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A TRANSFINITE C2 INTERPOLANT OVER TRIANGLES 

PETER ALFELD AND ROBERT E. BARNHILL 

ABSTRACT. A transfinite C2 interpolant on a general triangle is 
created. The required data are essentially C2, no compatibility 
conditions arise, and the precision set includes all polynomials of 
degree less than or equal to eight. The symbol manipulation 
language REDUCE is used to derive the scheme. The scheme is 
discretized to two different finite dimensional C2 interpolants in 
an appendix. 

1. Introduction and history. Scientists and engineers often take three-
dimensional measurements through which they wish to pass a surface. 
When designing interactively the surface of a real object, designers input 
three-dimensional points. Because the geometric information for these two 
classes of problems can be located arbitrarily in three-dimensional space, 
the surface scheme must be able to handle arbitrarily located data. There 
are two broad classes of methods suitable for solving these problems 
(i.e., problems in which simplifying geometric assumptions cannot be 
made): (1) patch Lmethods, and (2) point methods. "Patch methods" are 
those methods in which small curved pieces are joined together to form 
a smooth surface. "Point methods" are those methods in which informa
tion given only at discrete points is used to construct a surface. 

This paper and its appendix introduce new patch methods which have 
the following properties: (1) the data may be arbitrarily located, and 
(2) the interpolating surface is twice continuously differentiable (C2). 
We have divided the development of our new schemes into two parts. This 
paper is Part 1 and the accompanying appendix by Alfeld is Part 2. 

(a) In Part 1, we develop schemes of interpolation to curves of in
formation defined over triangles. (These are called transfinite interpolants 
because entire curves of information are interpolated.) 

(b) In Part 2, we discretize these transfinite interpolants to obtain finite 
dimensional patches (i.e., patches which depend on only finitely many 
data). A reason for developing transfinite patches per se is that there is a 
unified theory of the interpolation properties, polynomial precision, and 
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smoothness for them. These properties can also be traced relatively easily 
through the discretization of the transfinite schemes, so that the inter
polation, precision, and smoothness of the final result can be determined. 

When would a user want a C2 scheme? An example comes from the 
autombile industry, namely, feature lines. The eye can detect a discon
tinuity in curvature, so a C2 surface is esthetically necessary. 

2. Barnhill, Birkhoff, and Gordon triangular interpolants. We derive a 
scheme that interpolates to position, first, and second derivatives on the 
boundary of a general triangle. When this scheme is applied piecewise to 
each triangle of a triangulation, the resulting surface is twice continuously 
differentiate. In order to make the formulas easier to express, we assume 
that the data come from an underlying "primitive" function F. However, 
this is strictly a notational convenience; the data in a practical problem 
are "wire frame data" consisting of curves and first and second cross-
boundary derivatives. (First cross-boundary derivatives are "ribbons" 
tangent to the given curves and second cross-boundary derivatives are 
"osculating ribbons".) 

We assume, then, the existence of an underlying primitive function F 
whose gradient and Hessian exist, and are continuous. In fact, we have to 
use the values of higher derivatives of F at certain points. We need not 
assume that any mixed partial derivatives of order greater than two 
commute. 

The approach chosen here follows that of Barnhill, Birkhoff, and Gor
don [1]. To describe it, some notation is needed. Consider a general 
triangle, denoted by T, with vertices Vl9 V2, K3, labeled counterclockwise. 

For / = 1, 2, 3, the edge of T opposite the vertex V{ is denoted by ei9 

i.e., ex = V3 — V2, e2 = Vx — V3, e3 = V2 — Vx. It is obvious that 

(2.1) e1 + e2 + e3 = 0. 

For any function / , and any direction e e R2, we consider the Gâteaux 
derivative, which is defined by 

l*=o 

If the gradient V/exists and is continuous, then 

(2.2) | £ - * / • « • 

In particular, we will use derivatives in the direction of the edges of T. 
A convenient notation is given by 

fjy) = jL(V), i= l ,2 ,3 
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and 

Uv) = 4k{n u=1'2'3' 
etc. (Note the reversal in the sequence of subscripts for higher order 
Gâteaux derivatives.) If the gradient of /exists and is continuous, then by 
virtue of (2.1) and (2.2) we obtain 

(2.3) / i + / 2 + / 3 = 0. 

Similarly, if the Hessian H of/exists and is symmetric and continuous, 
then it follows from two applications of (2.3) that 

(2.4) fu=f» + V,k+fkk 

whenever {/,/, k) = {1, 2, 3}. 
Any point V in the plane can be expressed uniquely in terms of its 

barycentric coordinates b\9 b2, bs, as follows: V= 2?=i bt-Vi9 2?=i £,• = 1. 
The bi9 i = 1, 2, 3, are linear functions of the cartesian coordinates of V. 
It is convenient to use barycentric coordinates exclusively, although 
Cartesian coordinates are present implicitly. Table 1 contains the direc
tional derivatives of the barycentric coordinates in the directions e{, 
i = 1, 2, 3. For a more detailed introduction to barycentric coordinates 
and their properties see [2]. 

N 
1 
2 
3 

I 

0 
+ 1 
- 1 

2 

- 1 
0 

+ 1 

3 

+ 1 
- 1 

0 

TABLE 1. Directional derivatives dbjdej. 

FIGURE 1. Geometry for BBG PtF. 
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We use basic interpolation operators P{ which interpolate to position, 
and to first and second directional derivatives (in the direction of et), on 
edges ej and ek along lines parallel to e{ ({/,/, k} = {1, 2, 3}). For example, 
Pi interpolates to position and derivatives at points P and Q in Figure 1. 

The operator Pi is defined formally by 

{PiF)(tbiV,) 

(2.5) = txfrÙFiP) + h1(s1)F(Q) 

+ h0 (*x)(l - bòFiLP) + Ä ^ X l - b1)F1(Q) 

+ ÄofoXl - bjpFuiP) + Hsi)V ~ b1)
2F11(Q) 

where st = b3/(l - b{), P = blV1 + (1 - bj)V2 on e3, Q = 6 ^ ! + 
(1 - bJVsoneziCf. Figure 1). 

The h/, h( and h{ are quintic polynomials uniquely defined by the car
dinal properties : 

hiij) = d„ K(j) = o h"Aj) = o 

(2.6) Ä,.(/) = 0 h&fì^Ò,, h-(j) = 0 

hü) = o £;.(;) = o hu) = al7 

for i,j = 0, 1, 5,-y being the Kronecker Delta. 
Explicit expressions for the cardinal functions are not needed for the 

theoretical development. However, they are tabulated in §5.3. 
The projectors P2 and P 3 are defined similarly; for details see §4. It is 

easily verified (using Table 1) that 

-go-^fw «- f (0 = ̂ ( 0 
for / = 0, 1, 2, and that P2 and ^3 have similar properties. 

Barnhill, BirkhofT, and Gordon [1] used elementary projectors similar 
to the above that interpolate to position and first directional derivatives 
only. They computed the Boolean sum of all three operators and obtained 
a transfinite C1 BBG interpolation scheme. In this paper, we construct the 
Boolean sum Q ••= P3 © P2 © Pi. (The Boolean sum of any two oper
ators S9 Tis defined by S®T=S+T- ST). 

It turns out that Q does solve the interpolation problem. J. A Gregory 
has shown that triple Boolean sums of BBG projectors have no compati
bility problems. 

The algebraic manipulations are very tedious and were carried out using 
the symbol manipulation language REDUCE [3]. In the following §3, we 
describe a differentiation rule that is central to the automatic computation 
of Q. §4 contains the documentation of the computation of Q and a listing 
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of Q. In §5, data requirements, the lack of compatibility conditions, and 
the precision of the scheme are discussed. 

3. The central differentiation rule. Computation of the Boolean sum 
Q = p3 © p2 © px involves the composition of some of the elementary 
projectors Ph P2, P3, and hence the differentiation of functions restricted 
to edges, in the direction of other edges. In this section, we first study an 
example illustrating that concept, and establish a general pattern of 
differentiation. We then state and prove a general rule that covers all 
relevant cases, and that is central to the symbol manipulation approach. 
The proof partly follows the pattern established by the example. 

EXAMPLE. Consider the problem of computing 

-£-[f(b2V2 + (I -£2)^)] 

(i.e., we are differentiating on e3 in the direction of e{). 
The function to be differentiated is composed thus: V = 2]?=i bjVi9 

z(V) := f(b2V2 + (1 - b2)Vx) = f(g{UV))) where HZUbiVt) - b2, 
g(b2)

 := b2V2 + (1 — b2)Vi. Now consider 

4- ^ B | i m ^ + / g ' ) - ^ . 
3^i <-o t 

Note that, since ex = V3 — V2, 

z(V+ ted = AgiUbiVi + (b2 -t)V2 + (b3 + t)Vz))) 

= f(g(b2-t)) 

= f((b2 - t)V2 + (I -b2 + t)V1) 

= f(b2V2 + (i -b2)Vx -te3). 

Similarly z(V) = f(b2V2 + (1 - b2)Vx) and hence 

9_ z(v) = l i m f(b2V2 + (l -b^-te^-fib^ + il -b2)VÙ 
dex

 v ,->o t 

Thus: 

~*~U{b2V2 + (1 - 62)K!)] = - ^-tf>2K2 + (1 - h)Vx). 

In this derivation, we did not have to assume that the gradient of/exists. 
We now state the Central Differentiation Rule. 

CENTRAL DIFFERENTIATION RULE. Assume that all first order directional 
derivatives off exist. Then, for all at- e {0, 1, bi9 1 - bß(J ^ /)}, / = 1, 2, 3, 
such that 2J?=I at = 1, and all e e {eh e2, e3}, the following is true: 
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(3.0 ^t^-snm^m^ 
where a4 •= ax. 

PROOF. The proof proceeds by considering all possible cases. 
Case 1. (EiU aiVi is a general point in R2) a{ = b{ for i = 1, 2, 3, e = 

ek for some A: e {1, 2, 3}. By Table 1, since dbj/dek = ± 1 for j ^ A:, all 
but the A-th term in the right hand side of (3.1) vanish, which yields (with 
*4= h) 

since dbk+1/dek = - 1. 
Case 2. (2?= 1 Û(-K,- is a vertex of T) a,- = a, — 0, ÖÄ = 1, {/, / , A} = 

{1,2, 3}. The derivative of F(J^f=1 ajVj) should be zero since 2 jU CLJVj = 
Vk is constant. The right hand side of (3.1) does yield zero since daJ+1/de = 
0. for ally. 

Case 3. (£jLi «,-K,- lies on edge ek of T) ^ = 0, a, = 1 - bm, am = 
bm, {A, /, m} = {1, 2, 3} e = ^ , ^ e {1, 2, 3}. 

Case 3A. ft = m. Since Z?m is constant in the direction of em9 the left 
hand side of (3.1) is 0. The right hand side does yield zero since daj+i/dem 

= 0 for ally = 1,2,3. 
Case 3.2. ju ^ m. Arguing as in the above example we see that 

mbmVm \l " K)V/) = ̂  *> -̂  {b»v«+ (1 - W) 

where 

*(//, A) = i - 1 if ju ï k, 

+1 if /A = A. 

We now turn to the right hand side of (3.1). Since ju # ra, the first term 
in each product vanishes whenever j ^ A. Since da^i/de^ = +1 we 
obtain the correct expression, possibly with the wrong sign. To verify 
that the sign generated by (3.1) is in fact correct we use Table 2. There, 
the last column lists the correct sign s(ju, A) of the derivative, and the 
next to last column (sgn (RHS)) gives the sign generated by the right hand 
side of (3.1). All possible cases are covered and the signs always agree. 
This completes the proof of the Central Differentiation Rule. 
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m V ak+l sgn^g±l- sgn(JWS) s(/, m) 
f1 

1 

1 

2 

2 

3 

3 

2 

3 

1 

3 

1 

2 

3 

2 

3 

1 

2 

1 

1 - * s 

h 

b3 

3 l - * i 

1-& 2 

3 *i 

- 1 
+ 1 
- 1 
+ 1 
+ 1 
- 1 
- 1 
+ 1 
+ 1 
- 1 
+ 1 
- 1 

+ 1 
- 1 
+ 1 
- 1 
- 1 
+ 1 
+ 1 
- 1 
- 1 
+ 1 
- 1 
+ 1 

+ 1 
- 1 
+ 1 
- 1 
- 1 
- 1 
+ 1 
- 1 
- 1 
+ 1 
- 1 
+ 1 

TABLE 2. Proof of Central Differentiation Rule. 

NOTE. In the above proof we nowhere required that the gradient of F 
exists. All that is needed is that the directional derivatives occuring in 
the formula (3.1) exist. 

4. Computation of the triple Boolean sum Q = P3 © P2 © P^ This 
section is a documented listing of the REDUCE program that computes 
the C2 interpolant. (The REDUCE code can be obtained by sending us a 
blank tape and indicating the desired tape parameters.) For a description 
of the REDUCE language see [3]. 

The purpose of listing the source code is twofold: firstly, it enables 
the reader to verify and reproduce the results described here, and secondly, 
it illustrates the simplicity and the potential of symbol manipulation in the 
derivation of complicated interpolation schemes. 

In reading the program, some familiarity with REDUCE would be 
useful, but is not essential. The code is largely self-explanatory, and 
surprisingly simple. 

At the end of this section, there is also a machine produced listing of 
the interpolant, in a notation close to that employed in hand work. 

THE REDUCE PROGRAM (TABLE 3). Initially, we ignore output and 
formatting statements. 

—Declaring basic functions (lines 5-10). The OPERATOR declaration 
(lines 5-8) instructs REDUCE that the listed identifiers denote functions. 
The exclamation mark in an identifier indicates that the following non-
alphanumerical character is part of the identifier. The correspondence 
between identifiers and the notation employed in this paper is fairly obvi
ous. The identifiers in line 5-7 denote the cardinal functions (B stands for 
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- and s for = ; !' and !" denote first and second derivatives respectively); 
Bl, B2, and B3 are the barycentric coordinates, and F is the primitive 
function. 

The edges e{, i = 1, 2, 3, are denoted by El, E2, E3. A major deviation 
from the true context is that within the REDUCE program the barycentric 
coordinates are considered functions of the scalar variables El, E2, E3. 
Thus directional derivatives are interpreted as partial derivatives which 
can be handled easily in REDUCE. This interpretation is possible because 
all relevant rules for partial and directional derivatives are formally identi
cal. 

The DEFINE statement in line 10 instructs REDUCE to replace on 
input CI by Bl (El, E2, E3), etc. 

—Defining the cardinal properties (lines 24-32). Lines 24-32 contain a 
list of the cardinal properties (2.6). The LET statement differs from the 
DEFINE statement in that substitutions are carried out during com
putation rather than on input. 

—Defining derivatives (lines 34-49). In lines 34-39 the relations between 
the identifiers for the cardinal functions and their derivatives are defined, 
lines 40-44 contain Tab e 1, and the Central Differentiation Rule is in
troduced in lines 46-49. DF is the differentiation operator built into 
REDUCE. 

The first argument N of the function F indicates the derivative of 
the primitive function / that is being denoted. The integer N has digits 
1, 2, 3 which denote the directions in which derivatives have been taken, 
the right most indicating the most recent derivative, etc. The last three 
arguments are the barycentric coordinates. Thus we have for example 
the correspondences 

F(0, A, B, C) -> F(AV1 + BV2 + CV3) 

—Defining the basic projectors (lines 51-76). The notation is self-ex
planatory. Lines 51-58 correspond to (2.5), and lines 60-76 define the 
projectors P2 and P3 , all applied to the primitive function / . If the pro
jectors are applied to other functions, the definition has to be rewritten, 
with/( ) replaced by suitable expressions. 

—Computing P2 ® Pi (lines 78-85). Again, the notation it self-explana
tory. The formula for the Boolean Sum employed here is P2 ® P\ = P2 + 
Pi - P2P1' The equivalent formula P2 © P1 = P1 + P2(I - Px). (where 
/ is the identity operator) which is more convenient for hand-work, 
yields identical results. Note that P2 applied to Px (P2P1) is computed by 
rewriting the definition of P2 with Px replacing/. 
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—Computation of P 3 © P2 © JPI (lines 91-101). Similar remarks as for 
the computation of P2 © Pi apply. 

—Incorporating the assumptions of continuous gradient and Hessian 
(lines 103-111). Up to this stage, the only assumptions that have been 
made are that the required directional derivatives exist. The resulting 
expression is now simplified in a post processing stage. To facilitate auto
matic cancellation of terms, all derivatives (up to second order) in the 
direction e$ are replaced by combinations of derivatives in the directions 
ei and e2, using (2.3) and (2.4) (lines 103-110). In line 111, F12and F21 are 
equated. Notice that no assumptions are incorporated about the commut
ation of mixed directional derivatives of order higher than 2. 

—Output (lines 1, 3, 12-22, 89, 112-121). Lines 3, 12-22, and 116-118 
contain formatting statements. In the form given, the program generates 
the following output files : 

CM PI: contains the listing of the first stage of computation. 
P2BP1 : contains P2® P1'm REDUCE readable form, not incorporat

ing the assumptions on continuous gradient and Hessian. 
CMP2: contains the history of the second stage of computation. 
INTP.RED: contains Q = P3 © P2 © Px in REDUCE readable form. 

This is useful for further processing, such as investigations of compati
bility and precision. 

INTP.HMN: contains Q in a different notation. The first argument of 
F denotes the derivative as before, but the second is V in the form V = 
Zî?=iûf^i- This notation is closer to that commonly employed in hand 
work, but cannot be processed further in REDUCE without introducing 
additional internal notation. 
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OFF EXP;OFF NAT; 

OPERATOR HO,Hl,HOB,HIB,HOS,HIS, 
HO!',H1!' ,HOB!' ,H1B!',HOS! »,H1S!', 
HO !",HI !",HOB !",HIB !",HOS !",HIS !", 
B1,B2,B3,F; 

DEFINE C1=B1(El,E2,E3),C2=B2(El,E2,E3),C3=B3(El,E2,E3); 

FACTOR HO,H1,HOB,H1B,HOS,H1S, 
HO!',H1!',HOB!•,H1B!',HOS!' ,H1S! ' , 
HO !",HI !",HOB !",HIB !",HOS !",HIS !"; 

ORDER HO,Hl,HOB,HIB,HOS,HIS, 
HO!',H1!•,HOB!',H1B!',HOS!•,H1S!', 
HO !M,HI !",HOB !",HIB !",HOS !",HIS !"; 

FACTOR V1,V2,V3; 

ORDER V1,V2,V3; 

LET HO(0)»l, 
HOP(0)-0, 
HO!"(0)-0, 
HOB(0)-0, 
HOB!'(0)-l, 
HOB!"(0)«0, 
HOS(0)-0, 
HOS!'(0)«0, 
HOS!"(0)»l, 

HO(l)-0, 
HO!»(l)-0, 
•HO!"(l)-0, 
HOB(l)«0, 
HOB!'(1)»0, 
HOB!"(l)-0, 
HOS(l)«0, 
HOS!'(l)-0, 
HOS!"(l)-0, 

H1(0)«0, 
Hl!*(0)-0, 
H1!"(0)«0, 
H1B(0)«0, 
H1B!'(0)«0, 
HlB!"(0)-0, 
H1S(0)«0, 
HIS! *(0)-0, 
HlS!"(0)-0, 

HKD-l, 
Hl!»(l)-0, 
H1!"(1)«0, 
H1B(1)»0, 
HIBI'CD-l, 
H1B!"(1)«0, 
H1S(1)»0, 
HlS!'(l)-0, 
H1S!"(1)-1; 

FOR ALL X LET DF(HO(X),X)=HO!'(X), DF(H1(X),X)-H1!'(X), 
DF(HOB(X),X)=HOB!'(X), DF(H1B(X),X)=H1B!'(X), 
DF(HOS(X),X)=HOS!'(X), DF(H1S(X),X)-H1S!'(X), 
DF(HO!'(X),X)=HO!u(X), DF(H1!'(X),X)»H1!"(X), 
DF(HOB!'(X),X)=HOB!"(X),DF(H1B!'(X),X)=H1B!"(X), 
DF(H0S!'(X),X)=H0S!,,(X),DF(H1S!,(X),X)=H1S!"(X); 

FOR ALL A,B,C LET 

DF(B1(A,B,C),A)=0,DF(B1(A,B,C),B)=1,DF(B1(A,B,C),C)«-1, 
DF(B2(A,B,C),A)=-1,DF(B2(A,B,C),B)=0,DF(B2(A,B,C),C)-1, 
DF(B3(A,B,C),A)=l1DF(B3(A,B,C),B)=-l,DF(B3(A,B,C),C)-0; 

FOR ALL A1,A2,A3,N,E LET DF(F(N,Al,A2,A3),E) 
-(1-DF(A1,E)**2) *DF(A2,E) 
-(1-DF(A2,E)**2) *DF(A3,E) 
-(1-DF(A3,E)**2) *DF(A1,E) 

*F(10*N+1,A1,A2,A3) 
*F(10*N+2,A1,A2,A3) 
*F(10*N+3,A1,A2,A3). 

S1:-C3/(1-C1); 

HO(Sl) 
H1(S1) 
HOB(Sl) *(1-C1) 
111B(S1) *(1-C1) 
HOS(Sl) *(1-C1)**2 
HlS(Sl) *(1-C1)**2 

S2:-C1/(1-C2); 

P2:- H0(S2) 
-»• H1(S2) 
+ H0B(S2) *(1-C2) 
+ H1B(S2) *(1-C2) 
+ H0S(S2) *(1-C2)**2 
+ H1S(S2) *(1-C2)**2 

S3:-C2/(l-C3); 

P3:- H0(S3) 
+ H1(S3) 
+ HOB(S3) *(1-C3) 
+ H1B(S3) *(1-C3) 
+ H0S(S3) *(1-C3)**2 
+ H1S(S3) *(1-C3)**2 

*F(0,C1,1-C1,0) 
*F(0,C1,0,1-C1) 
*F(1,C1,1-C1,0) 
*F(1,C1,0,1-C1) 
*F(11,C1,1-C1,0) 
*F(11,C1,0,1-C1); 

*F(0,0,C2,1-C2) 
*F(0,1-C2,C2,0) 
*F(2,0,C2,1-C2) 
*F(2,1-C2,C2,0) 
*F(22,0,C2,1-C2) 
*F(22,1-C2,C2,0); 

*F(0,1-C3,0,C3) 
*F(0,0,1-C3,C3) 
*F(3,1-C3,0,C3) 
*F(3,0,1-C3,C3) 
*F(33,1-C3,0,C3) 
*F(33,0,1-C3,C3); 

D2P1:=DF(P1,E2); D22P1:-=DF(D2P1,E2); 

H0(S2) 
H1(S2) 
H0B(S2) *(1-C2) 

*SUB(C1-0,C3-1-C2,P1) 
*SUB(C1*1-C2,C3»0,P1) 
*SÜB(C1«0.C3-1-C2,D2P1) 

OOOl 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 

0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
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FOR ALL A,B,C LET 
F(3 ,A ,B ,C) 
F (13 ,A ,B ,C) 
F(23 ,A ,B ,C) 
F(31 ,A,B ,C) 
F(32 ,A ,B ,C) 
F(33 ,A,B ,C) 

F(21 ,A ,B ,C) 

SHUT CMP2; 

-
» 
« 
» 
» 
• 

• 

- F ( 1 , A , B , C ) - F ( 2 , A , B , C ) , 
- F ( 1 1 , A , B , C ) - F ( 1 2 , A , B , C ) , 
- F ( 2 1 , A , B , C ) - F ( 2 2 , A , B , C ) , 
- F ( 1 1 , A , B , C ) - F ( 2 1 , A , B , C ) , 
- F ( 1 2 , A , B , C ) - F ( 2 2 , A , B f C ) , 

F (11 ,A ,B ,C)+F(12 ,A ,B ,C) 
+F(21 ,A,B,C)+ 

F ( 1 2 , A , B , C ) ; 

+ H1B(S2) *(1-C2) *SUB(C1=1-C2,C3-0,D2P1) 0083 
• H0S(S2) * (1 -C2)**2 *SUB(C1=0,C3=1-C2,D22P1) 0084 
• n i S ( S 2 ) * (1 -C2)**2 *SUB(C1»1-C2,C3»0,D22P1); 0085 

0086 
P2BP1:«P1+P2-P2P1; 0087 

0088 
SHUT CMPljOUT P2BP1;P2BP1:»P2BP1;SHUT P2BP1;0UT CMP2; 0089 

0090 
D3P2BP1:-DF(P2BP1,E3); D33P2BP1:«DF(D3P2BP1,E3); 0091 

0092 
P3P2BP1:- 0093 

H0(S3) *SUB(C1«1-C3,C2-0,P2BP1) 0094 
+ H1(S3) *SUB(C1«0,C2=1-C3,P2BP1) 0095 
+ H0B(S3) * (1-C3) *SUB(C1=1-C3,C2=0,D3P2BP1) 0096 
•f H1B(S3) * (1-C3) *SUB(C1=0,C2=1-C3,D3P2BP1) 0097 
+ H0S(S3) * (1-C3)**2 *SUB(C1=1-C3,C2*0,D33P2BP1) 0098 
• H1S(S3) * (1 -C3)**2 *SUB(C1»0,C2=1-C3,D33P2BP1); 0099 

0100 
P3BP2BP1:-P3+P2BP1-P3P2BP1; 0101 

0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 

,C)+F(22,A,B,C), 0110 
Olli 
0112 
0113 
0114 

OUT INTP.RED;INTP:-P3BP2BP1;SHUT INTP.RED; 0115 
0116 

LET C1-B1,C2«B2,C3-B3; 0117 
0118 

FOR ALL A,B,C,N LET F(N,A,B,C)«F(N,A*V1+B*V2+C*V3); 0119 
0120 

OUT INTP.HMN;ON NAT;INTP:«P3BP2BP1;SHUT INTP.HMN; 0121 
0122 

TABLE 3. REDUCE SOURCE CODE. 

INTP :- - ((B3 - 1)*(B3+F(2,V1)*H1B,( - B3 + 1) - (F(11,V1) - F(22, 0001 
0002 

VI) + 2*F(13,V1) + F(33,V1))*(B3*H1S'( - B3 + 1) + 0003 
0004 

2*H1S( - B3 + 1)) + H0S( - B3 + 1)*(F(221,V3) - F( 0005 
0006 

122,V3)) - H1B( - B3 + 1)*F(23,V1) • H1B( - B3 + 1) 0007 
0008 

*(F(2,V1) - F(13,V1) - F(33,V1)) - H0B( - B3 + l)*(F( 0009 
0010 

12,V3) - F(21,V3)) + H1S( - B3 + 1)*(2*F(133,V1) + 0011 
0012 

F(333,V1) - F(223,V1) + F(113,V1)) + F(1,B3*V3 - VI 0013 
0014 

*(B3 - 1)) + F(2,B3*V3 - V1*(B3 - 1)) + (F(1,V1) + F(3 0015 
0016 

,V1))*(B3*H1B*( - B3 + 1) + H1B( - B3 + 1)))*K0B(( 0017 
0018 

- B2)/(B3 - 1)) •• (B3 - 1)*(H0B(( - B2)/(B3 - 1))*F(3 0019 
0020 

,B3*V3 - V1*(B3 - 1)) + H1B(( - B2)/(B3 - 1))*(F(1,B3* 0021 
0022 

V3 - V2*(B3 - 1)) + F(2,B3*V3 - V2*(B3 - 1))) + HIB 0023 
0024 

2 0025 
(( - B2)/(B3 - 1))*F(3,B3*V3 - V2*(B3 - 1))) + (B3 *(( 0026 

0027 
F(1,V1) + F(3,V1) + F(2,V1))*H1B"( - B3 + 1) - 0028 

0029 
H1S"( - B3 + 1)*(F(11,V1) - F(22,V1) + 2*F(13,V1) 0030 

0031 
+ F(33,V1))) - 2*B3*(F(11,V1)*H1S'( - B3 + 1) 0032 

0033 
- F(22,V1)*H1S'( - B3 + 1) + F(13,V1)*(H1B'( - B3 0034 

0035 
+ 1) + 2*H1S'( - B3 +1)) + F(33,V1)*(H1B'( - 0036 

0037 
B3 • 1) + H1S'( - 33 + 1)) + H0S'( - B3 + l)*F( 0038 

0039 
122,V3) - 2*F(133,V1)*H1S'( - B3 • 1) - F(333,V1)* 0040 

0041 
H1S'( - B3 • 1) + F(12,V3)*H0B'( - B3 + 1) - F(21, 0042 

0043 



P. ALFELD AND R. E. BARNHILL 

V3)*H0B'( - B3 + 1) + F(23,V1)*H1B'( - B3 + 1) + 0044 
0045 

H1S'( - B3 + 1)*F(223,V1) - H1S»( - B3 + 1)*F(113» 0046 
0047 

VI)) - 2*F(11,V1)*H1S( - B3 + 1) + 2*F(22,V1)*H1S( 0048 
0049 

- B3 + 1) - 4*F(13,V1)*H1S( - B3 + 1) - 2*F(33,V1)* 0050 
0051 

H1S( - B3 + 1) + F(22,B3*V3 - V1*(B3 - 1)) + 2*F(221, 0052 
0053 

V3)*(B3*H0S'( - B3 + 1) + 2*H0S( - B3 + 1)) - H0S( - 0054 
0055 

B3 + 1)*(4*F(122,V3) - F(2211,V3) + F(1122,V3)) - (2*F 0056 
0057 

(13.V1) + 2*F(33,V1) - F(133,V1) - F(333,V1))*H1B( 0058 
0059 

- B3 • 1) - 2*H1B( - B3 + 1)*F(23,V1) + H1B( - B3 + 1 0060 
0061 

)*F(233,V1) - (2*F(12,V3) + F(112.V3))*H0B( - B3 + 1) 0062 
0063 

+ 2*H0B( - B3 + 1)*F(21,V3) + H0B( - B3 • l)*F(211,V3 0064 
0065 

) + F(11,B3*V3 - V1*(B3 - 1)) + F(2233,V1)*H1S( - B3 0066 
0067 

+ 1) - 2*H1S( - B3 + 1)*F(1333,V1) - H1S( - B3 + 1)*F 0068 
0069 

(3333,VI) - H1S( - B3 + 1)*F(1133,V1) + 4*H1S( - B3 + 0070 
0071 

1)*(2*F(133,V1) + F(333,V1) - F(223,V1) + F(113,V1)) 0072 
0073 

+ 2*F(12,B3*V3 - V1*(B3 - 1)))*H0S(( - B2)/(B3 - 1))* 0074 
0075 

2 2 0076 
( - B3 + 1) - H0S(( - B2)/(B3 - 1))*( - B3 + 1) *F(33,B3 0077 

0078 
2 0079 

•V3 - V1*(B3 - 1)) - ( - B3 + 1) *H1S(( - B2)/(B3 - 1))*( 0080 
0081 

F(33,B3*V3 - V2*(B3 - 1)) - F(22,B3*V3 - V2*(B3 - 1)) 0082 
0083 

- 2*F(21,B3*V3 - V2*(B3 - 1)) - F(11,B3*V3 - V2*(B3 0084 
0085 

- 1))) + (B2 - 1)*(F(1,B2*V2 - V1*(B2 - 1)) + F(3, 0086 
0087 

B2*V2 - V1*(B2 - 1)))*H1B(( - B1)/(B2 - 1)) • (B2 - 1) 0088 
0089 

*(H1B(( - B1)/(B2 - 1))*F(2,B2*V2 - V1*(B2 - 1)) + H0B(( 0090 
0091 

- B1)/(B2 - 1))*(B2*(F(1,V2)*H0B'( - B2 + 1) + F(l, 0092 
0093 

V3)*H1B'( - B2 + 1) + F(0,V2)*H0'( - B2 + 1) + FC 0094 
0095 

0,V3)*H1'( - B2 + 1) + F(11,V2)*H0S'( - B2 + 1) 0096 
0097 

+ F(11,V3)*H1S'( - B2 • 1)) + H0B( - B2 + l)*(F( 0098 
0099 

1.V2) + F(13,V2)) - H1B( - B2 + 1)*(F(12,V3) - F( 0100 
0101 

1.V3)) + H0( - B2 + 1)*F(3,V2) - Hl( - B2 + 1)*F( 0102 
0103 

2.V3) + H0S( - B2 + l)*(2*F(ll,V2) * F(113,V2)) - 0104 
0105 

H1S( - B2 + 1)*(F(112,V3) - 2*F(11,V3)) + F(2,B2*V2 0106 
0107 

- V3*(B2 - 1)))) - (F(0,B2*V2 - V3*(B2 - 1)) - H0B( 0108 
0109 

- B2 + 1)*F(1,V2) - H1B( - B2 + 1)*F(1,V3) - H0( - B2 0110 
Olii 

+ 1)*F(0,V2) - Hl( - B2 + 1)*F(0,V3) - HOS( - B2 + 1) 0112 
0113 

*F(11,V2) - H1S( - B2 + 1)*F(11,V3))*H0(( - B1)/(B2 - 0114 
0115 

2 0116 
1)) + (B2 *(F(1,V2)*H0B"( - B2 + 1) + F(l, V3) *H1B"*( - 0117 

0118 
B2 + 1) + F(0,V2)*H0"( - B2 + 1) + F(0,V3)*H1"( - 0119 

0120 
B2 + 1) + F(11,V2)*H0S"( - B2 + 1) + F(ll,V3)*H1S"( 0121 

0122 
- B2 + 1)) - 2*B2*(F(12,V3)*H1B'( - B2 + 1) + F( 0123 

0124 
112,V3)*H1S'( - B2 + 1) + F(0,V2)*H0'( - B2 + 1) + 0125 

0126 
F(0,V3)*H1'( - B2 + 1) - F(11,V2)*H0S'( - B2 + 1) 0127 

0128 
- F(11,V3)*H1S'( - B2 + 1) - HP'( - B2 + 1)*F(3,V2 0129 
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0130 
) + Hl'( - B2 + 1)*P(2,V3) - H0S'( - B2 + l)*F(U3, 0131 

0132 
V2) - F(13,V2)*H0B'( - B2 + 1)) + F(122,V3)*H1B( - 0133 

0134 0135 
0136 

B2 + 1) - 2*F(12,V3)*H1B( - B2 • 1) • 2+H0B( - B2 + 1) 

*F(13.V2) + H0B( - B2 + 1)+F(133,V2) + H0( - B2 + 1)*F 0137 
0138 

(33.V2) + Hl( - B2 + 1)*F(22,V3) + H0S( - B2 + l)*(2*F 0139 
0140 

(11,V2) • 4*F(113,V2) + F(1133,V2)) + H1S( - B2 + 1 0141 
0142 

)*(F(1122,V3) - 4*F(112,V3) + 2*F(U,V3)) - F(22,B2*V2 0143 
0144 

2 0145 
- V3+(B2 - 1)))*H0S(( - B1)/(B2 - 1))*( - B2 + 1) + 0146 

0147 
2 0148 

( - B2 • 1) *(F(11,B2*V2 - V1*(B2 - 1)) - F(22,B2*V2 - VI 0149 

m an 
0150 
0151 
0152 

*(B2 - 1)) + 2*F(13,B2*V2 - V1*(B2 - 1)) • F(33,B2*V2 

- V1*(B2 - 1)))*H1S(( - B1)/(B2 - 1)) + (Bl - 1)*(H0B 0153 
0154 

(( - B3)/(B1 - 1))*F(1,B1*V1 - V2*(B1 - 1)) • H1B(( - 0155 
0156 

B3)/(B1 - 1))*F(1,B1+V1 - V3*(B1 - 1))) - H0(( - B3 0157 
0158 
0159 
0160 
0161 
0162 

2 2 0163 
)*( - Bl • 1) *F(11,B1*V1 - V2*(B1 - 1)) - ( - Bl + 1) * 

)/(Bl - 1))*F(0,B1*V1 - V2*(B1 - 1)) - Hl(( - B3)/(B1 

- 1))*F(0,B1*V1 - V3*(B1 - 1)) - H0S(( - B3)/(B1 - 1) 

0164 
0165 
0166 
0167 
0168 
0169 
0170 
0171 
0172 

H1S(( - B3)/(B1 - 1))'*F(U.B1*V1 - V3*(B1 - 1)) + H0(( -

B2)/(B3 - 1))*(F(2,V1)*H1B( - B3 + 1) - (F(11,V1) - F( 

22,VI) + 2*F(13.V1) + F(33,V1))*H1S( - B3 + 1) + 

H1B( - B3 + 1)*(F(1,V1) * F(3,V1)))) 

TABLE 4. Listing of Q = P3 ® P2 © Pi. 

5. Data requirements, compatibility, and precision. 

5.1. Data requirements. Table 5 lists the data needed for the formulas 
in Table 4. The columns of Table 5 correspond to the edges eh e2, e$, 
and the vertices Vh K2, F 3 of T. The rows correspond to values of F and 
some of its directional derivatives. 

The entries in Table 5 consist of the letter x if the data are needed and 
a blank or a hyphen otherwise. Obviously, data requirements along edge 
e{ imply the same requirements at vertices Vj and Vk (where {/, j , k} = 
{1, 2, 3}). However, the vertex data requirements in Table 5 correspond 
to terms in Table 4 that are evaluated at the indicated vertices only. In 
any implementation, these data and any vertex data implied by edge 
data need to be supplied consistently. 

Note that, on the edges, only directional derivatives of order up to two 
are required. At the vertices, some higher derivatives are also needed. 

5.2. Compatibility conditions. Many bivariate interpolation schemes, 
at least in their early versions, exhibit the desired interpolation properties 
only if the primitive function F satisfies certain compatibility conditions. 
These typically require that certain mixed directional derivatives commute. 
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F 
F! 
F2 

Fn 

F12 

F22 

F112 

Fus 
F122 

F133 

F211 

F221 

F223 

F233 

F333 

^1122 

^1133 

^1333 

^2211 

^2233 

^3333 

ei 

X 

-
X 

-
-
X 

_ f 2 _ 
X 

X 

-
X 

-
-

_ f 3 _ _ 
X 

X 

-
X 

-
-

Vi 

-
-
-
-
-
-

-
X 

-
X 

-
-
X 

X 

X 

-
X 

X 

-
X 

X 

Vi 

X 

X 

X 

X 

X 

X 

-
X 

-
X 

-
-
-
-
-
-
X 

-
-
-
-

Vs 
X 

X 

X 

X 

X 

X 

X 

-
X 

-
X 

X 

-
-
-
X 

-
-
X 

-
-

TABLE 5. Data Requirements for the Interpolant Q. 

The scheme presented here was differentiated, using the REDUCE 
syntax, and then evaluated on edges. It turned out that Q = P 3 ® P2 ® Pi 
interpolates to F and all of its directional derivatives up to order 2 on all 
three edges unconditionally. 

Some terms do arise, however, that may not be immediately recognized 
as vanishing. 

For example, using the syntax established in Table 3, we find that for 
s = 63F3 + (1 - b3)Vi 

where 

R = ^223(^1) - 2F133(V1) - i W i ) - ^113(^1)-

However, since gradient and Hessian of F are continuous we have, by 
(2.4) that 
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Thus 

/? — d(^22 — 2F13 — F33 — Fn) n/>i 

< * < W . ( J ) , WL ( s ). 
dei 3̂ x 

No compatibility condition arises for this or any other directional deriva
tive of order up through 2. 

5.3. Polynomial precision. The precision set of any operator P is the set 
of functions F, for which P is exact, i.e., PF = F. 

Given a REDUCE version of ß = Pz ® P2 0 Pi it is straightforward 
to apply Q to any polynomial. It is useful to note that since bi and b2 are 
linear in x and >>, and since £3 = 1 — bi — ò2>

 anY polynomial in x and 
y of degree JV can be expressed as a polynomial in bi and 62 of degree N 
and vice versa. 

By applying Q to basic polynomials in bx and 62>
 w e find that the 

precision set of Q includes all polynomials of degree through eight. Q is 
also precise for some polynomials of higher degree. 

At this point only, in all of the work described here, explicit expressions 
for the cardinal function defined in (2.6) are needed. These cardinal 
functions are given by : 

h0(x) = -6*5 + 15x4 - 10x3 + 1, 
hx(x) = 6x5 - 15x4 + 10x3, 
h0(x) = - 3JC5 + 8x4 - 6x3 + x, 

hx(x) = - 3 x 5 + 7 x 4 - 4x3, 
hQ(x) = -(l/2)x5 + (3/2)JC4 - (3/2)x3 + (Iß)**, 
hx(x) = (l/2)jfi - x4 4- (l/2)x3. 

APPENDIX: TWO DISCRETE C2 INTERPOLANTS 

PETER ALFELD 

Al. Introduction, This appendix has two purposes: it describes some 
general techniques for constructing approximations of transfinite infor
mation from discrete data, and, more narrowly, it describes two particular 
discretizations of the transfinite scheme described in the body of this 
paper. 

The full data requirements of the transfinite scheme are given in Table 
5. Thus the information needed to define the transfinite interpolant 
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consists of position, and one particular first and one second order deriva
tive along edges. Also required are the values of certain derivatives at 
the vertices of the general triangle. These, however, can be derived from 
the transfinite information by differentiating tangentially and taking 
suitable combinations of derivatives. For example 

(where Fn is required along edge e2), or 

(where Fx is required along edge e31 andi^ can be computed by tangential 
differentiation of position). 

In this Appendix, it is described how the required transfinite informa
tion can be approximated from given discrete data while preserving the 
global C2 smoothness. §A2 describes the derivation of a discrete scheme 
with quintic precision, §A3 describes a similar scheme with reduced data 
requirements, but only with cubic precision, and §A4 contains some simple 
numerical examples. 

A2. A discrete scheme with quintic precision. A discrete scheme that is 
precise for all quintics can be obtained by using the stencil given in 
Figure 2. The notation means that function values, gradients, and Hes
sians must be supplied at the vertices of the general triangle, in addition 

FIGURE 2. Stencil required for scheme 1. 
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to first order perpendicular cross-boundary derivatives at the midpoints 
of the edges, and second-order perpendicular cross-boundary derivatives 
at the (arbitrarily chosen) points g 0 ••= {V{ + 3 * Vj)/4 and QJi9 where z, 
j = 1, 2, 3, /andjdistinct. 

CONSTRUCTION OF SCHEME 1. 

STEP 1. Approximate the required positional data on each side of the 
triangle by the univariate quintic polynomial interpolating to function 
values and first and second order tangential derivatives at the vertices. 
These univariate data can be computed from the data given at the vertices, 
and the univariate problem can be solved uniquely. 

We exemplify the analysis by considering edge ex. Only minor modifica
tions will be required for the other edges. In order not to become over
burdened by the notation of the function involved, it will contain no 
explicit reference to the edge. 

The transfinite scheme requires an approximation of f(b2V2 + 
(1 - b2)V3). Denote the approximation by (f>(b2) = X^=o aM- T n e s i x 

coefficients of <f> are defined by the linear system: 

#0) = F(V3), #1 ) = F(V2\ 

-0'(O) = F^Vs) = g(V3)Tel9 -0 ' (1) = F(V2) = g(V2Vel9 

f(0) = Fn(V3) = e{H(V3)eh f(l) = F12(F5) = e{H(V2)ei. 

Here, g and H denote the gradient and the Hessian of the primitive 
function F, respectively. Both are given at the vertices. Note the negative 
sign in the equations specifying the first derivatives. It occurs because the 
transfinite scheme uses the barycentric coordinate b2 as its basic variable, 
whose derivative in the direction of edge ex is — 1. A similar sign reversal 
occurs on edge £3, but not on edge e2. 

STEP 2. Approximate the required first order cross-boundary derivative 
on each edge by the univariate quartic polynomial interpolating to the 
value of that derivative at the vertices and at the midpoint of the given 
edge, and the tangential derivatives of the cross-boundary derivative at 
the vertices. As in step 1, this process is well-defined by the given discrete 
data. 

Consider again edge e±. The transfinite scheme requires an approxima
tion of F2(b2V2 + (1 — b2)V3). Denote the approximation by <fi2(b2) = 
E*=off2,f*l- The following four equations for the coefficients of §2 are 
readily derived: 

&(0) = F2(V3) = g(V3Ve2, çi2(l) = F2(V2) = g(V2Ye2, 

- # ( 0 ) = F21(V3) = ejH(V3)el9 -0 ' (1) = F21(V2) = e2H(V2)ei. 
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The fifth condition is çS2(l/2) = F2(M), where M = (V2 + F3)/2 is the 
midpoint of e1? and the right hand side has to be computed from the 
given perpendicular cross-boundary derivative at M and the derivative 
of (f>(b2) in the direction of ev Let Fn denote the given perpendicular 
cross-boundary derivative at M, and let nx be the normal to ev 

Then the derivatives satisfy Eq = v where E = [/il9 e^7, # is the gradient 
of the interpolant at M, and v = [Fn9 -<f>'(\/2)]T. Solving for q, and 
taking the inner product with e2 yields F2(M) = eÇE^v ,which supplies 
the required right hand side of the above linear equation. 

STEP 3. Approximate the required second order cross-boundary deriva
tive on each edge by the univariate cubic polynomial interpolating to the 
values of that derivative at the four points implied by the stencil. This 
process is also well-defined. 

The analysis is similar to that in step 2. At the endpoints of edge el9 two 
conditions are readily obtained. At each of the points Q23 and g3 2 three 
second order directional derivatives are available : The second order tan
gential derivative (j)"{b2), the tangential derivative of the cross-boundary 
derivative — <f>^(b2), and the second order perpendicular cross-boundary 
derivative given as data. These three derivatives determine the Hessian 
of the interpolant at Ö23 an<^ 632» which in turn determines the required 
second order cross-boundary derivative. 

STEP 4. Approximate the required higher order derivatives at the 
vertices by suitably differentiating and evaluating the polynomial ap
proximations of the transfinite information obtained in steps 1, 2, 3, 
proceeding as indicated by the examples in the introduction. 

The following theorem states formally that the interpolation scheme 
so obtained is C2 and has quintic precision. 

THEOREM 1. For any triangulation, and for any set of data implied by 
stencil 1 on each triangle: 

(a) The interpolation scheme 1 defined in the above four steps yields a 
globally twice continuously differentiable surface. 

(b) If the data are obtained by differentiating and evaluating a primitive 
function F, then the interpolant to F will equal F if F is a bivariate polynomial 
of degree up to 5. 

PROOF. For part (a) of the theorem, first note that the scheme is arbi
trarily often differentiable in the interior of triangles. On each edge of 
the triangulation, all function values, and values of first and second order 
derivatives exist and are determined uniquely by the discrete data given 
on that edge. Moreover, the data entering the transfinite scheme are in
dependent of the orientation of the triangle. Thus positions, and first 
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and second order derivatives, match across edges, i.e., the interpolant is 
globally twice continuously differentiable. 

For part (b) of the theorem, first note that if the underlying primitive 
function is a quintic bivariate polynomial, then function values along 
edges reduce to univariate quintic polynomials, and any first and second 
order directional derivatives reduce to quartic and cubic univariate 
polynomials, respectively. The above construction process, being based 
on univariate interpolation by polynomials of suitable degree, is exact 
for such functions. 

Thus, if the primitive function is a quintic polynomial, then the discrete 
scheme yields an interpolant that is identical to that given by the trans-
finite scheme. In [1], the transfinite scheme was shown to be exact for 
polynomials of degree up to 8. A fortiori, it will be exact for polynomials 
of degree up to 5, completing the proof of the theorem. 

A3. A discrete scheme with cubic precision. A discrete scheme similar 
to that derived in §2 can be obtained from the following stencil : 

FIGURE 3. Stencil required for scheme 2. 

Thus the discrete data comprise only values of position, gradient and 
Hessian at the vertices of the triangles. A user would not have to supply 
values of directional derivatives on edges of the triangles. Since there 
are fewer data interpolated to, the precision of the scheme is reduced 
and only polynomials of degree up to three will be reproduced exactly. 

CONSTRUCTION OF SCHEME 2. 

STEP 1. As in scheme 1, approximate the required positional data on 
each side of the triangle by the univariate quintic polynomial interpolating 
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to function values and first and second order tangential derivatives at 
the vertices. 

STEP 2. To be consistent with the quintic approximation of position, 
the approximation of any cross-boundary derivative along an edge must 
be quartic, involving five degrees of freedom. The discrete data provide 
only four conditions: values and tangential derivatives of the cross-
boundary derivative at each of the vertices. This naturally leads to making 
up the missing condition by requiring that some cross-boundary derivative 
be cubic. To ensure global differentiability the direction of that derivative 
must be shared between neighboring triangles. This rules out direction 
defined by other edges of a triangle. Instead, we require that the first 
order perpendicular cross-boundary derivative be cubic. As in §2, we 
exemplify the analysis by considering edge ex\ We need to construct 
^2(^2) = 2 to a2,i hi, which is the approximation of F2(b2v2 + (1 — ^2)̂ 3) 
required by the transfinite scheme. The values of <f>2, and of its first order 
derivatives in the direction of edge e1 at v2 and v3, are determined by the 
given discrete data. Similarly as in Step 1 of §2, the perpendicular cross-
boundary derivative turns out to be given by N(b2) = aTv where a = 
E~lni =: [al9 a2]

T, E= [el9 e2]
T, v = [-fifa), (b2)]

T, and nx is perpendic
ular to ei (it need not be normalized). 

The function N is a quartic in b2, whose leading coefficient is given by 
y2A = — 5 axa5 + a2a2>4 which should equal zero in order for the per
pendicular cross-boundary derivative on edge e1 to be cubic. 

Thus we require that a2A = 5 a^/a^ A simple calculation shows that 
a2 cannot be zero for a non-degenerate triangle. 

STEP 3. To construct the approximation of a second order cross-
boundary derivative on an edge, we proceed essentially as in Step 2 for 
the first order derivative. In general, any second order derivative on an 
edge will be a cubic polynomial, but we are given only two data implied 
by the discrete data at the vertices. The remaining two degrees of freedom 
are removed by requiring that the second order perpendicular cross-
boundary derivative along the edge be linear. On edge e1? we proceed as 
follows : Writing 0:22(̂ 2) = HÌ=o &22,i H for the required approximation of 
F22(b2V2 + (1 — b2)V^), we obtain, after some manipulation, 0:22,3 = 
4 ax( - 5 axa5 + 2 a2a2A)/al and a22>2 = 6 a^ - 2 axa^ + ^2^2,3)^2- I n 

both Steps 2 and 3, minor adjustments have to be made on edges e2 

and e3. 

STEP 4. As for scheme 1, the required higher derivatives at vertices are 
obtained by suitably differentiating the expressions obtained in Steps 
1, 2, and 3. The properties of scheme 2 are stated formally in the following 
Theorem. 
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THEOREM 2. For any triangulation, and for any set of data implied by 
stencil 2 on each triangle : 

(a) The interpolation scheme 2 defined in the above four steps yields a 
globally twice continuously differentiable surface. 

(b) if the data are obtained by differentiating and evaluating a primitive 
function F, then the interpolant to F will equal F if Fis a bivariate polynomial 
of degree up to 3. 

PROOF. The proof is similar to that of Theorem 1. For part (b) of the 
theorem, observe that the discrete scheme yields the exact transfinite 
information only if the primitive function is a bivariate polynomial of 
degree at most 3 (which has linear second order derivatives). 

A4. Numerical results. Using the symbol manipulation language 
REDUCE [3], the discrete schemes 1 and 2, as well as the transfinite 
scheme, were implemented into a FORTRAN code and run for some 
test examples where an underlying primitive function was known. The 
data required by the schemes were generated from the primitive function 
and were exact. 

The domain in 2-space is sketched in Figure 4. There are four triangles 

P 3 50 P 4 100 y 

FIGURE 4. Domain picture. 

(/\ = [1, 49F, P* « [99,47F, P3 = [3, 3]r, P4 = [90, If, P5 = [20, 24]r). 
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covering a quadrilateral region. The points were chosen so as to avoid 
any symmetry or edges parallel to coordinate axes which might introduce 
artifacts that are not in general present in an interpolation problem. 
The primitive function was chosen to be a half sphere with radius r 
centered at the origin, i.e., F(x,y) = <s/r2 — x2 — y2, for several values 
of r. Again, the underlying principle in choosing the function F was not 
to introduce any artifacts due to F's having geometrical properties cor
responding to properties of the domain, or to F's being a polynomial or 
a rational function. 

The parameter r is a measure of the difficulty of the approximation 
problem. The point P2 lies at distance 109.6 from the origin, and as r 
approaches that value, the quality of the approximation deteriorates. 
Table 2 below gives the maximum relative error for the three interpolation 
schemes, and for r = 120, 150, 200. 

r = 120 150 200 

transfinite scheme: 4.8E-2 4.6E-5 2.8E-7 
discrete scheme 1: 5.4E-2 1.1E-3 5.5E-5 
discrete scheme 2: 5.8E-2 1.2E-3 6.6E-5 

TABLE 2. Numerical Results. 

Note that in this example scheme 2 with quintic precision yields results 
that are only slightly more accurate than those given by scheme 2 with 
cubic precision. On the other hand, the loss in accuracy due to approxi
mating transfinite information by discrete data is substantial. Of course, 
in practice transfinite information is usually unavailable so that the 
superior accuracy of the transfinite scheme cannot be exploited. As one 
would expect, the accuracy of the approximating interpolant deteriorates 
as the radius of the sphere defined by F decreases, and the edge of the 
sphere approaches the boundary of the domain of the interpolant. The 
accuracy of the results is remarkable in view of the fact that a substantial 
part of the domain of F is covered by only four triangles. 

Conclusions. We have developed a C2 interpolant to C2 transfinite data 
defined over triangles. 

In the appendix, two discrete bivariate interpolation schemes derived 
from a transfinite scheme have been described. Their relevant properties 
are the following: 

1. The schemes require an underlying triangulation. 
2. The interpolants are globally twice continuously differentiable. 
3. The schemes are local, i.e., the information needed to evaluate the 
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interpolant at a given point is restricted to the triangle containing that 
point. 

4. Only derivatives of order up through two are required as data. 
5. The schemes are of quintic and cubic precision, respectively. 
6. Limited numerical experience suggests that the gain in accuracy in 

going from cubic to quintic precision is marginal. 
7. The cubic scheme requires data at vertices only. 
It appears from the above, particularly in view of points 6 and 7, that 

scheme 2 is preferable over scheme 1. Note that using data on vertices 
only has the convenient consequence that the user does not have to be 
aware of the structure of the triangulation. Indeed, if the triangulation is 
generated by a black box routine, the user does not even need to know 
of its existence. A drawback of both schemes is their computational com
plexity. At present, only experimental codes exist, which have to be 
modified for each new problem. 
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