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ON SOME PROPERTIES OF DOMAINS OF 
INTEGRAL OPERATORS 

P. SZEPTYCKI 

SUMMARY. A construction of enlarging solid topological spaces 
of measurable functions is discussed. It is shown that both the 
domain and the extended domain of an integral operator are in­
variant under this construction. 

1. Introduction, Let I b e a measure space, LP = L°(X) be the vector 
space of measurable finite a.e. scalar-valued functions on Zand let A a L° 
be a topological vector space. Denote A* = {ue L°; {v e A; \v(x)\ g 
\u(x)\ a.e.} is bounded in A}. If A is solid then A cz A%, otherwise it may 
happen that A% = {0}. If A is a solid normed space then A% is a space 
defined by a function norm in the sense of [1]. 

In this paper we study the "functor"1 as applied to the domain &K 

and the extended domain @K of an integral operator K. The conclusion 
is that both domains are preserved by #, (Theorem 4.1 and theorem 4.2) 
in particular if K is defined on A then it is also defined on A% and if K 
extends by continuity to a solid topological vector space A then it also 
extends by continuity to A*. 

As a preliminary to theorem 4.2 we prove theorem 2.1 which is a new 
characterization of the space 3>K. 

Example (4.5) seems to show that Theorem 4.2 is nontrivial; we do 
not know a proof of (4.5) which would not involve in one way or another 
the idea of that theorem. 

The reference [2] is the background of all the results outlined in Section 
2. 

2. Notation and prelimaries. We assume that X is ^--finite, by subsets of 
X we mean measurable subsets, the measure on X we denote by dx and 
the measure of a set E a X we note by \E\. 

By a metric p we shall mean a translation invariant metric and we shall 
write p(u) = p(u, 0). 

The space L° of all measurable, scalar valued, finite a.e. functions on X 
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has a natural topology of convergence in measure on all subsets of finite 
measure. This is a complete vector topology which can be given, e.g., 
by the metric 

(2.1) p(u) = px(u) = J \u\ (1 + |i/|)-i ^ dx 

where <j> e LP, cj> > 0, \ x <j>dx = 1. 
Above and in what follows we write u = u(x), \u\ = \u{x)\, and by 

u < v or u ^ v we mean the inequalities a.e. 
For a subset A cz LP and u e LP we let 

(2.2) Au = Alui = { v 6 ^ ; | v | ^ u}. 

The set A is SÖ/ZV/ if for every u s A we have L^ c ^* 
A topological (additive) subgroup of L° (in particular a topological 

vector subspace) is solid if its topology can be defined by a base of solid 
neighborhoods of 0. 

A metric p on a subspace A c L° is solid if p(v) ^ p(u) whenever w, 
v e ^ , |K| ^ |v|. 

It is known that solid metrizable vector subspaces of L° are contin­
uously contained in L° (see, e.g., [3]); whether this is true without the 
hypothesis of metrizability seems to be an open question. 

If A a LP and E cz X then E is an unfriendly set for A if u\E = 0 for 
all u e A, u\E denoting the restriction of u to E. 

Recall (see [2]) that if A c LP is a vector subspace of LP (not necessarily 
solid) then there exists a maximal, unique up to sets of measure 0, un­
friendly subset EA for A, also there exist sequences Xn \ X\EA, v„eA, 
such that |vj > 0 on Xn. If A is solid then for a choice of X„ as above 
one can take v„ — %Xn where %E denotes the characteristic function of E. 

For a solid metrizable subspace A a L0 we denote by Ac the subspace 
of "norm continuous" functions in ,4, i.e., Ac = {ue A; %Enu ->A0 for 
every sequence En <= X s.t. En | 0 } where £„ i 0 means that {En} is 
decreasing and | f] En\ = 0. 

Note that the definition of Ac is meaningful if A is any topological 
subspace of LP containing 0. Of course it is possible that Ac = {0}. 

We recall some facts about integral operators (see [2], [3]). 
Let Y be another ^-finite measure space; in the cases not leading to 

confusion we will write LP = L°(Y). 
A kernel is a function k G L°(X X Y) and the corresponding operator 

(transformation) K is given by 

(Ku)(x) = f k(x, y)u(y)dy, 
(2.3) •*Y 

@K={ueL0; \K\ \u\(x) = J ^ \k(x9 y)\ \u(y)\\ dy < oo a.e.}. 
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AT is a linear operator from @K c: L°(Y) into L°(X). 
On @K there is a natural solid metric 

(2.4) pK(u) = PY(u) + px(\K\ \u\) 

where pY, px are as in (2.1). 
With the metric pK, @K is a complete solid vector space and, by the 

closed graph theorem, if A acL\Y) is a complete metrizable vector 
subspace of L° such that A c QtK then K\A: A -+ L 0 ^ ) is continuous. 

By the dominated convergence theorem one easily verifies the following. 

PROPOSITION 2.1. &°K = @K. 

We assume in what follows that Q)K has no unfriendly sets. 
Let u e L° = LP(Y) and define 

(2.5) pK(u) = pr(w) + </*(w), dK(u) = supfr^ATv); v e f e ) „ } 

where as in (2.2) (£^#)a = { v e ^ ; |v| ^ |w|} and pY, px are as in (2.1), 
thus pY ^ 1, px ^ 1-

p* is a complete solid metric on L°, with this metric L° is a metric group 
(but in general not a metric vector space) which we denote by L° = L%. 

The closure Q)K of @K in L° is a solid metric vector space, this is the 
extended domain of K. 

&K has the following maximality property. 
(2.6) (a) There is a (unique) continuous operator K: §}K -• L°(X) such 

that AT|̂  = K. 
(2.7) (b) If A is a solid topological vector subspace of LP, if @K f] A 

is dense in A and if there is a continuous extension A^ of K to ,4 then 
A c SK and A^ = A^. 

PROPOSITION 2.2. 9C
K = ®Ä. 

PROOF. This is an immediate consequence of Prop. 2.1 and of the 
following general statement. If A c B are two solid metric subspaces of 
JL° with dense and continuous inclusion and if A = Ac then B = Bc. 
Indeed, if pA, pB are solid metrics defining the topologies on A and 
B, if u e B and if En i 0 , then for every e > 0 choose vG/4 such that 
pB(u - v) < e/2 and write 

pBÌXEnu) Û PBÌXEV) + PB(XESU - v » = PB(XE„V) + p*(w - v) < PBÌXEV) + e/2. 

Since PA(XEH
V) -• 0 and the inclusion A a Bis continuous, it follows that 

PB(XE„V) < eß f°r a" sufficiently large n. 

THEOREM 2.1. &K = {L°K)C. 

PROOF. By Prop. 2.2 we have the inclusion @K a (L°)c, Suppose 
that u e (L°y, we can assume that u ^ 0. Since 2K has no unfriendly 
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sets there is a sequence Yn î Y such that XY„e@K> Let Y'n = {ye Yn\ 
u(y) ^ «}, then Y'n \ Y and vn = Xr'n u 6 @K- W e n a v e 

PK(U - vM) = pAXvw'n ") -• 0 

since 7\y^ J, 0 and w G (L°)C, and it follows that u e <3K. 

REMARK. One could also consider the space (L°)v = {WGL°; pfdn^u) 
->„_KX> 0}. We don't know whether or not <3K = (L°)y. 

PROPOSITION 2.3. If A a g>K is a solid vector space without unfriendly 
sets then A is dense in <3K and a fortiori in §)K. 

PROOF. Let Yn î y be such that XY„
 e ^ anc* ^et u 6

 @K- Define Y'n as in 
the preceding proof with u replaced by \u\. Then XYnueA an(* XY„ U -+®K

 U 

by the dominated convergence theorem. 

We have the following necessary condition for a function ue L° to 
belong to J^(see [2]). 

PROPOSITION 2.4. Let u e §)K, let {E„} be a partition of Y and let un e <3K 

be any sequence such that |wj ^ XEH \U\- Then J2\Kun(x)\2 < oo a.e. 

Except for some special examples we know of no class of kernels K for 
which the above condition would be also sufficient for u to belong to <$K. 

3. Some properties of #. It will be convenient in the next two sections 
to use the convention that 0/0 = 0. We recall the definition from §1. 

If A is a topological vector subspace of LP = L°(X) then 

(3.1) A* = {u e L°; Au is bounded in A}, 

where Au is given by (2.2) and bounded means bounded in the topology 
of A. 

It is easy to find examples of spaces A where A% = {0}, however 

(3.2) if A is solid, then A a A*. 

If <ty is a base of neighborhoods of 0 defining the topology in A then a 
natural topology on A* is defined by 

(3.3) <& = {£/#; ue®} where U* = {ueL°; Au c U). 

It is immediately verified that if A is solid and if ^ is a basis of solid 
neighborhoods of 0 then <2r* is a basis of solid neighborhoods of 0 defining 
a vector topology on A%. If A is a Hausdorff space and has no unfriendly 
sets, then A% is a Hausdorff space; in fact if u e f] {{/*; (7 e ^r} and v e y4tt 

then v e n { t / ; t / 6 f } = {0}. Let Xn î J\T be such that j ^ G V4 and let 
X'n = {JC G A^; |n(x)| g /Î}. Then xx'n

 ueAu and ^ w = 0. "since X'n\ X 
it follows that u = 0. 
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From now on we shall deal only with solid Hausdorff vector subspaces 
of ZA If U is a solid neighborhood of 0 in A then W f] A = U and it 
follows that the original topology on A and the one induced by A* 
coincide. 

If the topology of A is given by a (not necessarily solid) metric p then 
A* is a metric space with the solid metric 

(3.4) p\u) = supj^v); v e Au}9 u e AK 

On A the metrics p and p* are equivalent. 
In the case when p is a norm, p# is a (possibly extended valued) function 

norm in LP in the sense of [1]. 
If A has the weak Fatou property : 

(3un 6 Au, un -> u a.e.) => ue A\ then A% = A 

(A*f = ,4*, in particular p* = p#* if A is a metric space. 

This follows from the remark that Au = |J {^„i v e Al}. 

PROPOSITION 3.1. If A, B are topological solid vector subspaces of LP, 
if A c B with a continuous dense inclusion and if B is metrizable, then 
A* cz B*. 

PROOF. Suppose that u e A* but u 4 -#*• Then Bu is unbounded and 
hence contains an unbounded sequence, say {v„}. Since A is dense in B 
we can find un e A such that un — vn ->B 0. Replacing if necessary un by 
minflwj, |vw|) \un\~

lun we may assume that \un\ ^ |vn|, hence un e Au. It 
follows that {un} in bounded in A and un — vn ->#0 implies that un is 
unbounded in B, which contradicts the continuity of the inclusion A cz B. 

The following example (see [1]) shows that without additional hypoth­
eses A c B does not imply A% a B*. 

Let 

5 = { i / 6 L ° ( R ! ) ; f°° (1 + x2)-2 \u\ (x)dx 
J —oo 

1 CT 

4- lim sup 7̂ - I \u(x)\dx = ||w||ß < oo} 
r-*oo l j-T 

and A = {ueB; lim sup( l / r ) $LT \u(x)\dx = 0}. Z?is a normed space and 
A is a subspace of B with the induced norm. It is easy to see that u = x2 

is in A% but not in B%. 
It would be of interest to see which properties of A are inherited by 

A%, The example of c0 shows that A = Ac does not imply that A% = (A*)c 

and we don't know a condition on A (and A") which would make this 
implication valid. 
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PROPOSITION 3.2. If A is a complete metric solid vector subspace of L° 
then A% is complete. 

PROOF. Suppose that {un} is a Cauchy sequence in A*. Then, by the 
continuity of inclusion A* a L°, there exists u e L° such that un -*L0 u. 
We will show that u e A* and that un -+M u. By choosing if necessary 
a subsequence we can assume that £ |ww+1 — un\ < oo a.e. and that 
TipKun+i - w„) < oo where çf is a metric on A* derived from a com­
plete metric p on ^ by (3.4). We have to show that for every e > 0 there 
is X > 0 such that p(Xv) < e for all v G AU. TO this effect choose n such 
that £%=„ p»(w/+1 - W/) < e/2 and ^e (0 , 1] such that p%Àun) < e/2-
this is possible since uneA*. If v G S t r i en v = ZJ?=w-i v/ with v„_i = 
w"1 |i/Jv, v/ = w"1 |w/+1 - w> for / ^ «, where ww = \un\ + £?LW l«/+i -
w/| ^ |w|. The series ^%n-i v/ is clearly convergent in L°, since |v̂ [ ^ 
|w/+1 — w |̂ it is also convergent in A (at this point the completeness of A 
is used) and we can write 

CO 

(W) è f(Xvn) + dX E vA è ft(ton) 
/-I 

oc co 

+ PK* 2 V,) < £/2 + S p*(*//+1 - W,) < 5, 

and w G y4*. 

The same argument using the inequality \u — un\ S H?=u \
u/-hi ~" UA 

shows that p\u — un) -> 0. 

It is likely that A* may be complete without the hypothesis that A is 
complete. 

4. Applications to domains of integral operators. 

THEOREM 4.1. Let K be an integral operator. Then Q)K — Q>\. 

PROOF. Suppose that ue&K, we may assume that w H ; then (see 
(2.4)) the set {\K\ |v|; ve@K)u} is bounded in L°. Let Yn î Y be such 
that XY» e ^ * a n d let K» = {J e Fw; i i^) ^ #}. Then Y'n î 7 and wn = 
Xr» w î w» m particular un e {^K)u. By the known criterion of bounded-
ness in L°(X) we conclude that for every E cz X with \E\ < oo and for 
every £ > Ö there is an M > Ö such that for every n \{XBE'9 \K\un(x) > M} 
< e. Since the sets En = {x e 2s; |A |̂wM(x) > M} are increasing [ IJ£» I û £ 
and |AT|t/w(jc) ^ M for all m outside of the set [}En. It follows from the 
Fatou's lemma that \K\ u < oo a.e. and u G ^ . 

Propositions 2.3 and 3.Î imply now the following corollary. 

(4.1) If A c:c@K is a solid topological vector space without unfriendly 
sets then A* a QiK. If A is a solid complete metric space, then the con-
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tinuous inclusion A c c Q)K is a consequence of the algebraic inclusion 
A a@K. 

(4.2) EXAMPLE. Consider a sequence gn e L°(X), gn > 0. Suppose that 
for every sequence £n ^ 0 with lim^oo %n = 0 we have EjLj Çng„(x) < oo 
a.e. Then H^=ign(x) < oo a.e. 

PROOF. Let Y = N = (1, 2, . . . } with the natural measure \{n}\ = I 
and define the kernel k(x, n) = gn(x). The hypothesis means that c0 a @K 

and by (4.1) /°° = cl a Q)K which is the assertion. 

Concerning §*K we need the following easy observation. 

(4.3) fa = pK\tfK. 

THEOREM 4.2. Let K be an integral operator. Then Q}\ == §K. 

PROOF. By Theorem 2.1 §&K = (L°K)C z> (affi, and the statement results 
from the following proposition. 

PROPOSITION 4.1. If K is an integral operator then (9ffi = <3*K. 

PROOF. Let u e §>*K, u £ (§>%)c. There is then a sequence En a Y9 En I 0 
such that PK(XE„U) = PK(XE„U)

 > a f° r a ^ n anc* some a > 0. Since 
PAXE„U) -+ 0 it follows then from (2.5) that there exists a sequence vne 
@Ki \vn\ ^ XE„U s u c h that px(Kvn) > a for all sufficiently large n. We use 
now Prop. 2.1 to conclude that px(^XEn\Em

vn) > <* f° r fixed n and all 
sufficiently large w and to replace {En}, {v„} be sequences with the prop­
erty that |vw| < XE„\E„+I \U\

 anc* px(Kvn) > & f° r all n, in particular vn - s 
have disjoint supports. We show next that for every sequence {£„} with 
£ff-*0 we have £™=i %nvn e §K. In fact for any m9 n we have \Jl%n | / v / | ^ 
m a x ^ ^ J ^ I l E ^ v ^ and, since E ^ v , e (£^)„, for every e > 0 there 
is a A>0 such that pjr(AE7=»v/)<e and pK(H%m £•?/)<$ provided 
max w^/^„ (£,[ g ^. It follows that the series J^^/v/ is convergent in L° 
and since its partial sums are in ^ , t h e sum is in Q)K. We now apply Prop. 
2.4 to the function TÌ£/V/&@K

 a n d the sequence Çnv„ ^ XEn\E„+iHÇ/v/ to 
conclude that £"\$A2\K*/(x)\2 < ooa.e. and by(4.2) Ë\Kv/x)\2 < oo a.e. 
This contradicts the property that px(Kvn) > a for all n. 

Similarly to (4.1) we have the corollary. 

(4.4) If A is as in (4.1) and A czcêK then A% <^cêK-

We also give an example similar to (4.2). 

(4.5) Suppose that {gn} a L° is such that £&*&(*) is convergent a.e. 
(or in IP) for every {£n} ec 0 . Then ££„£„ is convergent in L° for every 
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To check this statement we notice that with k(x, n) as in (4.2) 3>K f| c0 

contains all sequences with finitely many terms different from 0 and 
@K H cols dense in c0. Also, by Banach-Steinhaus principle T: {£ n} e c0 -* 
2£»£n(*) G ^° is continuous and on ^ f) c0, T = K. Since c0 is solid 
(2.6)(b) implies that c0 c c J ^ a n d by (4.4) /°° = c$ ^C@K- Since for 
{£.} e /~ , {ft, f2, . . . , 0, 0 . . . } -+9K {£„} (2.6) (a) implies that ££„gw(x) 
is convergent in measure (on subsets of finite measure). 

Added in proof: The author is indebted to Iwo Labuda for the fol­
lowing remark. The operation of enlargement # has been considered for 
normed spaces by Yu.A. Abramovic, On maximal normed extension of 
partially ordered normed spaces, Vestnik Leningradsk. Univ., 26, 1 (1970), 
7-17, (English translation 3 (1976), 1-12), by Iwo Labuda, Completeness 
type properties of locally solid Riesz spaces, preprint, and by W. Wnuk, 
The maximal solid extension of a locally solid Riesz space with Fatou 
property. 
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