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ANALOGOUS FUNCTION THEORIES FOR CERTAIN SINGULAR 
PARTIAL DIFFERENTIAL EQUATIONS 

L.R. BRAGG a n d J .W. DETTMAN 

ABSTRACT. Transmutation operators are used to establish 
analogous function theories for the heat equation, the equation 
of generalized axially symmetric potential theory, and the Euler-
Poisson-Darboux equation. Under these transformations cor­
respondences are established relating fundamental solutions, 
polynomial solutions, associated functions, generating functions, 
and expansion theorems including Fourier transform criteria. In 
some cases, the transmutation operators must be interpreted in 
the generalized sense as acting on distributions. 

1. Introduction. In [14], D.V. Widder pointed out numerous analogies 
between classical function theory and expansion theory for solutions of 
the heat equation. He did this by comparing, by means of a table, the 
underlying function sets, the generating functions for these sets, the or­
thogonality properties of these sets, etc. More recently E.G. Dunne and 
D.G. Mugler [7] extended these analogies by examining the corresponding 
functions and generalized function sets for the one-dimensional wave 
equation. Again, comparisons were made by means of a table. In [5], 
the authors made use of integral transformations connecting the solutions 
of the heat equation with solutions of the Laplace and wave equation to 
relate isomorphically various aspects of these function theories as exhi­
bited in these tables. When taken in the classical sense, these integral 
transformations impose restrictions on the growth of the functions to be 
transformed. However, when interpreted in the generalized sense they 
permit almost complete reconcilliation with the tables of [7] and [14]. 

The purpose of this paper is to extend the methods and results of [5] 
to function theories corresponding to the equation of generalized axially 
symmetric potential theory (GASPT) and the Euler-Poisson-Darboux 
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(EPD) equation. The GASPT equation assumes a role in pseudo-analytic 
function theory similar to Laplace's equation for the classical theory. 
Hence, a treatment of the connections between solutions of the heat equa­
tion and GASPT will provide an extension of these types of analogies 
noted by Widder to another important function theory. The basic func­
tions used in the theory for GASPT involve the Jacobi polynomials and 
are closely related to the polynomial sets employed by B. Muckenhoupt 
and E.M. Stein [9]. As expected, the function theory for EPD involves 
distributions and is not as rich as that for GASPT. Nevertheless, many of 
the analogies are quite striking even in the case of this singular hyperbolic 
equation. 

The basic integral transformations connecting solutions of the heat 
equation with solutions of the GASPT and EPD equations will be given in 
§2. These will be used along with the heat polynomials and the associated 
heat functions to construct the GASPT polynomials, the associated 
GASPT functions, and their generating functions in §3. The generalized 
Cauchy-Riemann equations will also be given for corresponding func­
tions in these sets. The EPD polynomials, associated EPD functions, and 
their generating functions will be given in §4. In §5, we give expansion 
theorems corresponding to the various function sets developed in §3 and 
§4. Except for the bounds and asymptotic estimates for the Jacobi poly­
nomials, the proofs of these are similar to the ones carried out in [4] and 
will generally be omitted for the sake of brevity. Finally, in §6 we provide 
Fourier transform criteria for expansions in terms of associated functions. 

2. Transformations. Let w(x, t) denote a solution of the heat problem: 

(2.1) wt(x, t) = wxx(x, 0 , / > 0; W(JC,0 + ) = <j)(x). 

For fi < 1/2, it follows from [2] that the function 

(2.2) utix, y) = Y(TjT^~~) J ! e~ayl a~"~V2 W(X> l/4(T)da 

satisfies the GASPT problem 

(2.3) ? ^ + ^ 8 » ^ + ?^L)-0,y>0;«(*,0 + ) - ^ ) . 

With the change of variable a = 1/4 ,̂ (2.2) defines a transformation 
T§ from w(x, t) to uf"(x, y) as follows: (see [5]for transforms 7\, T2, T3, T4) 

wix9 y) = T% w(x91) 
(2.4) 4/4-1/2 yl-2fi J»00 1/4-1/2 vl-2u Coo 

!L y I e-y
2HssM-3/2 w(x s) fa 

Similarly, we find that the function 
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(2.5) vtix,y) = n w(x9 /) = ^ j ^ — j ^ e-^a-^11 w(x9 \/4<r)da 

satisfies the equation 

(2 6) 9M*> y) _ } t 9vfe y) + d2K*, >0 ^ o 

In later sections, we shall be concerned with solutions u(x, y) and v(x, y) 
of (2.3) and (2.6) which satisfy the following generalization of the Cauchy-
Riemann equations: 

n i\ v2u Mx, y) _ dv(x, y) . _ 2 du(x, y) __ dv(x, y) 
K } y dx - dy ' y ' dy dx ' 

These will be used to define a pseudo-analytic function f(z) = u(x, y) + 
M*> y)- ( s e e [1] a n d [13]). 

Finally, we note from [3] that the transformation Tq defined by 

(2.8) er{x9t) = TH w(x, 0 = ^"2^ r(l/2 + M) ^{s^-^w^ l/4s)}5_»,2 

defines a solution of the EPD problem: 

d2e(x, t) , _2/f_ de(x9 t) d2e(x, t) 0 

(2.9) ~dt* ^ t dt dx* ' 1 > V ' 

e(x, 0 + ) = <f>(x\ et(x, 0 + ) = 0. 

3. Basic function sets for GASPT. 
(i) GASPT polynomial sets. Suppose we select the function w(x, t) 

above to be one of the heat polynomials [11] 

[»/23 x
n~2j ij 

hn(x, t) = n\ Ço jT(n-2j)\ ' n Œ ° ' l' 2 ' 

If we introduce this into (2.2) and evaluate the integral in the sense 
of generalized functions, we obtain 

ua(x, y) = TtfiJix, t) 

- * ! / V H / 2 ) g . 4 , 7 ^ + 7 + 1 / 2 ) 

which is defined for all /j, except fj, = -(2Ä; + l)/2, A: = 0, 1 ,2 , . . . The 
generating function U^x, y, a) for the collection of all such polynomials 
can be obtained directly from the generating function for the heat poly­
nomials, 
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(3.2) e«+«2< = g - £ hn(x, t). 

„=o n\ 

Hence we obtain 
00 nn 

U?(x,y,a)= Z^vu^y) 
(3 3) 
v ' ' _ fju pax+a£t 

5 

= (2/ay-v*r(ju +1/2) e** y^~^ J^ay). 

Making use of formula (4.10.6) of [12], we have 
(3.4) uiix, y9a)=Z -J£¥T-r^W™ 0)a* 
where x = r cos 0 and y = r sin 0 and P^u\z) is an ultraspherical poly­
nomial. Comparing (3.3) with (3.4), it follows that 

(3.5) v&K, y) = - ^ ~ § ^ r" PP ( « * d). 

These polynomials differ from the polynomials rnP^(cos 0) used in [9] 
by constant multipliers, which will not alter the regions of convergence in 
the expansion theorems. 

From (3.5) and the properties of the Jacobi polynomials (see [8] and 
[12], we have 

(3.6) K(x, y) = 7 ^ +
+ l,**j2) r»P^>^\cos 0) 

and, in rectangular coordinates, 

w W W f(«+«+i/2)1* + J } ^ U 2 + A 
Next, suppose we introduce the heat polynomials into (2.5). By inter­

preting the resulting integrals in the generalized sense, we obtain 

_ „ ! [n/2] vn-ìj foo 

**'> = ZT^gidbsJ! J. 
(3.8) = (H2)r(u+1/2)«' i W y 1 ( - l ) ^ " - 2 ^ 

2/i + 1 " K ,y) 

Using this along with (3.6), we obtain 
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= £ßP^Ly2f'+1(x2+y2W+1/2'-1/2) i(x2-y2)Kx2+y2)\ 
(3 9) 2r(n + /i + 3/2) 

yß2n+i(x, y) 

= fp^^SLy^K^+y2)" pjj*™-™ ((x8- y2)l(x2+y2))-
li (n + /j, + 3/4) 

These can be expressed in polar form and compared with the ultraspherical 
polynomials to yield 

Using the relation (3.8), we obtain the generating function K^(x, y9 a) 
for the set {vg(x, y)} as follows: 

^ ( * , >-, a) = g (a»/n !) v&x, y) 

(3.11) j2/j+l ^o 
- 9 „ 4 . i L ^ / n D w ^ K * , ^ 

= (2laY-v*r(p + l /2)e«r+i^y A + 1 / 2 (a j ) . 

Finally, it is an elementary exercise to show that the polynomials {«£(JC, J ) } 

and {V£(JC, >>)} satisfy the following generalized Cauchy-Riemann equa­
tions : 

(3.12) 

(ii) Associated GASPT functions. Let {hn(x, t)} denote the set of as­
sociated heat functions [11], which are the Appell transforms of the heat 
polynomials hn(x, t). We define the sets of functions {U%(x, y)} and 
{ V%(x> y)} by means of the relations 

(3.13) U&x, y) = T%hn(x9 t), V%(x, y) = Tfhn(x, t\ 

By applying the Appell transform to the generating function for the 
{hn(x, t)}, we obtain the generating function H(x, t, a) for the associated 
heat functions : 

(3.14) H(x, U a) = (47Tf)-1/2e-(*-2û)2/(4<). 

It is an easy calculation to show that 
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Ti H(x, t, a) = -WjLfà y™, [y2 + (x _ 2aW~\ 
(3.15) VIWI2-M) 

nH(X, , ,«)- j - ^ ^ i y . + (x - 2*)2],. 

Since y2 + (x - 2a)2 = r2[l - 2(x/r)(2a/r) + {lajr)2}2, with r2 = x2 + 
j>2, it will be observed that the right-hand members of (3.15) involve the 
generating function for the ultraspherical polynomials. Using the ex­
pansions of these generating functions and the relations between the 
ultraspherical and Jacobi polynomials, we obtain 

UUx, y) 

-y/irr(l/2-fi)
y ^x+y) r» \x2+yV' 

Vfaiix, y) 

(3 16) ~ • v / i r / ' ( 1 / 2 - ^ U 2 + W ' 
vUxy) 

_ -2*»-in\r(n-v) v2)ü-„ f(-1/2-„.-1/2)/x2-j2\ 

~ V^Ai/2-//) x ^ + " »̂ U2+W" 
These functions exist for all values of p except 0,1,2,3, . . . and 1/2. The 
exceptional value of 1 /2can be eliminated by dropping the factor r(lj2 — fi), 
in which case 

(3.17) uy2 = (2"nl/r"+i)P„(cos 0), V™ = (2»n !//"--i) Pt1/2\cos 0), 

where P„(z) denotes a Legendre polynomial. 
From the fact that h„(x, t) = ( - 2)» Z);&(JC,0 with k(x, t) = 

{4,%tYV2e-xVu, it follows that 

UH{x, y) = Tfh„(x, t) = (-2)«D»x T5
uk(x, t) 

(3.18) = (( - 2)«/ V^" A l /2 - //))J1"2'' ̂ ï f J e "^ 2 )* <TVo-

= (-2)»;i.K1-2><ZV2/<-2 

with A = A l - fdlVxTQß - fu- Similarly, 

(3.19) V&X, y) = (-2)»XDx~\x r2"'2). 
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From these "Rodrigues" type formulas, it is easy to verify the generalized 
Cauchy-Riemann equations : 

4. Basic functions sets for EPD. 
(i) EPD polynomial sets. If we apply the transformation Tq, defined 

in equation (2.8), to the heat polynomials, we obtain 

eftx, t) = TfhJix, t) 

(4 1) ,n<^ i m [ ^ ] x~*W 
« »! r(M + 1/2) g 4>;!(„ - 2JV.W + M + 1/2) 

which satisfy the Euler-Poisson-Darboux equation and e%(x, 0) = xn, 
(de%/dt) (x, 0) = 0. It is clear that 

(4.2) eftx, iy) = uftx, y) 

and, therefore, that the generating function #P(X9 t, a) for the EPD 
polynomials is 

(4.3) *M(X9 U a) = (2/^-1/2 r<jt + i/2)e^t^-Ml^V2(at). 

This can also be obtained directly from the generating function for the 
heat polynomials as follows : 

(4.4) <£*(*, U a) = Tijeax+a2t. 

It follows from (4.2) and (3.7) that e%(x, t) can be expressed in terms of 
Jacobi polynomials : 

dtJLx, t) 

= (nir(jA+ll2)ir(n + fi+l/2))(t*-xfy^ 

= (xnir(ji + l/2)/r(n + ß + ì/2))(t2-x2yP^/2^-1/2\(t2 + x2)/(t2-x2)), 

These polynomials are defined for all fi ^ — (2k 4- l)/2,.fc = 0, 1, 2, . . . 

(ii) Associated EPD functions. We define the associated EPD functions 
by transforming the associated heat functions hn(x, t) as follows: 

(4.6) S&x, t) = T$n(x, 0. 

We go directly to the generating function for these solutions. 
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gtix,t,a) = Tij(47ct)-1/2e-^-2a)2/it 

(4.7) = (\l^)t^r(fi + l/2)^7H*-^~(*~2fl)25W 

= (/i-^A/i +1/2)/ v^ntxw* - (x - lanr1. 
Here the subscript + denotes a function defined by the formula when 
t2 > (x — 2Û)2 and by zero otherwise. We relate the generating function 
to the ultraspherical polynomials by 

i"(x, t, a) = ^ ^ ^ W ^ 2 [ l -2(ix/p)(2ia/p)+(2ia/pfir1 

<4'8) j^jm^1^*^ 
where p = ^/W^~x2. Hence, 

(49) *«x t) = tl-*T(p + \l2)n\*f p{l-Hix,o) 
V*-*) <3»V*> I) - y ' l r " / , ( » ) ( / 2 _ x2)»/2+l-^ *» IM/PJ 

for t2 > x2, and zero otherwise. Using formulas (4.1.5) and (4.7.1) of [12], 
we can express these functions in terms of Jacobi polynomials : 

- ^r(M-n)(t2-x2)»+^tn W+XW *» 

~ script - « - i)(t2 - x2)^2-*" w +x M x »• 
These functions exist for all values of // except 0, 1, 2, . . . and fi = —1/2. 
The exceptional value of — 1/2 can be eliminated by dropping the factor 
rifi + 1/2). 

If fx is a positive integer the associated EPD functions involve distribu­
tions. To see this we recall that hn(x, t) = ( — 2)nDn

xk{x, t). Hence, if ^ = 
m, a positive integer, 

! n ^ ( * ' / } = i^'^rim +1/2)(-2YIV^)Dn
x£7l{s-me~x2s}s->fi 

= ((/!-2w r(m + 1/2X-2)"/ V*^ r(m))D%t2-x*ft~l. 

If n ^ m — 1 this is an ordinary function, while if n ^ m it involves 
distributions. 

5. Expansion theorems. In [4] we showed that when <f>(x) = ZÎ =o anx" 
is analytic for |JC| < a, then the series of GASPT polynomials W(JC, y) = 
2£Lo anun(x> y\ for ^ > —1/2, converges to a solution of the GASPT 
equation for \z\ < a, with u^(x9 0) = (p{x). Similarly we proved that the 
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series of EPD polynomials ep(x9t) = H^=oOne^(x, t), for p > - 1 / 2 , 
converges to a solution of the EPD equation for |JC| + |f| < (7, with 
et*(x, 0) = 0(x), eftx, 0) = 0. In this paper, we have extended the de­
finitions of these polynomials to all values of p # —1/2 — k9 k = 0, 1, 
2, . . . However, the theorems alluded to above are still valid. 

The proofs of these theorems begin with a proof of convergence of the 
given series in some region K of the plane, which depends on the asympto­
tic bounds on the coefficients an. Having established the existence of the 
functions W (̂JC, y) or e^x, t) in K, it remains to prove that the given func­
tion satisfies the differential equation and the boundary conditions. This 
generally involves the use of standard identities for the Jacobi polynomials 
and asymptotic bounds for these polynomials to show the uniform con­
vergence of the series of derivatives on appropriate compact subsets of K 
(see [4] for examples). These arguments become repetitious and lengthy. 
For this reason, in this paper we will concentrate on the geometry of the 
regions of convergence (and divergence) of the given series, omitting the 
details of the proofs that the series satisfy a certain partial differential 
equation. 

For the proofs of these theorems we shall need the following asymptotic 
bounds stated in [12]. If a and ß are arbitrary reals and c is a positive 
constant, then 

[0(na), 0 ^ 0 ^ err1. 

THEOREM 5.1. Let an be real, n = 0, 1, 2, . . . , and suppose 
lim sup^oo \an\

1/n = o~\ G > 0. Then the series uf(x, y) = L£L0 #«"£(*> >0 
converges to a solution of (2.3) when r < a, p # —1/2 — k, k = 0, 1, 
2, . . . , but does not converge everywhere for r < a + e, e > 0. 

PROOF. Using (3.6) the given series is 

u«x, y) = r{fi + 1/2) g A „ % p + 1/2
V) 

The restrictions on p are obvious from this form. The case jn > —1/2 
was covered in [4], which we shall not repeat. For the case JLL < —1/2, 
we use the bounds (5.1). If p < - 1/2, 0 = 0. then Pjf~1/2> f-1/2\cos 0) = 
0(nM-v2y if o < <? ^ 0 ^ TC/2, then Pjf-1'2> r-M(cos 0) = 0-* 0(n~1/2). 
Since p < 0, P^-i/2,*-i/2)(cos 0) = 0(ir-i/2) for 0 ^ 0 ^ TC/2. By hypo­
thesis, for r < R < a there exists a constant M > 0 such that \an\ ^ 
MjRn. Hence for N sufficiently large 
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Since the comparison series converges by the ratio test, the given series 
converges for 0 g 0 ^ x/2, r < a. For %\2 g 0 ^ %, let <p = % — 0 and 
use the fact that Pfr&(x) = ( - \)nP^a){x) to reduce this case to the one 
just treated. The cases % ̂  6 ^ 3^/2 and 3^/2 ^ 0 ^ 2TC are treated 
similarly. When y = 0, ut*(x, 0) = 2J£L0

 ö»^w which diverges for |JC| > a. 

THEOREM 5.2. Let cn be real, n = 0, 1, 2, . . . am/ suppose 
lim sup^oo |cj1 / w = a"1, Ö- > 0. Then the series w(x, y) = 2£L0 cM vg(x, >>) 
converges to a solution of (2.6) w/^n r < a, J 7e 0, p # —1/2 — k, k = 
0, 1, 2, . . . òwf does «ö/ converge everywhere for r <a + £, e> 0. 77ze 
restriction y ^ 0 c#« 6e dropped if p ^ 1 /2. 

PROOF. Using (3.6) and (3.8), the given series is 

V . Y v _ ; ^ + 1 / t y + 1/2) Ä c -^ !^P^ 1 / 2 >^ 2 ) ( cosg ) 
* ' W " '"" 2 èb ""Â/i +~> + 3/2) • "• 

The restrictions on p. are obvious from this form. The restriction y ^ 0 
is required so that y2^1 will have continuous first and second derivatives 
when p < 1/2. The convergence proof is similar to that of theorem 5.1. 
For the divergence proof, we consider first the case p > — 3/2. Then by 
formula (7.32.2) of [12] max \Pjf"if+W(cos d)\ ~ n« where q = 
max[— 1/2, /i 4- 1/2]. Since Ti7=ocnrn diverges if r > a, there is a con­
stant p > 1 and a subsequence of integers such that \cnr

n\ ^ pn. Then on 
this subsequence 

\cttn\rnP^1/2>K+1/V(cos 6)1 F(n + p + 3/2)| ~ |cy»| n\m\r(n + // 4- 3/2). 

By Stirling's formula, this behaves as Km~y-~V2\cnr
n\ ^ Kn^-p-1'2 pn, 

where Â  is a positive constant. The failure of this term to tend to zero 
on the subsequence shows that the series diverges for r > a. For p < 
— 3/2, we use formula (8.21.10) of [12] to show that there is an angle 0, 
0 < 6 < x, where P<f+1/2'^+1/2)(cos0) ~ n~l/2. Then by the argument above 
the general term of the series does not tend to zero for this angle and r > a. 

Theorems 5.1 and 5.2 can be used to give a representation theory for 
certain pseudo-analytic functions. Let an9 n = 0, 1, 2, . . . , be real and 
lim sup„_>oo \an\

1/n = tf"1- Let cn_x = nan, n = 1, 2, 3, . . . and let 
oo 

vi*, y) = L ««wg(*> y\ 

oo 

vKx, J>) = E nanv^x(x, y) 

CO 

= 2 c„_i vg_i(x, >>) 

OO 

= 2 c„v£(x, y). 
n=0 

(5.2) 
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When fi> - 1 /2 , by (3.12) the function 

(5.3) f(z) = uf{x, y) + i>(x, y) 

satisfies the pseudo-analytic conditions (2.7) for r < a. If ^ < —1/2 and 
ju 7* — 1/2 — k, k = 1, 2, 3, . . . , (5.3) satisfies the pseudo-analytic condi­
tions in any part of the convergence region where y ^ 0. This result can 
be generalized to the case where an is complex. 

THEOREM 5.3. Suppose that lim supw_>oo 2n\bn\
1/n/e = a. Then the series 

CO CO 

(5.4) U(x, y)= E b.U&x, y), V(x, y) = £ KVftx, y) 

converge for r > a to solutions of {23) and (2.6) respectively for ju ^ 0, 
1, 2, . . . , y 7* 0, £wf do «or converge everywhere for r > a — e, e > 0. 

PROOF. The proof is similar to those of theorems 5.1 and 5.2. 
If lim supn^002n\bn\

1/n/e = a, we can represent certain pseudo-analytic 
functions for r > a. Let 

CO CO 

(5.5) U(x, y) = Zbn UH(x, y), V{x, y) = £ bn(-l/2 V/+1(x y)). 

Then, using (3.20), the function 
(5.6) F{z) = U(x, y) + iK(x, >>) 

satisfies the pseudo-analytic conditions for r > <j, j> # 0 and ju ̂  0 ,1 , 
2, . . . . 

Next we turn to some expansion theorems for the EPD functions. 

THEOREM 5.4. Let lim sup \an\
l/n = <7_1, a > 0. 77z<?« 2 ^ 0 a„e£(x, 0 

converges for \x\ + \t\ < a to a solution of (2.9) èw/ rfö^ WO/ converge 
everywhere for |x| + |/| < <j + £, £ > 0. 

PROOF. Using formula (8.23.1) of [12], it is easy to show that |eg(x, t)\l/n 

£ |JC| + |f|. Then using the root test, it follows that ££=0 |aweg(x, 01 
converges for |x| + |;| < a. If f = 0, £ ^ 0 a„<?g(x, 0) = ££=0 tfwxw wnich 
diverges for |JC| > <7. 

THEOREM 5.5. Let lim sup 2«|6„|1/w/e = a > 0. r/œ/i E£LO6B<^|(JC, t) 
converges for \t\ > \x\ •¥ a to a solution of the EPD equation, but does not 
converge everywhere for \t\ > \x\ -f a — e, e > 0. 

PROOF. Using Stirling's formula and formula (8.23.1) of [12], it is easy 
to show when t2 - x2 > 0 that |<^(x, t)\l/n ^ {2n/e){\x\ + |f |)/(f2 - x2). 
Then using the root test, it follows that ££Lo \bn$n(xi 01 converges for 
(|x| 4- \t\)/{t2 - x2) < 1/(7 or |;I > |x| + o. On the other hand for every 
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e > 0 there is a subsequence such that \bn\
1/n > e(a - e/2)/2n. If |/| -

\x\<a- e, then (|JC| 4- \t\)/(t2 - x2) > l/(a - e) and \bné>%(x, *)l1/w > 
(a — e/2)/(a — e) > 1 and the series diverges, provided x ^ O . 

THEOREM 5.6. Let lim sup^oo n 2P \bn\p
/n/pe ^ a9 where p < 1. 77i*/i f/*e 

seriös LS=o^«^(^» 0 converges for \t\ > \x\. 

PROOF. Using formula (8.23.1) of [12], it can be shown for t2 - x2 > 0, 
that |<f£(;c, 01 ~ n\2n{\x\ + \t\)n/(t2 - x2)n. Also for arbitrary e > 0, 
\bn\ S [pe((î + e)/n 2P]n/P for n ^ N, N sufficiently large. Hence 

pe(a + e)yp nl(\x\_+ \t\)» 
~'(72"-"x2y~' Z \bJS(x,t)\ g M £ 

for some constant Af. A ratio test shows that the comparison series 
converges for all x and t such that t2 — x2 > 0. 

6. Fourier transform criteria. In [11] Widder and Rosenbloom proved 
the following theorem concerning the expansion of heat functions in 
terms of the associated heat functions h„(x, t). 

THEOREM 6.1. The series T*7=Qbnhn(x, t) converges for t > a è 0 if and 
only if 

(6.1) g bjijLx, 0 = (1/2*) f °° «**-* </ts)ds 

wherecf>(s)e%(2,a) and bn = 0(w)(O)/[«!(- 2î)»]. [Here %l(2, a) denotes 
the class of entire functions of growth (2, <j)]. 

In this section, we show that there are analogous theorems for the 
associated GASPT functions and the associated EPD functions. 

THEOREM 6.2. Let ju < 1. Then the series E%LobnÜjl(x9 y) converges for 
y > G è 0 if and only if 

(6.2) £ bnÜ%(x, y) = (1/2*) f " *<" #*) 0 ^ 0 * ) * 

where Ufa, y) = 7X1/2 - ^) Ufa, y), W^ys) = J~ra exp( - t - y*s*/4t) 
(dtltf+l/2),<p(x)B^(\,a), and b„ = ^(»>(0)/[«!(-2/)"]. 

PROOF. If the series converges as stated and lim sup , , ^ 2n\bn\
Vnje = a' 

> a, then the series diverges for \z\ < a', x # 0, contrary to assumption. 
Hence, ^(z) = £j£=o(-2/) l ,*fIz"e2((l, ff). Conversely, if 

Kfa, y) = A1/2 - ft) Ti {(4jr/)-1 /2^2 /4 '} 

= 0/2«) J] <?'" iVJys)ds 
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then 

UJLx, y) = (-2)»D«xKv(x, y) = (1/2*) f°° (-2w)*«<* Wß(ys)ds 
J —oo 

and 

£ *.t/.(jc, j) = (1/2») 2 (-2«)- *, e^W^ds 
n—Q J —oo w=0 

- (1/2») f" e»*(fts)lVlAys)ds 
J —oo 

provided the term-by-term integration is valid for y > a. It is because 
Wß(ys) = 2(2/^y-1/2 Kp-vz (ys) and K^l/2{z) ~ (nl2z)™er* as z - oo. 
Note that ^ < 1 insures that the Fourier transform exists in the classical 
sense. 

THEOREM 6.3. The series HZLobHé?%(x9 /) converges in the space of ultra-
distributions Z' // and only if 

(6.3) £ bjftx, t) = (1/2*) f °° e"* (fts)MM(ts)ds 
w=0 J -oo 

**«•« <?£(*, 0 = f/fy+1/2)]-1 *«(*, /), A/„(w) = 2(2/ts)*-^ Jß-1/2(ts), 
andfts) — ZIS=o( — 2«)" A» w a distribution in D'. 

PROOF. Since MM(ts) is a multiplier in D' the integral is an ultradistribu­
tion in Z' if <p(s) is in i?'. We have 

Lf(x, t) = n{(4»0-1 /2e-Ä4(}/A^ + 1/2) 

= fi-2K'2 - x^/^irri/u) 

= (1/2») f " <"'" M^ts)ds 
J —oo 

where the Fourier transform is defined in the generalized sense, (see [15]). 
Also 

i&x, t) = (-2)"/>»/>(*, t) =0/2*) f00 (-2^)« e"* MM(ts)ds 
J — oo 

and 

2 *^s(*. 0-012«) \ 2 ( - 2«)» V*s ^toVfc 
n=0 J —oo n=Q 

= (1/2») f °° *•'« fis) M,its)ds 
J —oo 

provided the term-by-term integration is valid. It is by the continuity of 
the Fourier transform in Z'. 
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