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ON SOME PROPERTIES OF DOMAINS OF
INTEGRAL OPERATORS

P. SZEPTYCKI

SUMMARY. A construction of enlarging solid topological spaces
of measurable functions is discussed. It is shown that both the
domain and the extended domain of an integral operator are in-
variant under this construction.

1. Introduction. Let X be a measure space, L9 = L9(X) be the vector
space of measurable finite a.e. scalar-valued functions on X and let 4 = L0
be a topological vector space. Denote 4% = {ue L% {v € 4; |v(x)| <
|u(x)| a.e.} is bounded in 4}. If A4 is solid then 4 = A%, otherwise it may
happen that 4* = {0}. If A is a solid normed space then A4* is a space
defined by a function norm in the sense of [1].

In this paper we study the “functor”* as applied to the domain @
and the extended domain 9 of an integral operator K. The conclusion
is that both domains are preserved by #, (Theorem 4.1 and theorem 4.2)
in particular if K is defined on A then it is also defined on A% and if X
extends by continuity to a solid topological vector space A then it also
extends by continuity to A*.

As a preliminary to theorem 4.2 we prove theorem 2.1 which is a new
characterization of the space 9.

Example (4.5) seems to show that Theorem 4.2 is nontrivial; we do
not know a proof of (4.5) which would not involve in one way or another
the idea of that theorem.

The reference [2] is the background of all the results outlined in Section
2.

2. Notation and prelimaries. We assume that X is g-finite, by subsets of
X we mean measurable subsets, the measure on X we denote by dx and
the measure of a set E = X we note by |E|.

By a metric p we shall mean a translation invariant metric and we shall
write p(u) = p(u, 0).

The space L9 of all measurable, scalar valued, finite a.e. functions on X
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has a natural topology of convergence in measure on all subsets of finite
measure. This is a complete vector topology which can be given, e.g.,
by the metric

@1 o) = px(u) = j lul (1 + [u))  dx

where g€ L%, ¢ > 0, [x gpdx = 1.

Above and in what follows we write v = u(x), |u| = |u(x)|, and by
u < voru =< vwe mean the inequalities a.e.

For a subset 4 = L% and u € L% we let

2.2) A, = A, ={ved; v £ u}.

The set A is solid if for every u € A we have L) = A.

A topological (additive) subgroup of L% (in particular a topological
vector subspace) is solid if its topology can be defined by a base of solid
neighborhoods of 0.

A metric p on a subspace 4 = L9 is solid if p(v) < p(u) whenever u,
ve A, lul = |v|.

It is known that solid metrizable vector subspaces of L9 are contin-
uously contained in L9 (see, e.g., [3]); whether this is true without the
hypothesis of metrizability seems to be an open question.

If A c L% and E c X then E is an unfriendly set for A if u|z = 0 for
all u € A, u|z denoting the restriction of u to E.

Recall (see [2]) that if 4 = L0 is a vector subspace of L9 (not necessarily
solid) then there exists a maximal, unique up to sets of measure 0, un-
friendly subset E, for A, also there exist sequences X, | X\E,, v, €4,
such that |v,| > 0 on X,. If 4 is solid then for a choice of X, as above
one can take v, = yx, where yz denotes the characteristic function of E.

For a solid metrizable subspace 4 = L, we denote by A¢ the subspace
of “norm continuous” functions in 4, i.e., 4° = {ue 4; yg, u =40 for
every sequence E, c X s.t. E, | @} where E, | @ means that {E,} is
decreasing and | E,| = 0.

Note that the definition of A¢ is meaningful if 4 is any topological
subspace of L? containing 0. Of course it is possible that A = {0}.

We recall some facts about integral operators (see [2], [3]).

Let Y be another g-finite measure space; in the cases not leading to
confusion we will write L0 = LI(Y).

A Kernel is a function k € L%(X x Y) and the corresponding operator
(transformation) K is given by

(Kix) = | k(x, u)dy,

(2.3)
Dy = {ue L0 K| Jul(x) = j NG )l (D)l dy < 0 ae)
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K is a linear operator from 24 < LY(Y) into LY(X).
On 9y there is a natural solid metric

() ox(u) = pr(¥) + px(IK] |ul)

where py, px are as in (2.1).

With the metric pg, 9 is a complete solid vector space and, by the
closed graph theorem, if 4 =, L%Y) is a complete metrizable vector
subspace of L9 such that 4 = @ then K|,: A —» LI(X) is continuous.

By the dominated convergence theorem one easily verifies the following.

PROPOSITION 2.1. 9% = D.

We assume in what follows that & has no unfriendly sets.
Let ue L% = L9 Y) and define

(2.5)  pxlu) = py(u) + dx(u), dx(u) = sup{px(Kv); v € (Zx)}

where as in (2.2) (2k), = {ve Dk; |v| < |ul} and py, px are as in (2.1),
thus (4% § l, Oox é 1.

gk is a complete solid metric on L9, with this metric L9 is a metric group
(but in general not a metric vector space) which we denote by L0 = LY.

The closure § of 9 in L0 is a solid metric vector space, this is the
extended domain of K.

9 has the following maximality property.

(2.6) (a) There is a (unique) continuous operator K: 9y — L9(X) such
that K|,, = K.

(2.7) (b) If A4 is a solid topological vector subspace of L9, if 9, N 4
is dense in 4 and if there is a continuous extension K, of K to A4 then
A c Yy and K4 = K|,

PROPOSITION 2.2. 9% = Dg.

ProoF. This is an immediate consequence of Prop. 2.1 and of the
following general statement. If A = B are two solid metric subspaces of
L® with dense and continuous inclusion and if 4 = 4¢ then B = Be.
Indeed, if p,4, pp are solid metrics defining the topologies on A and
B, fue Band if E, | @, then for every ¢ > 0choose ve A4 such that
ps(u — v) < ¢/2 and write

o8(xe, %) < ps(xE,v) + p8(1e, @~ V) = ps(xEe,Y) + 05— V) < ps(xE,v) +¢/2.

Since p4(xg,v) = 0 and the inclusion 4 — B is continuous, it follows that
ps(xe,v) < ¢/2 for all sufficiently large n.

THEOREM 2.1. §y = (LY.

PrROOF. By Prop. 2.2 we have the inclusion 9, < (L%:. Suppose
that u € (L%, we can assume that ¥ = 0. Since 9, has no unfriendly
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sets there is a sequence Y, 1 Y such that y, €Pg. Let Y, = {ye¥,;
u(y) £ n}, then Y, 1 Y and v, = yy, u € Dx. We have

pr(u — v,) = px(gy\w,u) = 0
since Y\Y, | @ and u e (L9, and it follows that u € Jy.

REMARK. One could also consider the space (L% = {u e L9; px(nu)
=, 0}. We don’t know whether or not $, = (L.

PROPOSITION 2.3. If A ¢ Dy is a solid vector space without unfriendly
sets then A is dense in @ and a fortiori in Gy.

PROOF. Let Y, t Y be such that y, € 4 and let u € 9. Define Y, as in
the preceding proof with u replaced by |u|. Then yy, u€ A and gy u—g, u
by the dominated convergence theorem.

We have the following necessary condition for a function u e L9 to
belong to 9 k(see [2]).

PROPOSITION 2.4. Let u € Gy, let {E,} be a partition of Y and let u, € 9
be any sequence such that |u,| < yg |ul. Then ¥|Ku,(x)>? < oo a.e.

Except for some special examples we know of no class of kernels K for
which the above condition would be also sufficient for u to belong to J.

3. Some properties of #. It will be convenient in the next two sections
to use the convention that 0/0 = 0. We recall the definition from §1.
If A is a topological vector subspace of L0 = LO(X) then

3.1) A* = {ue L% A, is bounded in 4},

where A, is given by (2.2) and bounded means bounded in the topology
of A.
It is easy to find examples of spaces 4 where 4% = {0}, however

3.2 if A is solid, then 4 = A%,

If % is a base of neighborhoods of 0 defining the topology in 4 then a
natural topology on A* is defined by

(3.3) Ut = {U*: Ue u} where U* = {ue I%; 4, c U}.

It is immediately verified that if 4 is solid and if # is a basis of solid
neighborhoods of 0 then % is a basis of solid neighborhoods of 0 defining
a vector topology on A% If 4 is a Hausdorff space and has no unfriendly
sets, then A4* is a Hausdorff space; in fact if ue {U*; Ue%}andve 4,
then ve N{U; Ue#} = {0}. Let X, 1 X be such that yx € A and let
X, = {xe X,; |u(x)] < n}. Then yy ue A,and yx,u = 0. Since X, 1 X
it follows that u = 0.
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From now on we shall deal only with solid Hausdorff vector subspaces
of L. If U is a solid neighborhood of 0 in 4 then U¥* | 4 = U and it
follows that the original topology on A and the one induced by A4*
coincide.

If the topology of A4 is given by a (not necessarily solid) metric p then
A* is a metric space with the solid metric

3.4) p*(u) = sup{p(v); ve A,}, ue A%

On A the metrics p and p* are equivalent.

In the case when p is a norm, g is a (possibly extended valued) function
norm in L9 in the sense of [1].

If A has the weak Fatou property:

(Qu,e A,, u, > uae)=uc A, then 4* = 4

3.5
3-3) (4%)* = A%, in particular p* = p* if 4 is a metric space.

This follows from the remark that 4, = |{4,: ve 4%}.

PROPOSITION 3.1. If A, B are topological solid vector subspaces of L°,
if A = B with a continuous dense inclusion and if B is metrizable, then
A¥ < B*.

PROOF. Suppose that u € 4* but u ¢ B%. Then B, is unbounded and
hence contains an unbounded sequence, say {v,}. Since A is dense in B
we can find u, € A such that u, — v, -5 0. Replacing if necessary u, by
min(|u,|, [v,]) |u,|"1u, we may assume that |u,| < |v,|, hence u, € 4,. It
follows that {u,} in bounded in 4 and u, — v, —»50 implies that u, is
unbounded in B, which contradicts the continuity of the inclusion 4 < B.

The following example (see [1]) shows that without additional hypoth-
eses A = B does not imply A* = B*.
Let

B = {ue L(RY); j ® (1 + x2)2 [u] (x)dx
+ lim sup% j'T lu(x)|dx = |lullp < oo}
T—o0 -T

and A = {u € B; lim sup (1/T) [Zy |u(x)|dx = 0}. Bis a normed space and
A is a subspace of B with the induced norm. It is easy to see that u = x2
is in A* but not in B*.

It would be of interest to see which properties of 4 are inherited by
A%, The example of ¢y shows that 4 = A¢ does not imply that 4% = (4%
and we don’t know a condition on 4 (and X) which would make this
implication valid.
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PROPOSITION 3.2. If A is a complete metric solid vector subspace of L°
then A* is complete.

PROOF. Suppose that {u,} is a Cauchy sequence in A*. Then, by the
continuity of inclusion 4% = LY, there exists u € L% such that u, — o u.
We will show that u € A* and that u, — 4. u. By choosing if necessary
a subsequence we can assume that }]|u,.; — u,] < oo a.e. and that
X0 (U1 — u,) < oo where p* is a metric on A* derived from a com-
plete metric p on 4 by (3.4). We have to show that for every ¢ > 0 there
is A > 0 such that p(dv) < ¢ for all ve 4,. To this effect choose n such
that Y°0, o*(u,, — u,) < ¢/2 and A€ (0, 1] such that p*(Au,) < ¢/2 -
this is possible since u, € A*. If ve A,thenv = 32, v, with v,_; =
Wyl v, v, = Wil [,y — u v for /2 n, where w, = lu,| + T3, lu 1y —
u,| = |u|l. The series Y}, _; v, is clearly convergent in L9, since |v,| <
lu,.; — u,| it is also convergent in A (at this point the completeness of 4
is used) and we can write

MM§MM+WEM§WM)

+ p’(/l ;ﬂ"/) < ¢/2 +/§ p;(u/+1 -u,) <e,

and u € A%,
The same argument using the inequality |u — u,| < 25, |u,., — u,/|
shows that p*(u — u,) — 0.

It is likely that 4% may be complete without the hypothesis that A4 is
complete.

4. Applications to domains of integral operators.
THEOREM 4.1. Let K be an integral operator. Then Dy = D.

ProoF. Suppose that u € 9%, we may assume that u = 0; then (see
(2.4)) the set {|K| |v|; ve 9g),} is bounded in L9. Let Y, 1 Y be such
that y, € Zxand let Y, = {yeY,;u(y) =n}. Then Y, 1t Y and u, =
¥y, u 1 u, in particular u, € (2¢),. By the known criterion of bounded-
ness in L%(X) we conclude that for every F < X with |[E| < oo and for
every ¢ > 0 there is an M > 0 such that for every n |{x€E; |[K|u,(x) > M}
< ¢. Since the sets E, = {x € E; |K|u,(x) > M} areincreasing |UE,| < ¢
and |K|u,(x) £ M for all m outside of the set (J E,. It follows from the
Fatou’s lemma that [K|u < o0 a.e. and u € 9.

Propositions 2.3 and 3.1 imply now the following corollary.

@4.1) If A =, g is a solid topological vector space without unfriendly
sets then A* < Q. If A is a solid complete metric space, then the con-
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tinuous inclusion A c, D is a consequence of the algebraic inclusion
A c @ K-

(4.2) ExampLE. Consider a sequence g, € LX), g, = 0. Suppose that
for every sequence &, = 0 with lim,_., &, =0 we have 32, £,8,(x) < ©
a.e. Then 32J32, g,(x) < oo a.e.

PrROOF. Let ¥ = N = {1, 2, ...} with the natural measure [{n}| = 1
and define the kernel k(x, n) = g,(x). The hypothesis means that ¢y = 9
and by (4.1) /= = ¢§ = 2, which is the assertion.

Concerning 9% we need the following easy observation.
4.3) bk = oxlaf-
THEOREM 4.2. Let K be an integral operator. Then %% = 9.

PrOOF. By Theorem 2.1 $x = (LY) o (9%)", and the statement results
from the following proposition.

PROPOSITION 4.1. If K is an integral operator then (%) = J%.

PROOF. Let u € 9%, u ¢ (2%)°. There is then a sequence E, c Y, E, | @&
such that g(xzu) = px(xgu) > a for all n and some & > 0. Since
py(xe,u) = 0 it follows then from (2.5) that there exists a sequence v, €
Dk, Ival = yg,u such that px(Kv,) > a for all sufficiently large n. We use
now Prop. 2.1 to conclude that px(Kyg, g, v,) > a for fixed n and all
sufficiently large m and to replace {E,}, {v,} be sequences with the prop-
erty that |v,| S yg,z,., [uland px(Kv,) > aforalln,in particular v, — s
have disjoint supports. We show next that for every sequence {£,} with
£,—0 we have 3,22, £,v, € G . In fact for any m, n we have |57, &,v,| <
max,., <, |&,| |52, and, since Y7 v, € (Dg),, for every e >0 there
is a A>0 such that gg(AX7,v,)<e and px(X7.,, &v,)<e provided
max ,.<,<, &, S A. It follows that the series Y&,v, is convergent in L0
and since its partial sumsare in 9, the sum is in 9. We now apply Prop.
2.4 to the function Y¢&,v,€ P and the sequence &,v, < XENEns; 2287, 10
conclude that 3 [&,12|Kv,(x)|2 < o0 a.e. and by (4.2) X;|Kv,(x)|?2 < o a.e.
This contradicts the property that px(Kv,) > « for all n.

Similarly to (4.1) we have the corollary.
@a) IfAdisasin(d.1) and A =, Dy then A* =, Dy.
We also give an example similar to (4.2).

(4.5) Suppose that {g,} = L° is such that Y&,g,(x) is convergent a.e.
(or in LO for every {¢,} €co. Then },&,g, is convergent in L for every

{&,} € 7.
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To check this statement we notice that with k(x, n) as in (4.2) 2« ] ¢,
contains all sequences with finitely many terms different from 0 and
9Dk N cois dense in ¢y. Also, by Banach-Steinhaus principle T: {,} € ¢y —
2:€,8,(x) € LY is continuous and on 9k ) ¢, T = K. Since ¢, is solid
(2.6)(b) implies that ¢, =, 9 and by (4.4) /= = ¢} c.Dy. Since for
{&er={€né 0,0} g {&) (26) (a) implies that T&,g,(x)
is convergent in measure (on subsets of finite measure).

Added 1n proof: The author is indebted to Iwo Labuda for the fol-
lowing remark. The operation of enlargement # has been considered for
normed spaces by Yu.A. Abramovic, On maximal normed extension of
partially ordered normed spaces, Vestnik Leningradsk. Univ., 26, 1 (1970),
7-17, (English translation 3 (1976), 1-12), by Iwo Labuda, Completeness
type properties of locally solid Riesz spaces, preprint, and by W. Wnuk,
The maximal solid extension of a locally solid Riesz space with Fatou
property.
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