113
0114

OUT INTP.RED;INTP:-P3BP2BP1;SHUT INTP.RED; 0115
0116

LET C1-B1,C2«B2,C3-B3; 0117
0118

FOR ALL A,B,C,N LET F(N,A,B,C)«F(N,A*V1+B*V2+C*V3); 0119
0120

OUT INTP.HMN;ON NAT;INTP:«P3BP2BP1;SHUT INTP.HMN; 0121
0122

TABLE 3. REDUCE SOURCE CODE.

INTP :- - ((B3 - 1)*(B3+F(2,V1)*H1B,(- B3 + 1) - (F(11,V1) - F(22, 0001
0002

VI) + 2*F(13,V1) + F(33,V1))*(B3*H1S'(- B3 + 1) + 0003
0004

2*H1S(- B3 + 1)) + H0S(- B3 + 1)*(F(221,V3) - F(0005
0006

122,V3)) - H1B(- B3 + 1)*F(23,V1) • H1B(- B3 + 1) 0007
0008

(F(2,V1) - F(13,V1) - F(33,V1)) - H0B(- B3 + l)(F(0009
0010

12,V3) - F(21,V3)) + H1S(- B3 + 1)*(2*F(133,V1) + 0011
0012

F(333,V1) - F(223,V1) + F(113,V1)) + F(1,B3*V3 - VI 0013
0014

*(B3 - 1)) + F(2,B3*V3 - V1*(B3 - 1)) + (F(1,V1) + F(3 0015
0016

,V1))*(B3*H1B*(- B3 + 1) + H1B(- B3 + 1)))*K0B((0017
0018

- B2)/(B3 - 1)) •• (B3 - 1)*(H0B((- B2)/(B3 - 1))*F(3 0019
0020

,B3*V3 - V1*(B3 - 1)) + H1B((- B2)/(B3 - 1))*(F(1,B3* 0021
0022

V3 - V2*(B3 - 1)) + F(2,B3*V3 - V2*(B3 - 1))) + HIB 0023
0024

2 0025
((- B2)/(B3 - 1))*F(3,B3*V3 - V2*(B3 - 1))) + (B3 *((0026

0027
F(1,V1) + F(3,V1) + F(2,V1))*H1B"(- B3 + 1) - 0028

0029
H1S"(- B3 + 1)*(F(11,V1) - F(22,V1) + 2*F(13,V1) 0030

0031
+ F(33,V1))) - 2*B3*(F(11,V1)*H1S'(- B3 + 1) 0032

0033
- F(22,V1)*H1S'(- B3 + 1) + F(13,V1)*(H1B'(- B3 0034

0035
+ 1) + 2*H1S'(- B3 +1)) + F(33,V1)*(H1B'(- 0036

0037
B3 • 1) + H1S'(- 33 + 1)) + H0S'(- B3 + l)*F(0038

0039
122,V3) - 2*F(133,V1)*H1S'(- B3 • 1) - F(333,V1)* 0040

0041
H1S'(- B3 • 1) + F(12,V3)*H0B'(- B3 + 1) - F(21, 0042

0043

P. ALFELD AND R. E. BARNHILL

V3)*H0B'(- B3 + 1) + F(23,V1)*H1B'(- B3 + 1) + 0044
0045

H1S'(- B3 + 1)*F(223,V1) - H1S»(- B3 + 1)*F(113» 0046
0047

VI)) - 2*F(11,V1)*H1S(- B3 + 1) + 2*F(22,V1)*H1S(0048
0049

- B3 + 1) - 4*F(13,V1)*H1S(- B3 + 1) - 2*F(33,V1)* 0050
0051

H1S(- B3 + 1) + F(22,B3*V3 - V1*(B3 - 1)) + 2*F(221, 0052
0053

V3)*(B3*H0S'(- B3 + 1) + 2*H0S(- B3 + 1)) - H0S(- 0054
0055

B3 + 1)*(4*F(122,V3) - F(2211,V3) + F(1122,V3)) - (2*F 0056
0057

(13.V1) + 2*F(33,V1) - F(133,V1) - F(333,V1))*H1B(0058
0059

- B3 • 1) - 2*H1B(- B3 + 1)*F(23,V1) + H1B(- B3 + 1 0060
0061

)*F(233,V1) - (2*F(12,V3) + F(112.V3))*H0B(- B3 + 1) 0062
0063

+ 2*H0B(- B3 + 1)*F(21,V3) + H0B(- B3 • l)*F(211,V3 0064
0065

) + F(11,B3*V3 - V1*(B3 - 1)) + F(2233,V1)*H1S(- B3 0066
0067

+ 1) - 2*H1S(- B3 + 1)*F(1333,V1) - H1S(- B3 + 1)*F 0068
0069

(3333,VI) - H1S(- B3 + 1)*F(1133,V1) + 4*H1S(- B3 + 0070
0071

1)*(2*F(133,V1) + F(333,V1) - F(223,V1) + F(113,V1)) 0072
0073

+ 2*F(12,B3*V3 - V1*(B3 - 1)))*H0S((- B2)/(B3 - 1))* 0074
0075

2 2 0076
(- B3 + 1) - H0S((- B2)/(B3 - 1))*(- B3 + 1) *F(33,B3 0077

0078
2 0079

•V3 - V1*(B3 - 1)) - (- B3 + 1) *H1S((- B2)/(B3 - 1))*(0080
0081

F(33,B3*V3 - V2*(B3 - 1)) - F(22,B3*V3 - V2*(B3 - 1)) 0082
0083

- 2*F(21,B3*V3 - V2*(B3 - 1)) - F(11,B3*V3 - V2*(B3 0084
0085

- 1))) + (B2 - 1)*(F(1,B2*V2 - V1*(B2 - 1)) + F(3, 0086
0087

B2*V2 - V1*(B2 - 1)))*H1B((- B1)/(B2 - 1)) • (B2 - 1) 0088
0089

*(H1B((- B1)/(B2 - 1))*F(2,B2*V2 - V1*(B2 - 1)) + H0B((0090
0091

- B1)/(B2 - 1))*(B2*(F(1,V2)*H0B'(- B2 + 1) + F(l, 0092
0093

V3)*H1B'(- B2 + 1) + F(0,V2)*H0'(- B2 + 1) + FC 0094
0095

0,V3)*H1'(- B2 + 1) + F(11,V2)*H0S'(- B2 + 1) 0096
0097

+ F(11,V3)*H1S'(- B2 • 1)) + H0B(- B2 + l)*(F(0098
0099

1.V2) + F(13,V2)) - H1B(- B2 + 1)*(F(12,V3) - F(0100
0101

1.V3)) + H0(- B2 + 1)*F(3,V2) - Hl(- B2 + 1)*F(0102
0103

2.V3) + H0S(- B2 + l)*(2*F(ll,V2) * F(113,V2)) - 0104
0105

H1S(- B2 + 1)*(F(112,V3) - 2*F(11,V3)) + F(2,B2*V2 0106
0107

- V3*(B2 - 1)))) - (F(0,B2*V2 - V3*(B2 - 1)) - H0B(0108
0109

- B2 + 1)*F(1,V2) - H1B(- B2 + 1)*F(1,V3) - H0(- B2 0110
Olii

+ 1)*F(0,V2) - Hl(- B2 + 1)*F(0,V3) - HOS(- B2 + 1) 0112
0113

*F(11,V2) - H1S(- B2 + 1)*F(11,V3))*H0((- B1)/(B2 - 0114
0115

2 0116
1)) + (B2 *(F(1,V2)*H0B"(- B2 + 1) + F(l, V3) *H1B"*(- 0117

0118
B2 + 1) + F(0,V2)*H0"(- B2 + 1) + F(0,V3)*H1"(- 0119

0120
B2 + 1) + F(11,V2)*H0S"(- B2 + 1) + F(ll,V3)*H1S"(0121

0122
- B2 + 1)) - 2*B2*(F(12,V3)*H1B'(- B2 + 1) + F(0123

0124
112,V3)*H1S'(- B2 + 1) + F(0,V2)*H0'(- B2 + 1) + 0125

0126
F(0,V3)*H1'(- B2 + 1) - F(11,V2)*H0S'(- B2 + 1) 0127

0128
- F(11,V3)*H1S'(- B2 + 1) - HP'(- B2 + 1)*F(3,V2 0129

A TRANSFINITE C 2 INTERPOLANT OVER TRIANGLES 29

0130
) + Hl'(- B2 + 1)*P(2,V3) - H0S'(- B2 + l)*F(U3, 0131

0132
V2) - F(13,V2)*H0B'(- B2 + 1)) + F(122,V3)*H1B(- 0133

0134 0135
0136

B2 + 1) - 2*F(12,V3)*H1B(- B2 • 1) • 2+H0B(- B2 + 1)

*F(13.V2) + H0B(- B2 + 1)+F(133,V2) + H0(- B2 + 1)*F 0137
0138

(33.V2) + Hl(- B2 + 1)*F(22,V3) + H0S(- B2 + l)*(2*F 0139
0140

(11,V2) • 4*F(113,V2) + F(1133,V2)) + H1S(- B2 + 1 0141
0142

)*(F(1122,V3) - 4*F(112,V3) + 2*F(U,V3)) - F(22,B2*V2 0143
0144

2 0145
- V3+(B2 - 1)))*H0S((- B1)/(B2 - 1))*(- B2 + 1) + 0146

0147
2 0148

(- B2 • 1) *(F(11,B2*V2 - V1*(B2 - 1)) - F(22,B2*V2 - VI 0149

m an
0150
0151
0152

*(B2 - 1)) + 2*F(13,B2*V2 - V1*(B2 - 1)) • F(33,B2*V2

- V1*(B2 - 1)))*H1S((- B1)/(B2 - 1)) + (Bl - 1)*(H0B 0153
0154

((- B3)/(B1 - 1))*F(1,B1*V1 - V2*(B1 - 1)) • H1B((- 0155
0156

B3)/(B1 - 1))*F(1,B1+V1 - V3*(B1 - 1))) - H0((- B3 0157
0158
0159
0160
0161
0162

2 2 0163
)*(- Bl • 1) *F(11,B1*V1 - V2*(B1 - 1)) - (- Bl + 1) *

)/(Bl - 1))*F(0,B1*V1 - V2*(B1 - 1)) - Hl((- B3)/(B1

- 1))*F(0,B1*V1 - V3*(B1 - 1)) - H0S((- B3)/(B1 - 1)

0164
0165
0166
0167
0168
0169
0170
0171
0172

H1S((- B3)/(B1 - 1))'*F(U.B1*V1 - V3*(B1 - 1)) + H0((-

B2)/(B3 - 1))*(F(2,V1)*H1B(- B3 + 1) - (F(11,V1) - F(

22,VI) + 2*F(13.V1) + F(33,V1))*H1S(- B3 + 1) +

H1B(- B3 + 1)*(F(1,V1) * F(3,V1))))

TABLE 4. Listing of Q = P3 ® P2 © Pi.

5. Data requirements, compatibility, and precision.

5.1. Data requirements. Table 5 lists the data needed for the formulas
in Table 4. The columns of Table 5 correspond to the edges eh e2, e$,
and the vertices Vh K2, F 3 of T. The rows correspond to values of F and
some of its directional derivatives.

The entries in Table 5 consist of the letter x if the data are needed and
a blank or a hyphen otherwise. Obviously, data requirements along edge
e{ imply the same requirements at vertices Vj and Vk (where {/, j , k} =
{1, 2, 3}). However, the vertex data requirements in Table 5 correspond
to terms in Table 4 that are evaluated at the indicated vertices only. In
any implementation, these data and any vertex data implied by edge
data need to be supplied consistently.

Note that, on the edges, only directional derivatives of order up to two
are required. At the vertices, some higher derivatives are also needed.

5.2. Compatibility conditions. Many bivariate interpolation schemes,
at least in their early versions, exhibit the desired interpolation properties
only if the primitive function F satisfies certain compatibility conditions.
These typically require that certain mixed directional derivatives commute.

30 P. ALFELD AND R. E. BARNHILL

F
F!
F2

Fn

F12

F22

F112

Fus
F122

F133

F211

F221

F223

F233

F333

^1122

^1133

^1333

^2211

^2233

^3333

ei

X

-
X

-
-
X

_ f 2 _
X

X

-
X

-
-

_ f 3 _ _
X

X

-
X

-
-

Vi

-
-
-
-
-
-

-
X

-
X

-
-
X

X

X

-
X

X

-
X

X

Vi

X

X

X

X

X

X

-
X

-
X

-
-
-
-
-
-
X

-
-
-
-

Vs
X

X

X

X

X

X

X

-
X

-
X

X

-
-
-
X

-
-
X

-
-

TABLE 5. Data Requirements for the Interpolant Q.

The scheme presented here was differentiated, using the REDUCE
syntax, and then evaluated on edges. It turned out that Q = P 3 ® P2 ® Pi
interpolates to F and all of its directional derivatives up to order 2 on all
three edges unconditionally.

Some terms do arise, however, that may not be immediately recognized
as vanishing.

For example, using the syntax established in Table 3, we find that for
s = 63F3 + (1 - b3)Vi

where

R = ^223(^1) - 2F133(V1) - i W i) - ^113(^1)-

However, since gradient and Hessian of F are continuous we have, by
(2.4) that

A TRANSFINITE C 2 INTERPOLANT OVER TRIANGLES 31

Thus

/? — d(^22 — 2F13 — F33 — Fn) n/>i

< * < W . (J) , WL (s).
dei 3̂ x

No compatibility condition arises for this or any other directional deriva­
tive of order up through 2.

5.3. Polynomial precision. The precision set of any operator P is the set
of functions F, for which P is exact, i.e., PF = F.

Given a REDUCE version of ß = Pz ® P2 0 Pi it is straightforward
to apply Q to any polynomial. It is useful to note that since bi and b2 are
linear in x and >>, and since £3 = 1 — bi — ò2>

 anY polynomial in x and
y of degree JV can be expressed as a polynomial in bi and 62 of degree N
and vice versa.

By applying Q to basic polynomials in bx and 62>
 w e find that the

precision set of Q includes all polynomials of degree through eight. Q is
also precise for some polynomials of higher degree.

At this point only, in all of the work described here, explicit expressions
for the cardinal function defined in (2.6) are needed. These cardinal
functions are given by :

h0(x) = -6*5 + 15x4 - 10x3 + 1,
hx(x) = 6x5 - 15x4 + 10x3,
h0(x) = - 3JC5 + 8x4 - 6x3 + x,

hx(x) = - 3 x 5 + 7 x 4 - 4x3,
hQ(x) = -(l/2)x5 + (3/2)JC4 - (3/2)x3 + (Iß)**,
hx(x) = (l/2)jfi - x4 4- (l/2)x3.

APPENDIX: TWO DISCRETE C2 INTERPOLANTS

PETER ALFELD

Al. Introduction, This appendix has two purposes: it describes some
general techniques for constructing approximations of transfinite infor­
mation from discrete data, and, more narrowly, it describes two particular
discretizations of the transfinite scheme described in the body of this
paper.

The full data requirements of the transfinite scheme are given in Table
5. Thus the information needed to define the transfinite interpolant

32 P. ALFELD AND R. E. BARNHILL

consists of position, and one particular first and one second order deriva­
tive along edges. Also required are the values of certain derivatives at
the vertices of the general triangle. These, however, can be derived from
the transfinite information by differentiating tangentially and taking
suitable combinations of derivatives. For example

(where Fn is required along edge e2), or

(where Fx is required along edge e31 andi^ can be computed by tangential
differentiation of position).

In this Appendix, it is described how the required transfinite informa­
tion can be approximated from given discrete data while preserving the
global C2 smoothness. §A2 describes the derivation of a discrete scheme
with quintic precision, §A3 describes a similar scheme with reduced data
requirements, but only with cubic precision, and §A4 contains some simple
numerical examples.

A2. A discrete scheme with quintic precision. A discrete scheme that is
precise for all quintics can be obtained by using the stencil given in
Figure 2. The notation means that function values, gradients, and Hes­
sians must be supplied at the vertices of the general triangle, in addition

FIGURE 2. Stencil required for scheme 1.

A TRANSFINITE C 2 INTERPOLANT OVER TRIANGLES 33

to first order perpendicular cross-boundary derivatives at the midpoints
of the edges, and second-order perpendicular cross-boundary derivatives
at the (arbitrarily chosen) points g 0 ••= {V{ + 3 * Vj)/4 and QJi9 where z,
j = 1, 2, 3, /andjdistinct.

CONSTRUCTION OF SCHEME 1.

STEP 1. Approximate the required positional data on each side of the
triangle by the univariate quintic polynomial interpolating to function
values and first and second order tangential derivatives at the vertices.
These univariate data can be computed from the data given at the vertices,
and the univariate problem can be solved uniquely.

We exemplify the analysis by considering edge ex. Only minor modifica­
tions will be required for the other edges. In order not to become over­
burdened by the notation of the function involved, it will contain no
explicit reference to the edge.

The transfinite scheme requires an approximation of f(b2V2 +
(1 - b2)V3). Denote the approximation by (f>(b2) = X^=o aM- T n e s i x

coefficients of <f> are defined by the linear system:

#0) = F(V3), #1) = F(V2\

-0'(O) = F^Vs) = g(V3)Tel9 -0 ' (1) = F(V2) = g(V2Vel9

f(0) = Fn(V3) = e{H(V3)eh f(l) = F12(F5) = e{H(V2)ei.

Here, g and H denote the gradient and the Hessian of the primitive
function F, respectively. Both are given at the vertices. Note the negative
sign in the equations specifying the first derivatives. It occurs because the
transfinite scheme uses the barycentric coordinate b2 as its basic variable,
whose derivative in the direction of edge ex is — 1. A similar sign reversal
occurs on edge £3, but not on edge e2.

STEP 2. Approximate the required first order cross-boundary derivative
on each edge by the univariate quartic polynomial interpolating to the
value of that derivative at the vertices and at the midpoint of the given
edge, and the tangential derivatives of the cross-boundary derivative at
the vertices. As in step 1, this process is well-defined by the given discrete
data.

Consider again edge e±. The transfinite scheme requires an approxima­
tion of F2(b2V2 + (1 — b2)V3). Denote the approximation by <fi2(b2) =
E*=off2,f*l- The following four equations for the coefficients of §2 are
readily derived:

&(0) = F2(V3) = g(V3Ve2, çi2(l) = F2(V2) = g(V2Ye2,

- # (0) = F21(V3) = ejH(V3)el9 -0 ' (1) = F21(V2) = e2H(V2)ei.

34 P. ALFELD AND R. E. BARNHILL

The fifth condition is çS2(l/2) = F2(M), where M = (V2 + F3)/2 is the
midpoint of e1? and the right hand side has to be computed from the
given perpendicular cross-boundary derivative at M and the derivative
of (f>(b2) in the direction of ev Let Fn denote the given perpendicular
cross-boundary derivative at M, and let nx be the normal to ev

Then the derivatives satisfy Eq = v where E = [/il9 e^7, # is the gradient
of the interpolant at M, and v = [Fn9 -<f>'(\/2)]T. Solving for q, and
taking the inner product with e2 yields F2(M) = eÇE^v ,which supplies
the required right hand side of the above linear equation.

STEP 3. Approximate the required second order cross-boundary deriva­
tive on each edge by the univariate cubic polynomial interpolating to the
values of that derivative at the four points implied by the stencil. This
process is also well-defined.

The analysis is similar to that in step 2. At the endpoints of edge el9 two
conditions are readily obtained. At each of the points Q23 and g3 2 three
second order directional derivatives are available : The second order tan­
gential derivative (j)"{b2), the tangential derivative of the cross-boundary
derivative — <f>^(b2), and the second order perpendicular cross-boundary
derivative given as data. These three derivatives determine the Hessian
of the interpolant at Ö23 an<^ 632» which in turn determines the required
second order cross-boundary derivative.

STEP 4. Approximate the required higher order derivatives at the
vertices by suitably differentiating and evaluating the polynomial ap­
proximations of the transfinite information obtained in steps 1, 2, 3,
proceeding as indicated by the examples in the introduction.

The following theorem states formally that the interpolation scheme
so obtained is C2 and has quintic precision.

THEOREM 1. For any triangulation, and for any set of data implied by
stencil 1 on each triangle:

(a) The interpolation scheme 1 defined in the above four steps yields a
globally twice continuously differentiable surface.

(b) If the data are obtained by differentiating and evaluating a primitive
function F, then the interpolant to F will equal F if F is a bivariate polynomial
of degree up to 5.

PROOF. For part (a) of the theorem, first note that the scheme is arbi­
trarily often differentiable in the interior of triangles. On each edge of
the triangulation, all function values, and values of first and second order
derivatives exist and are determined uniquely by the discrete data given
on that edge. Moreover, the data entering the transfinite scheme are in­
dependent of the orientation of the triangle. Thus positions, and first

A TRANSFINITE C 2 INTERPOLANT OVER TRIANGLES 35

and second order derivatives, match across edges, i.e., the interpolant is
globally twice continuously differentiable.

For part (b) of the theorem, first note that if the underlying primitive
function is a quintic bivariate polynomial, then function values along
edges reduce to univariate quintic polynomials, and any first and second
order directional derivatives reduce to quartic and cubic univariate
polynomials, respectively. The above construction process, being based
on univariate interpolation by polynomials of suitable degree, is exact
for such functions.

Thus, if the primitive function is a quintic polynomial, then the discrete
scheme yields an interpolant that is identical to that given by the trans-
finite scheme. In [1], the transfinite scheme was shown to be exact for
polynomials of degree up to 8. A fortiori, it will be exact for polynomials
of degree up to 5, completing the proof of the theorem.

A3. A discrete scheme with cubic precision. A discrete scheme similar
to that derived in §2 can be obtained from the following stencil :

FIGURE 3. Stencil required for scheme 2.

Thus the discrete data comprise only values of position, gradient and
Hessian at the vertices of the triangles. A user would not have to supply
values of directional derivatives on edges of the triangles. Since there
are fewer data interpolated to, the precision of the scheme is reduced
and only polynomials of degree up to three will be reproduced exactly.

CONSTRUCTION OF SCHEME 2.

STEP 1. As in scheme 1, approximate the required positional data on
each side of the triangle by the univariate quintic polynomial interpolating

36 P. ALFELD AND R. E. BARNHILL

to function values and first and second order tangential derivatives at
the vertices.

STEP 2. To be consistent with the quintic approximation of position,
the approximation of any cross-boundary derivative along an edge must
be quartic, involving five degrees of freedom. The discrete data provide
only four conditions: values and tangential derivatives of the cross-
boundary derivative at each of the vertices. This naturally leads to making
up the missing condition by requiring that some cross-boundary derivative
be cubic. To ensure global differentiability the direction of that derivative
must be shared between neighboring triangles. This rules out direction
defined by other edges of a triangle. Instead, we require that the first
order perpendicular cross-boundary derivative be cubic. As in §2, we
exemplify the analysis by considering edge ex\ We need to construct
^2(^2) = 2 to a2,i hi, which is the approximation of F2(b2v2 + (1 — ^2)̂ 3)
required by the transfinite scheme. The values of <f>2, and of its first order
derivatives in the direction of edge e1 at v2 and v3, are determined by the
given discrete data. Similarly as in Step 1 of §2, the perpendicular cross-
boundary derivative turns out to be given by N(b2) = aTv where a =
E~lni =: [al9 a2]

T, E= [el9 e2]
T, v = [-fifa), (b2)]

T, and nx is perpendic­
ular to ei (it need not be normalized).

The function N is a quartic in b2, whose leading coefficient is given by
y2A = — 5 axa5 + a2a2>4 which should equal zero in order for the per­
pendicular cross-boundary derivative on edge e1 to be cubic.

Thus we require that a2A = 5 a^/a^ A simple calculation shows that
a2 cannot be zero for a non-degenerate triangle.

STEP 3. To construct the approximation of a second order cross-
boundary derivative on an edge, we proceed essentially as in Step 2 for
the first order derivative. In general, any second order derivative on an
edge will be a cubic polynomial, but we are given only two data implied
by the discrete data at the vertices. The remaining two degrees of freedom
are removed by requiring that the second order perpendicular cross-
boundary derivative along the edge be linear. On edge e1? we proceed as
follows : Writing 0:22(̂ 2) = HÌ=o &22,i H for the required approximation of
F22(b2V2 + (1 — b2)V^), we obtain, after some manipulation, 0:22,3 =
4 ax(- 5 axa5 + 2 a2a2A)/al and a22>2 = 6 a^ - 2 axa^ + ^2^2,3)^2- I n

both Steps 2 and 3, minor adjustments have to be made on edges e2

and e3.

STEP 4. As for scheme 1, the required higher derivatives at vertices are
obtained by suitably differentiating the expressions obtained in Steps
1, 2, and 3. The properties of scheme 2 are stated formally in the following
Theorem.

A TRANSFINITE C 2 INTERPOLANT OVER TRIANGLES 37

THEOREM 2. For any triangulation, and for any set of data implied by
stencil 2 on each triangle :

(a) The interpolation scheme 2 defined in the above four steps yields a
globally twice continuously differentiable surface.

(b) if the data are obtained by differentiating and evaluating a primitive
function F, then the interpolant to F will equal F if Fis a bivariate polynomial
of degree up to 3.

PROOF. The proof is similar to that of Theorem 1. For part (b) of the
theorem, observe that the discrete scheme yields the exact transfinite
information only if the primitive function is a bivariate polynomial of
degree at most 3 (which has linear second order derivatives).

A4. Numerical results. Using the symbol manipulation language
REDUCE [3], the discrete schemes 1 and 2, as well as the transfinite
scheme, were implemented into a FORTRAN code and run for some
test examples where an underlying primitive function was known. The
data required by the schemes were generated from the primitive function
and were exact.

The domain in 2-space is sketched in Figure 4. There are four triangles

P 3 50 P 4 100 y

FIGURE 4. Domain picture.

(/\ = [1, 49F, P* « [99,47F, P3 = [3, 3]r, P4 = [90, If, P5 = [20, 24]r).

38 P. ALFELD AND R. E. BARNHILL

covering a quadrilateral region. The points were chosen so as to avoid
any symmetry or edges parallel to coordinate axes which might introduce
artifacts that are not in general present in an interpolation problem.
The primitive function was chosen to be a half sphere with radius r
centered at the origin, i.e., F(x,y) = <s/r2 — x2 — y2, for several values
of r. Again, the underlying principle in choosing the function F was not
to introduce any artifacts due to F's having geometrical properties cor­
responding to properties of the domain, or to F's being a polynomial or
a rational function.

The parameter r is a measure of the difficulty of the approximation
problem. The point P2 lies at distance 109.6 from the origin, and as r
approaches that value, the quality of the approximation deteriorates.
Table 2 below gives the maximum relative error for the three interpolation
schemes, and for r = 120, 150, 200.

r = 120 150 200

transfinite scheme: 4.8E-2 4.6E-5 2.8E-7
discrete scheme 1: 5.4E-2 1.1E-3 5.5E-5
discrete scheme 2: 5.8E-2 1.2E-3 6.6E-5

TABLE 2. Numerical Results.

Note that in this example scheme 2 with quintic precision yields results
that are only slightly more accurate than those given by scheme 2 with
cubic precision. On the other hand, the loss in accuracy due to approxi­
mating transfinite information by discrete data is substantial. Of course,
in practice transfinite information is usually unavailable so that the
superior accuracy of the transfinite scheme cannot be exploited. As one
would expect, the accuracy of the approximating interpolant deteriorates
as the radius of the sphere defined by F decreases, and the edge of the
sphere approaches the boundary of the domain of the interpolant. The
accuracy of the results is remarkable in view of the fact that a substantial
part of the domain of F is covered by only four triangles.

Conclusions. We have developed a C2 interpolant to C2 transfinite data
defined over triangles.

In the appendix, two discrete bivariate interpolation schemes derived
from a transfinite scheme have been described. Their relevant properties
are the following:

1. The schemes require an underlying triangulation.
2. The interpolants are globally twice continuously differentiable.
3. The schemes are local, i.e., the information needed to evaluate the

A TRANSFINITE C 2 INTERPOLANT OVER TRIANGLES 39

interpolant at a given point is restricted to the triangle containing that
point.

4. Only derivatives of order up through two are required as data.
5. The schemes are of quintic and cubic precision, respectively.
6. Limited numerical experience suggests that the gain in accuracy in

going from cubic to quintic precision is marginal.
7. The cubic scheme requires data at vertices only.
It appears from the above, particularly in view of points 6 and 7, that

scheme 2 is preferable over scheme 1. Note that using data on vertices
only has the convenient consequence that the user does not have to be
aware of the structure of the triangulation. Indeed, if the triangulation is
generated by a black box routine, the user does not even need to know
of its existence. A drawback of both schemes is their computational com­
plexity. At present, only experimental codes exist, which have to be
modified for each new problem.

REFERENCES

1. R. E. Barnhill, G. Birkhoff, and W. J. Gordon, Smooth Interpolation in Triangles,
Jour, of Approx. Theory 8 (1973), 114-128.

2. R. E. Barnhill, Representation and Approximation of Surfaces, in Mathematical
Software III (J. R. Rice, ed.), Academic Press, 69-120.

3. A. C. Hearn, REDUCE User's Manual, 2nd ed., Report UCP-19, Department of
Computer Science, University of Utah, 1973.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UT 84112

